| /* |
| * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| /* We need to use some engine deprecated APIs */ |
| #define OPENSSL_SUPPRESS_DEPRECATED |
| |
| #include <stdio.h> |
| #include "crypto/ctype.h" |
| #include <string.h> |
| #include "internal/cryptlib.h" |
| #include <openssl/buffer.h> |
| #include <openssl/objects.h> |
| #include <openssl/evp.h> |
| #include <openssl/rand.h> |
| #include <openssl/x509.h> |
| #include <openssl/pem.h> |
| #include <openssl/pkcs12.h> |
| #include "crypto/asn1.h" |
| #include <openssl/des.h> |
| #include <openssl/engine.h> |
| |
| #define MIN_LENGTH 4 |
| |
| static int load_iv(char **fromp, unsigned char *to, int num); |
| static int check_pem(const char *nm, const char *name); |
| int ossl_pem_check_suffix(const char *pem_str, const char *suffix); |
| |
| int PEM_def_callback(char *buf, int num, int rwflag, void *userdata) |
| { |
| int i, min_len; |
| const char *prompt; |
| |
| /* We assume that the user passes a default password as userdata */ |
| if (userdata) { |
| i = strlen(userdata); |
| i = (i > num) ? num : i; |
| memcpy(buf, userdata, i); |
| return i; |
| } |
| |
| prompt = EVP_get_pw_prompt(); |
| if (prompt == NULL) |
| prompt = "Enter PEM pass phrase:"; |
| |
| /* |
| * rwflag == 0 means decryption |
| * rwflag == 1 means encryption |
| * |
| * We assume that for encryption, we want a minimum length, while for |
| * decryption, we cannot know any minimum length, so we assume zero. |
| */ |
| min_len = rwflag ? MIN_LENGTH : 0; |
| |
| i = EVP_read_pw_string_min(buf, min_len, num, prompt, rwflag); |
| if (i != 0) { |
| ERR_raise(ERR_LIB_PEM, PEM_R_PROBLEMS_GETTING_PASSWORD); |
| memset(buf, 0, (unsigned int)num); |
| return -1; |
| } |
| return strlen(buf); |
| } |
| |
| void PEM_proc_type(char *buf, int type) |
| { |
| const char *str; |
| char *p = buf + strlen(buf); |
| |
| if (type == PEM_TYPE_ENCRYPTED) |
| str = "ENCRYPTED"; |
| else if (type == PEM_TYPE_MIC_CLEAR) |
| str = "MIC-CLEAR"; |
| else if (type == PEM_TYPE_MIC_ONLY) |
| str = "MIC-ONLY"; |
| else |
| str = "BAD-TYPE"; |
| |
| BIO_snprintf(p, PEM_BUFSIZE - (size_t)(p - buf), "Proc-Type: 4,%s\n", str); |
| } |
| |
| void PEM_dek_info(char *buf, const char *type, int len, const char *str) |
| { |
| long i; |
| char *p = buf + strlen(buf); |
| int j = PEM_BUFSIZE - (size_t)(p - buf), n; |
| |
| n = BIO_snprintf(p, j, "DEK-Info: %s,", type); |
| if (n > 0) { |
| j -= n; |
| p += n; |
| for (i = 0; i < len; i++) { |
| n = BIO_snprintf(p, j, "%02X", 0xff & str[i]); |
| if (n <= 0) |
| return; |
| j -= n; |
| p += n; |
| } |
| if (j > 1) |
| strcpy(p, "\n"); |
| } |
| } |
| |
| #ifndef OPENSSL_NO_STDIO |
| void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, |
| pem_password_cb *cb, void *u) |
| { |
| BIO *b; |
| void *ret; |
| |
| if ((b = BIO_new(BIO_s_file())) == NULL) { |
| ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); |
| return 0; |
| } |
| BIO_set_fp(b, fp, BIO_NOCLOSE); |
| ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u); |
| BIO_free(b); |
| return ret; |
| } |
| #endif |
| |
| static int check_pem(const char *nm, const char *name) |
| { |
| /* Normal matching nm and name */ |
| if (strcmp(nm, name) == 0) |
| return 1; |
| |
| /* Make PEM_STRING_EVP_PKEY match any private key */ |
| |
| if (strcmp(name, PEM_STRING_EVP_PKEY) == 0) { |
| int slen; |
| const EVP_PKEY_ASN1_METHOD *ameth; |
| if (strcmp(nm, PEM_STRING_PKCS8) == 0) |
| return 1; |
| if (strcmp(nm, PEM_STRING_PKCS8INF) == 0) |
| return 1; |
| slen = ossl_pem_check_suffix(nm, "PRIVATE KEY"); |
