| #! /usr/bin/env perl |
| # Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. |
| # |
| # Licensed under the Apache License 2.0 (the "License"). You may not use |
| # this file except in compliance with the License. You can obtain a copy |
| # in the file LICENSE in the source distribution or at |
| # https://www.openssl.org/source/license.html |
| |
| # |
| # ==================================================================== |
| # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL |
| # project. The module is, however, dual licensed under OpenSSL and |
| # CRYPTOGAMS licenses depending on where you obtain it. For further |
| # details see http://www.openssl.org/~appro/cryptogams/. |
| # ==================================================================== |
| # |
| # July 2004 |
| # |
| # 2.22x RC4 tune-up:-) It should be noted though that my hand [as in |
| # "hand-coded assembler"] doesn't stand for the whole improvement |
| # coefficient. It turned out that eliminating RC4_CHAR from config |
| # line results in ~40% improvement (yes, even for C implementation). |
| # Presumably it has everything to do with AMD cache architecture and |
| # RAW or whatever penalties. Once again! The module *requires* config |
| # line *without* RC4_CHAR! As for coding "secret," I bet on partial |
| # register arithmetics. For example instead of 'inc %r8; and $255,%r8' |
| # I simply 'inc %r8b'. Even though optimization manual discourages |
| # to operate on partial registers, it turned out to be the best bet. |
| # At least for AMD... How IA32E would perform remains to be seen... |
| |
| # November 2004 |
| # |
| # As was shown by Marc Bevand reordering of couple of load operations |
| # results in even higher performance gain of 3.3x:-) At least on |
| # Opteron... For reference, 1x in this case is RC4_CHAR C-code |
| # compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock. |
| # Latter means that if you want to *estimate* what to expect from |
| # *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz. |
| |
| # November 2004 |
| # |
| # Intel P4 EM64T core was found to run the AMD64 code really slow... |
| # The only way to achieve comparable performance on P4 was to keep |
| # RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to |
| # compose blended code, which would perform even within 30% marginal |
| # on either AMD and Intel platforms, I implement both cases. See |
| # rc4_skey.c for further details... |
| |
| # April 2005 |
| # |
| # P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing |
| # those with add/sub results in 50% performance improvement of folded |
| # loop... |
| |
| # May 2005 |
| # |
| # As was shown by Zou Nanhai loop unrolling can improve Intel EM64T |
| # performance by >30% [unlike P4 32-bit case that is]. But this is |
| # provided that loads are reordered even more aggressively! Both code |
| # paths, AMD64 and EM64T, reorder loads in essentially same manner |
| # as my IA-64 implementation. On Opteron this resulted in modest 5% |
| # improvement [I had to test it], while final Intel P4 performance |
| # achieves respectful 432MBps on 2.8GHz processor now. For reference. |
| # If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than |
| # RC4_INT code-path. While if executed on Opteron, it's only 25% |
| # slower than the RC4_INT one [meaning that if CPU ยต-arch detection |
| # is not implemented, then this final RC4_CHAR code-path should be |
| # preferred, as it provides better *all-round* performance]. |
| |
| # March 2007 |
| # |
| # Intel Core2 was observed to perform poorly on both code paths:-( It |
| # apparently suffers from some kind of partial register stall, which |
| # occurs in 64-bit mode only [as virtually identical 32-bit loop was |
| # observed to outperform 64-bit one by almost 50%]. Adding two movzb to |
| # cloop1 boosts its performance by 80%! This loop appears to be optimal |
| # fit for Core2 and therefore the code was modified to skip cloop8 on |
| # this CPU. |
| |
| # May 2010 |
| # |
| # Intel Westmere was observed to perform suboptimally. Adding yet |
| # another movzb to cloop1 improved performance by almost 50%! Core2 |
| # performance is improved too, but nominally... |
| |
| # May 2011 |