| if (slen > 0) { |
| /* |
| * NB: ENGINE implementations won't contain a deprecated old |
| * private key decode function so don't look for them. |
| */ |
| ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); |
| if (ameth && ameth->old_priv_decode) |
| return 1; |
| } |
| return 0; |
| } |
| |
| if (strcmp(name, PEM_STRING_PARAMETERS) == 0) { |
| int slen; |
| const EVP_PKEY_ASN1_METHOD *ameth; |
| slen = ossl_pem_check_suffix(nm, "PARAMETERS"); |
| if (slen > 0) { |
| ENGINE *e; |
| ameth = EVP_PKEY_asn1_find_str(&e, nm, slen); |
| if (ameth) { |
| int r; |
| if (ameth->param_decode) |
| r = 1; |
| else |
| r = 0; |
| #ifndef OPENSSL_NO_ENGINE |
| ENGINE_finish(e); |
| #endif |
| return r; |
| } |
| } |
| return 0; |
| } |
| /* If reading DH parameters handle X9.42 DH format too */ |
| if (strcmp(nm, PEM_STRING_DHXPARAMS) == 0 |
| && strcmp(name, PEM_STRING_DHPARAMS) == 0) |
| return 1; |
| |
| /* Permit older strings */ |
| |
| if (strcmp(nm, PEM_STRING_X509_OLD) == 0 |
| && strcmp(name, PEM_STRING_X509) == 0) |
| return 1; |
| |
| if (strcmp(nm, PEM_STRING_X509_REQ_OLD) == 0 |
| && strcmp(name, PEM_STRING_X509_REQ) == 0) |
| return 1; |
| |
| /* Allow normal certs to be read as trusted certs */ |
| if (strcmp(nm, PEM_STRING_X509) == 0 |
| && strcmp(name, PEM_STRING_X509_TRUSTED) == 0) |
| return 1; |
| |
| if (strcmp(nm, PEM_STRING_X509_OLD) == 0 |
| && strcmp(name, PEM_STRING_X509_TRUSTED) == 0) |
| return 1; |
| |
| /* Some CAs use PKCS#7 with CERTIFICATE headers */ |
| if (strcmp(nm, PEM_STRING_X509) == 0 |
| && strcmp(name, PEM_STRING_PKCS7) == 0) |
| return 1; |
| |
| if (strcmp(nm, PEM_STRING_PKCS7_SIGNED) == 0 |
| && strcmp(name, PEM_STRING_PKCS7) == 0) |
| return 1; |
| |
| #ifndef OPENSSL_NO_CMS |
| if (strcmp(nm, PEM_STRING_X509) == 0 |
| && strcmp(name, PEM_STRING_CMS) == 0) |
| return 1; |
| /* Allow CMS to be read from PKCS#7 headers */ |
| if (strcmp(nm, PEM_STRING_PKCS7) == 0 |
| && strcmp(name, PEM_STRING_CMS) == 0) |
| return 1; |
| #endif |
| |
| return 0; |
| } |
| |
| static void pem_free(void *p, unsigned int flags, size_t num) |
| { |
| if (flags & PEM_FLAG_SECURE) |
| OPENSSL_secure_clear_free(p, num); |
| else |
| OPENSSL_free(p); |
| } |
| |
| static void *pem_malloc(int num, unsigned int flags) |
| { |
| return (flags & PEM_FLAG_SECURE) ? OPENSSL_secure_malloc(num) |
| : OPENSSL_malloc(num); |
| } |
| |
| static int pem_bytes_read_bio_flags(unsigned char **pdata, long *plen, |
| char **pnm, const char *name, BIO *bp, |
| pem_password_cb *cb, void *u, |
| unsigned int flags) |
| { |
| EVP_CIPHER_INFO cipher; |
| char *nm = NULL, *header = NULL; |
| unsigned char *data = NULL; |
| long len = 0; |
| int ret = 0; |
| |
| do { |
| pem_free(nm, flags, 0); |
| pem_free(header, flags, 0); |
| pem_free(data, flags, len); |
| if (!PEM_read_bio_ex(bp, &nm, &header, &data, &len, flags)) { |
| if (ERR_GET_REASON(ERR_peek_error()) == PEM_R_NO_START_LINE) |
| ERR_add_error_data(2, "Expecting: ", name); |
| return 0; |
| } |
| } while (!check_pem(nm, name)); |
| if (!PEM_get_EVP_CIPHER_INFO(header, &cipher)) |
| goto err; |
| if (!PEM_do_header(&cipher, data, &len, cb, u)) |
| goto err; |
| |
| *pdata = data; |
| *plen = len; |
| |
| if (pnm != NULL) |
| *pnm = nm; |
| |
| ret = 1; |
| |
| err: |
| if (!ret || pnm == NULL) |
| pem_free(nm, flags, 0); |
| pem_free(header, flags, 0); |
| if (!ret) |
| pem_free(data, flags, len); |
| return ret; |
| } |
| |
| int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, |
| const char *name, BIO *bp, pem_password_cb *cb, |
| void *u) { |
| return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u, |
| PEM_FLAG_EAY_COMPATIBLE); |
| } |
| |
| int PEM_bytes_read_bio_secmem(unsigned char **pdata, long *plen, char **pnm, |
| const char *name, BIO *bp, pem_password_cb *cb, |
| void *u) { |
| return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u, |
| PEM_FLAG_SECURE | PEM_FLAG_EAY_COMPATIBLE); |
| } |
| |
| #ifndef OPENSSL_NO_STDIO |
| int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, |
| const void *x, const EVP_CIPHER *enc, |
| const unsigned char *kstr, int klen, |
| pem_password_cb *callback, void *u) |
| { |
| BIO *b; |
| int ret; |
| |
| if ((b = BIO_new(BIO_s_file())) == NULL) { |
| ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); |
| return 0; |
| } |
| BIO_set_fp(b, fp, BIO_NOCLOSE); |
| ret = PEM_ASN1_write_bio(i2d, name, b, x, enc, kstr, klen, callback, u); |
| BIO_free(b); |
| return ret; |
| } |
| #endif |
| |
| int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, |
| const void *x, const EVP_CIPHER *enc, |
| const unsigned char *kstr, int klen, |
| pem_password_cb *callback, void *u) |
| { |
| EVP_CIPHER_CTX *ctx = NULL; |
| int dsize = 0, i = 0, j = 0, ret = 0; |
| unsigned char *p, *data = NULL; |
| const char *objstr = NULL; |
| char buf[PEM_BUFSIZE]; |
| unsigned char key[EVP_MAX_KEY_LENGTH]; |
| unsigned char iv[EVP_MAX_IV_LENGTH]; |
| |
| if (enc != NULL) { |
| objstr = EVP_CIPHER_get0_name(enc); |
| if (objstr == NULL || EVP_CIPHER_get_iv_length(enc) == 0 |
| || EVP_CIPHER_get_iv_length(enc) > (int)sizeof(iv) |
| /* |
| * Check "Proc-Type: 4,Encrypted\nDEK-Info: objstr,hex-iv\n" |
| * fits into buf |
| */ |
| || strlen(objstr) + 23 + 2 * EVP_CIPHER_get_iv_length(enc) + 13 |
| > sizeof(buf)) { |
| ERR_raise(ERR_LIB_PEM, PEM_R_UNSUPPORTED_CIPHER); |
| goto err; |
| } |
| } |
| |
| if ((dsize = i2d(x, NULL)) <= 0) { |
| ERR_raise(ERR_LIB_PEM, ERR_R_ASN1_LIB); |
| dsize = 0; |
| goto err; |
| } |
| /* dsize + 8 bytes are needed */ |
| /* actually it needs the cipher block size extra... */ |
| data = OPENSSL_malloc((unsigned int)dsize + 20); |
| if (data == NULL) { |
| ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| p = data; |
| i = i2d(x, &p); |
| |
| if (enc != NULL) { |
| if (kstr == NULL) { |
| if (callback == NULL) |
| klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u); |
| else |
| klen = (*callback) (buf, PEM_BUFSIZE, 1, u); |
| if (klen <= 0) { |
| ERR_raise(ERR_LIB_PEM, PEM_R_READ_KEY); |
| goto err; |
| } |
| #ifdef CHARSET_EBCDIC |
| /* Convert the pass phrase from EBCDIC */ |
| ebcdic2ascii(buf, buf, klen); |
| #endif |
| kstr = (unsigned char *)buf; |
| } |
| /* Generate a salt */ |
| if (RAND_bytes(iv, EVP_CIPHER_get_iv_length(enc)) <= 0) |
| goto err; |
| /* |
| * The 'iv' is used as the iv and as a salt. It is NOT taken from |
| * the BytesToKey function |
| */ |
| if (!EVP_BytesToKey(enc, EVP_md5(), iv, kstr, klen, 1, key, NULL)) |
| goto err; |
| |
| if (kstr == (unsigned char *)buf) |
| OPENSSL_cleanse(buf, PEM_BUFSIZE); |
| |
| buf[0] = '\0'; |
| PEM_proc_type(buf, PEM_TYPE_ENCRYPTED); |
| PEM_dek_info(buf, objstr, EVP_CIPHER_get_iv_length(enc), (char *)iv); |
| /* k=strlen(buf); */ |
| |
| ret = 1; |
| if ((ctx = EVP_CIPHER_CTX_new()) == NULL |
| || !EVP_EncryptInit_ex(ctx, enc, NULL, key, iv) |
| || !EVP_EncryptUpdate(ctx, data, &j, data, i) |
| || !EVP_EncryptFinal_ex(ctx, &(data[j]), &i)) |
| ret = 0; |
| if (ret == 0) |
| goto err; |
| i += j; |
| } else { |
| ret = 1; |
| buf[0] = '\0'; |
| } |
| i = PEM_write_bio(bp, name, buf, data, i); |
| if (i <= 0) |
| ret = 0; |
| err: |
| OPENSSL_cleanse(key, sizeof(key)); |
| OPENSSL_cleanse(iv, sizeof(iv)); |
| EVP_CIPHER_CTX_free(ctx); |
| OPENSSL_cleanse(buf, PEM_BUFSIZE); |
| OPENSSL_clear_free(data, (unsigned int)dsize); |
| return ret; |
| } |
| |
| int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen, |
| pem_password_cb *callback, void *u) |
| { |
| int ok; |
| int keylen; |
| long len = *plen; |
| int ilen = (int) len; /* EVP_DecryptUpdate etc. take int lengths */ |
| EVP_CIPHER_CTX *ctx; |
| unsigned char key[EVP_MAX_KEY_LENGTH]; |
| char buf[PEM_BUFSIZE]; |
| |
| #if LONG_MAX > INT_MAX |
| /* Check that we did not truncate the length */ |
| if (len > INT_MAX) { |
| ERR_raise(ERR_LIB_PEM, PEM_R_HEADER_TOO_LONG); |
| return 0; |
| } |
| #endif |
| |
| if (cipher->cipher == NULL) |
| return 1; |
| if (callback == NULL) |
| keylen = PEM_def_callback(buf, PEM_BUFSIZE, 0, u); |
| else |
| keylen = callback(buf, PEM_BUFSIZE, 0, u); |
| if (keylen < 0) { |
| ERR_raise(ERR_LIB_PEM, PEM_R_BAD_PASSWORD_READ); |
| return 0; |
| } |
| #ifdef CHARSET_EBCDIC |
| /* Convert the pass phrase from EBCDIC */ |
| ebcdic2ascii(buf, buf, keylen); |
| #endif |
| |
| if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), &(cipher->iv[0]), |
| (unsigned char *)buf, keylen, 1, key, NULL)) |
| return 0; |
| |
| ctx = EVP_CIPHER_CTX_new(); |
| if (ctx == NULL) |
| return 0; |
| |
| ok = EVP_DecryptInit_ex(ctx, cipher->cipher, NULL, key, &(cipher->iv[0])); |
| if (ok) |
| ok = EVP_DecryptUpdate(ctx, data, &ilen, data, ilen); |
| if (ok) { |
| /* Squirrel away the length of data decrypted so far. */ |
| *plen = ilen; |
| ok = EVP_DecryptFinal_ex(ctx, &(data[ilen]), &ilen); |
| } |
| if (ok) |
| *plen += ilen; |
| else |
| ERR_raise(ERR_LIB_PEM, PEM_R_BAD_DECRYPT); |
| |
| EVP_CIPHER_CTX_free(ctx); |
| OPENSSL_cleanse((char *)buf, sizeof(buf)); |
| OPENSSL_cleanse((char *)key, sizeof(key)); |
| return ok; |
| } |
| |
| /* |
| * This implements a very limited PEM header parser that does not support the |
| * full grammar of rfc1421. In particular, folded headers are not supported, |
| * nor is additional whitespace. |
| * |
| * A robust implementation would make use of a library that turns the headers |
| * into a BIO from which one folded line is read at a time, and is then split |
| * into a header label and content. We would then parse the content of the |
| * headers we care about. This is overkill for just this limited use-case, but |
| * presumably we also parse rfc822-style headers for S/MIME, so a common |
| * abstraction might well be more generally useful. |
| */ |
| #define PROC_TYPE "Proc-Type:" |
| #define ENCRYPTED "ENCRYPTED" |
| #define DEK_INFO "DEK-Info:" |
| int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher) |
| { |
| const EVP_CIPHER *enc = NULL; |
| int ivlen; |
| char *dekinfostart, c; |
| |
| cipher->cipher = NULL; |
| memset(cipher->iv, 0, sizeof(cipher->iv)); |
| if ((header == NULL) || (*header == '\0') || (*header == '\n')) |
| return 1; |
| |
| if (!CHECK_AND_SKIP_PREFIX(header, PROC_TYPE)) { |
| ERR_raise(ERR_LIB_PEM, PEM_R_NOT_PROC_TYPE); |
| return 0; |
| } |
| header += strspn(header, " \t"); |
| |
| if (*header++ != '4' || *header++ != ',') |
| return 0; |
| header += strspn(header, " \t"); |
| |
| /* We expect "ENCRYPTED" followed by optional white-space + line break */ |
| if (!CHECK_AND_SKIP_PREFIX(header, ENCRYPTED) || |
| strspn(header, " \t\r\n") == 0) { |
| ERR_raise(ERR_LIB_PEM, PEM_R_NOT_ENCRYPTED); |
| return 0; |
| } |
| header += strspn(header, " \t\r"); |
| if (*header++ != '\n') { |
| ERR_raise(ERR_LIB_PEM, PEM_R_SHORT_HEADER); |
| return 0; |
| } |
| |
| /*- |
| * https://tools.ietf.org/html/rfc1421#section-4.6.1.3 |
| * We expect "DEK-Info: algo[,hex-parameters]" |
| */ |
| if (!CHECK_AND_SKIP_PREFIX(header, DEK_INFO)) { |
| ERR_raise(ERR_LIB_PEM, PEM_R_NOT_DEK_INFO); |
| return 0; |
| } |
| header += strspn(header, " \t"); |
| |
| /* |
| * DEK-INFO is a comma-separated combination of algorithm name and optional |
| * parameters. |
| */ |
| dekinfostart = header; |
| header += strcspn(header, " \t,"); |
| c = *header; |
| *header = '\0'; |
| cipher->cipher = enc = EVP_get_cipherbyname(dekinfostart); |
| *header = c; |
| header += strspn(header, " \t"); |
| |
| if (enc == NULL) { |
| ERR_raise(ERR_LIB_PEM, PEM_R_UNSUPPORTED_ENCRYPTION); |
| return 0; |
| } |
| ivlen = EVP_CIPHER_get_iv_length(enc); |
| if (ivlen > 0 && *header++ != ',') { |
| ERR_raise(ERR_LIB_PEM, PEM_R_MISSING_DEK_IV); |
| return 0; |
| } else if (ivlen == 0 && *header == ',') { |
| ERR_raise(ERR_LIB_PEM, PEM_R_UNEXPECTED_DEK_IV); |
| return 0; |
| } |
| |
| if (!load_iv(&header, cipher->iv, EVP_CIPHER_get_iv_length(enc))) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int load_iv(char **fromp, unsigned char *to, int num) |
| { |
| int v, i; |
| char *from; |
| |
| from = *fromp; |
| for (i = 0; i < num; i++) |
| to[i] = 0; |
| num *= 2; |
| for (i = 0; i < num; i++) { |
| v = OPENSSL_hexchar2int(*from); |
| if (v < 0) { |
| ERR_raise(ERR_LIB_PEM, PEM_R_BAD_IV_CHARS); |
| return 0; |
| } |
| from++; |
| to[i / 2] |= v << (long)((!(i & 1)) * 4); |
| } |
| |
| *fromp = from; |
| return 1; |
| } |
| |
| #ifndef OPENSSL_NO_STDIO |
| int PEM_write(FILE *fp, const char *name, const char *header, |
| const unsigned char *data, long len) |
| { |
| BIO *b; |
| int ret; |
| |
| if ((b = BIO_new(BIO_s_file())) == NULL) { |
| ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); |
| return 0; |
| } |
| BIO_set_fp(b, fp, BIO_NOCLOSE); |
| ret = PEM_write_bio(b, name, header, data, len); |
| BIO_free(b); |
| return ret; |
| } |
| #endif |
| |
| int PEM_write_bio(BIO *bp, const char *name, const char *header, |
| const unsigned char *data, long len) |
| { |
| int nlen, n, i, j, outl; |
| unsigned char *buf = NULL; |
| EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new(); |
| int reason = ERR_R_BUF_LIB; |
| int retval = 0; |
| |
| if (ctx == NULL) { |
| reason = ERR_R_MALLOC_FAILURE; |
| goto err; |
| } |
| |
| EVP_EncodeInit(ctx); |
| nlen = strlen(name); |
| |
| if ((BIO_write(bp, "-----BEGIN ", 11) != 11) || |
| (BIO_write(bp, name, nlen) != nlen) || |
| (BIO_write(bp, "-----\n", 6) != 6)) |
| goto err; |
| |
| i = strlen(header); |
| if (i > 0) { |
| if ((BIO_write(bp, header, i) != i) || (BIO_write(bp, "\n", 1) != 1)) |
| goto err; |
| } |
| |
| buf = OPENSSL_malloc(PEM_BUFSIZE * 8); |
| if (buf == NULL) { |
| reason = ERR_R_MALLOC_FAILURE; |
| goto err; |
| } |
| |
| i = j = 0; |
| while (len > 0) { |
| n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len); |
| if (!EVP_EncodeUpdate(ctx, buf, &outl, &(data[j]), n)) |
| goto err; |
| if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl)) |
| goto err; |
| i += outl; |
| len -= n; |
| j += n; |
| } |
| EVP_EncodeFinal(ctx, buf, &outl); |
| if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl)) |
| goto err; |
| if ((BIO_write(bp, "-----END ", 9) != 9) || |
| (BIO_write(bp, name, nlen) != nlen) || |
| (BIO_write(bp, "-----\n", 6) != 6)) |
| goto err; |
| retval = i + outl; |
| |
| err: |
| if (retval == 0) |
| ERR_raise(ERR_LIB_PEM, reason); |
| EVP_ENCODE_CTX_free(ctx); |
| OPENSSL_clear_free(buf, PEM_BUFSIZE * 8); |
| return retval; |
| } |
| |
| #ifndef OPENSSL_NO_STDIO |
| int PEM_read(FILE *fp, char **name, char **header, unsigned char **data, |
| long *len) |
| { |
| BIO *b; |
| int ret; |
| |
| if ((b = BIO_new(BIO_s_file())) == NULL) { |
| ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); |
| return 0; |
| } |
| BIO_set_fp(b, fp, BIO_NOCLOSE); |
| ret = PEM_read_bio(b, name, header, data, len); |
| BIO_free(b); |
| return ret; |
| } |
| #endif |
| |
| /* Some helpers for PEM_read_bio_ex(). */ |
| static int sanitize_line(char *linebuf, int len, unsigned int flags, int first_call) |
| { |
| int i; |
| if (first_call) { |
| /* Other BOMs imply unsupported multibyte encoding, |
| * so don't strip them and let the error raise */ |
| const unsigned char utf8_bom[3] = {0xEF, 0xBB, 0xBF}; |
| |
| if (len > 3 && memcmp(linebuf, utf8_bom, 3) == 0) { |
| memmove(linebuf, linebuf + 3, len - 3); |
| linebuf[len - 3] = 0; |
| len -= 3; |
| } |
| } |
| |
| if (flags & PEM_FLAG_EAY_COMPATIBLE) { |
| /* Strip trailing whitespace */ |
| while ((len >= 0) && (linebuf[len] <= ' ')) |
| len--; |
| /* Go back to whitespace before applying uniform line ending. */ |
| len++; |
| } else if (flags & PEM_FLAG_ONLY_B64) { |
| for (i = 0; i < len; ++i) { |
| if (!ossl_isbase64(linebuf[i]) || linebuf[i] == '\n' |
| || linebuf[i] == '\r') |
| break; |
| } |
| len = i; |
| } else { |
| /* EVP_DecodeBlock strips leading and trailing whitespace, so just strip |
| * control characters in-place and let everything through. */ |
| for (i = 0; i < len; ++i) { |
| if (linebuf[i] == '\n' || linebuf[i] == '\r') |
| break; |
| if (ossl_iscntrl(linebuf[i])) |
| linebuf[i] = ' '; |
| } |
| len = i; |
| } |
| /* The caller allocated LINESIZE+1, so this is safe. */ |
| linebuf[len++] = '\n'; |
| linebuf[len] = '\0'; |
| return len; |
| } |
| |
| #define LINESIZE 255 |
| /* Note trailing spaces for begin and end. */ |
| #define BEGINSTR "-----BEGIN " |
| #define ENDSTR "-----END " |
| #define TAILSTR "-----\n" |
| #define BEGINLEN ((int)(sizeof(BEGINSTR) - 1)) |
| #define ENDLEN ((int)(sizeof(ENDSTR) - 1)) |
| #define TAILLEN ((int)(sizeof(TAILSTR) - 1)) |
| static int get_name(BIO *bp, char **name, unsigned int flags) |
| { |
| char *linebuf; |
| int ret = 0; |
| int len; |
| int first_call = 1; |
| |
| /* |
| * Need to hold trailing NUL (accounted for by BIO_gets() and the newline |
| * that will be added by sanitize_line() (the extra '1'). |
| */ |
| linebuf = pem_malloc(LINESIZE + 1, flags); |
| if (linebuf == NULL) { |
| ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| do { |
| len = BIO_gets(bp, linebuf, LINESIZE); |
| |
| if (len <= 0) { |
| ERR_raise(ERR_LIB_PEM, PEM_R_NO_START_LINE); |
| goto err; |
| } |
| |
| /* Strip trailing garbage and standardize ending. */ |
| len = sanitize_line(linebuf, len, flags & ~PEM_FLAG_ONLY_B64, first_call); |
| first_call = 0; |
| |
| /* Allow leading empty or non-matching lines. */ |
| } while (!HAS_PREFIX(linebuf, BEGINSTR) |
| || len < TAILLEN |
| || !HAS_PREFIX(linebuf + len - TAILLEN, TAILSTR)); |
| linebuf[len - TAILLEN] = '\0'; |
| len = len - BEGINLEN - TAILLEN + 1; |
| *name = pem_malloc(len, flags); |
| if (*name == NULL) { |
| ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| memcpy(*name, linebuf + BEGINLEN, len); |
| ret = 1; |
| |
| err: |
| pem_free(linebuf, flags, LINESIZE + 1); |
| return ret; |
| } |
| |
| /* Keep track of how much of a header we've seen. */ |
| enum header_status { |
| MAYBE_HEADER, |
| IN_HEADER, |
| POST_HEADER |
| }; |
| |
| /** |
| * Extract the optional PEM header, with details on the type of content and |
| * any encryption used on the contents, and the bulk of the data from the bio. |
| * The end of the header is marked by a blank line; if the end-of-input marker |
| * is reached prior to a blank line, there is no header. |
| * |
| * The header and data arguments are BIO** since we may have to swap them |
| * if there is no header, for efficiency. |
| * |
| * We need the name of the PEM-encoded type to verify the end string. |
| */ |
| static int get_header_and_data(BIO *bp, BIO **header, BIO **data, char *name, |
| unsigned int flags) |
| { |
| BIO *tmp = *header; |
| char *linebuf, *p; |
| int len, line, ret = 0, end = 0, prev_partial_line_read = 0, partial_line_read = 0; |
| /* 0 if not seen (yet), 1 if reading header, 2 if finished header */ |
| enum header_status got_header = MAYBE_HEADER; |
| unsigned int flags_mask; |
| size_t namelen; |
| |
| /* Need to hold trailing NUL (accounted for by BIO_gets() and the newline |
| * that will be added by sanitize_line() (the extra '1'). */ |
| linebuf = pem_malloc(LINESIZE + 1, flags); |
| if (linebuf == NULL) { |
| ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| for (line = 0; ; line++) { |
| flags_mask = ~0u; |
| len = BIO_gets(bp, linebuf, LINESIZE); |
| if (len <= 0) { |
| ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); |
| goto err; |
| } |
| |
| /* |
| * Check if line has been read completely or if only part of the line |
| * has been read. Keep the previous value to ignore newlines that |
| * appear due to reading a line up until the char before the newline. |
| */ |
| prev_partial_line_read = partial_line_read; |
| partial_line_read = len == LINESIZE-1 && linebuf[LINESIZE-2] != '\n'; |
| |
| if (got_header == MAYBE_HEADER) { |
| if (memchr(linebuf, ':', len) != NULL) |
| got_header = IN_HEADER; |
| } |
| if (HAS_PREFIX(linebuf, ENDSTR) || got_header == IN_HEADER) |
| flags_mask &= ~PEM_FLAG_ONLY_B64; |
| len = sanitize_line(linebuf, len, flags & flags_mask, 0); |
| |
| /* Check for end of header. */ |
| if (linebuf[0] == '\n') { |
| /* |
| * If previous line has been read only partially this newline is a |
| * regular newline at the end of a line and not an empty line. |
| */ |
| if (!prev_partial_line_read) { |
| if (got_header == POST_HEADER) { |
| /* Another blank line is an error. */ |
| ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); |
| goto err; |
| } |
| got_header = POST_HEADER; |
| tmp = *data; |
| } |
| continue; |
| } |
| |
| /* Check for end of stream (which means there is no header). */ |
| p = linebuf; |
| if (CHECK_AND_SKIP_PREFIX(p, ENDSTR)) { |
| namelen = strlen(name); |
| if (strncmp(p, name, namelen) != 0 || |
| !HAS_PREFIX(p + namelen, TAILSTR)) { |
| ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); |
| goto err; |
| } |
| if (got_header == MAYBE_HEADER) { |
| *header = *data; |
| *data = tmp; |
| } |
| break; |
| } else if (end) { |
| /* Malformed input; short line not at end of data. */ |
| ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); |
| goto err; |
| } |
| /* |
| * Else, a line of text -- could be header or data; we don't |
| * know yet. Just pass it through. |
| */ |
| if (BIO_puts(tmp, linebuf) < 0) |
| goto err; |
| /* |
| * Only encrypted files need the line length check applied. |
| */ |
| if (got_header == POST_HEADER) { |
| /* 65 includes the trailing newline */ |
| if (len > 65) |
| goto err; |
| if (len < 65) |
| end = 1; |
| } |
| } |
| |
| ret = 1; |
| err: |
| pem_free(linebuf, flags, LINESIZE + 1); |
| return ret; |
| } |
| |
| /** |
| * Read in PEM-formatted data from the given BIO. |
| * |
| * By nature of the PEM format, all content must be printable ASCII (except |
| * for line endings). Other characters are malformed input and will be rejected. |
| */ |
| int PEM_read_bio_ex(BIO *bp, char **name_out, char **header, |
| unsigned char **data, long *len_out, unsigned int flags) |
| { |
| EVP_ENCODE_CTX *ctx = NULL; |
| const BIO_METHOD *bmeth; |
| BIO *headerB = NULL, *dataB = NULL; |
| char *name = NULL; |
| int len, taillen, headerlen, ret = 0; |
| BUF_MEM * buf_mem; |
| |
| *len_out = 0; |
| *name_out = *header = NULL; |
| *data = NULL; |
| if ((flags & PEM_FLAG_EAY_COMPATIBLE) && (flags & PEM_FLAG_ONLY_B64)) { |
| /* These two are mutually incompatible; bail out. */ |
| ERR_raise(ERR_LIB_PEM, ERR_R_PASSED_INVALID_ARGUMENT); |
| goto end; |
| } |
| bmeth = (flags & PEM_FLAG_SECURE) ? BIO_s_secmem() : BIO_s_mem(); |
| |
| headerB = BIO_new(bmeth); |
| dataB = BIO_new(bmeth); |
| if (headerB == NULL || dataB == NULL) { |
| ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); |
| goto end; |
| } |
| |
| if (!get_name(bp, &name, flags)) |
| goto end; |
| if (!get_header_and_data(bp, &headerB, &dataB, name, flags)) |
| goto end; |
| |
| BIO_get_mem_ptr(dataB, &buf_mem); |
| len = buf_mem->length; |
| |
| /* There was no data in the PEM file */ |
| if (len == 0) |
| goto end; |
| |
| ctx = EVP_ENCODE_CTX_new(); |
| if (ctx == NULL) { |
| ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); |
| goto end; |
| } |
| |
| EVP_DecodeInit(ctx); |
| if (EVP_DecodeUpdate(ctx, (unsigned char*)buf_mem->data, &len, |
| (unsigned char*)buf_mem->data, len) < 0 |
| || EVP_DecodeFinal(ctx, (unsigned char*)&(buf_mem->data[len]), |
| &taillen) < 0) { |
| ERR_raise(ERR_LIB_PEM, PEM_R_BAD_BASE64_DECODE); |
| goto end; |
| } |
| len += taillen; |
| buf_mem->length = len; |
| |
| headerlen = BIO_get_mem_data(headerB, NULL); |
| *header = pem_malloc(headerlen + 1, flags); |
| *data = pem_malloc(len, flags); |
| if (*header == NULL || *data == NULL) |
| goto out_free; |
| if (headerlen != 0 && BIO_read(headerB, *header, headerlen) != headerlen) |
| goto out_free; |
| (*header)[headerlen] = '\0'; |
| if (BIO_read(dataB, *data, len) != len) |
| goto out_free; |
| *len_out = len; |
| *name_out = name; |
| name = NULL; |
| ret = 1; |
| goto end; |
| |
| out_free: |
| pem_free(*header, flags, 0); |
| pem_free(*data, flags, 0); |
| end: |
| EVP_ENCODE_CTX_free(ctx); |
| pem_free(name, flags, 0); |
| BIO_free(headerB); |
| BIO_free(dataB); |
| return ret; |
| } |
| |
| int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data, |
| long *len) |
| { |
| return PEM_read_bio_ex(bp, name, header, data, len, PEM_FLAG_EAY_COMPATIBLE); |
| } |
| |
| /* |
| * Check pem string and return prefix length. If for example the pem_str == |
| * "RSA PRIVATE KEY" and suffix = "PRIVATE KEY" the return value is 3 for the |
| * string "RSA". |
| */ |
| |
| int ossl_pem_check_suffix(const char *pem_str, const char *suffix) |
| { |
| int pem_len = strlen(pem_str); |
| int suffix_len = strlen(suffix); |
| const char *p; |
| if (suffix_len + 1 >= pem_len) |
| return 0; |
| p = pem_str + pem_len - suffix_len; |
| if (strcmp(p, suffix)) |
| return 0; |
| p--; |
| if (*p != ' ') |
| return 0; |
| return p - pem_str; |
| } |