| # |
| # The only code path that was not modified is P4-specific one. Non-P4 |
| # Intel code path optimization is heavily based on submission by Maxim |
| # Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used |
| # some of the ideas even in attempt to optimize the original RC4_INT |
| # code path... Current performance in cycles per processed byte (less |
| # is better) and improvement coefficients relative to previous |
| # version of this module are: |
| # |
| # Opteron 5.3/+0%(*) |
| # P4 6.5 |
| # Core2 6.2/+15%(**) |
| # Westmere 4.2/+60% |
| # Sandy Bridge 4.2/+120% |
| # Atom 9.3/+80% |
| # VIA Nano 6.4/+4% |
| # Ivy Bridge 4.1/+30% |
| # Bulldozer 4.5/+30%(*) |
| # |
| # (*) But corresponding loop has less instructions, which should have |
| # positive effect on upcoming Bulldozer, which has one less ALU. |
| # For reference, Intel code runs at 6.8 cpb rate on Opteron. |
| # (**) Note that Core2 result is ~15% lower than corresponding result |
| # for 32-bit code, meaning that it's possible to improve it, |
| # but more than likely at the cost of the others (see rc4-586.pl |
| # to get the idea)... |
| |
| # $output is the last argument if it looks like a file (it has an extension) |
| # $flavour is the first argument if it doesn't look like a file |
| $output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef; |
| $flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef; |
| |
| $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); |
| |
| $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; |
| ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or |
| ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or |
| die "can't locate x86_64-xlate.pl"; |
| |
| open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"" |
| or die "can't call $xlate: $!"; |
| *STDOUT=*OUT; |
| |
| $dat="%rdi"; # arg1 |
| $len="%rsi"; # arg2 |
| $inp="%rdx"; # arg3 |
| $out="%rcx"; # arg4 |
| |
| { |
| $code=<<___; |
| .text |
| .extern OPENSSL_ia32cap_P |
| |
| .globl RC4 |
| .type RC4,\@function,4 |
| .align 16 |
| RC4: |
| .cfi_startproc |
| endbranch |
| or $len,$len |
| jne .Lentry |
| ret |
| .Lentry: |
| push %rbx |
| .cfi_push %rbx |
| push %r12 |
| .cfi_push %r12 |
| push %r13 |
| .cfi_push %r13 |
| .Lprologue: |
| mov $len,%r11 |
| mov $inp,%r12 |
| mov $out,%r13 |
| ___ |
| my $len="%r11"; # reassign input arguments |
| my $inp="%r12"; |
| my $out="%r13"; |
| |
| my @XX=("%r10","%rsi"); |
| my @TX=("%rax","%rbx"); |
| my $YY="%rcx"; |
| my $TY="%rdx"; |
| |
| $code.=<<___; |
| xor $XX[0],$XX[0] |
| xor $YY,$YY |
| |
| lea 8($dat),$dat |
| mov -8($dat),$XX[0]#b |
| mov -4($dat),$YY#b |
| cmpl \$-1,256($dat) |
| je .LRC4_CHAR |
| mov OPENSSL_ia32cap_P(%rip),%r8d |
| xor $TX[1],$TX[1] |
| inc $XX[0]#b |
| sub $XX[0],$TX[1] |
| sub $inp,$out |
| movl ($dat,$XX[0],4),$TX[0]#d |
| test \$-16,$len |
| jz .Lloop1 |
| bt \$30,%r8d # Intel CPU? |
| jc .Lintel |
| and \$7,$TX[1] |
| lea 1($XX[0]),$XX[1] |
| jz .Loop8 |
| sub $TX[1],$len |
| .Loop8_warmup: |
| add $TX[0]#b,$YY#b |
| movl ($dat,$YY,4),$TY#d |
| movl $TX[0]#d,($dat,$YY,4) |
| movl $TY#d,($dat,$XX[0],4) |
| add $TY#b,$TX[0]#b |
| inc $XX[0]#b |
| movl ($dat,$TX[0],4),$TY#d |
| movl ($dat,$XX[0],4),$TX[0]#d |
| xorb ($inp),$TY#b |
| movb $TY#b,($out,$inp) |
| lea 1($inp),$inp |
| dec $TX[1] |
| jnz .Loop8_warmup |
| |
| lea 1($XX[0]),$XX[1] |
| jmp .Loop8 |
| .align 16 |
| .Loop8: |
| ___ |
| for ($i=0;$i<8;$i++) { |
| $code.=<<___ if ($i==7); |
| add \$8,$XX[1]#b |
| ___ |
| $code.=<<___; |
| add $TX[0]#b,$YY#b |
| movl ($dat,$YY,4),$TY#d |
| movl $TX[0]#d,($dat,$YY,4) |
| movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d |
| ror \$8,%r8 # ror is redundant when $i=0 |
| movl $TY#d,4*$i($dat,$XX[0],4) |
| add $TX[0]#b,$TY#b |
| movb ($dat,$TY,4),%r8b |
| ___ |
| push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers |
| } |
| $code.=<<___; |
| add \$8,$XX[0]#b |
| ror \$8,%r8 |
| sub \$8,$len |
| |
| xor ($inp),%r8 |
| mov %r8,($out,$inp) |
| lea 8($inp),$inp |
| |
| test \$-8,$len |
| jnz .Loop8 |
| cmp \$0,$len |
| jne .Lloop1 |
| jmp .Lexit |
| |
| .align 16 |
| .Lintel: |
| test \$-32,$len |
| jz .Lloop1 |
| and \$15,$TX[1] |
| jz .Loop16_is_hot |
| sub $TX[1],$len |
| .Loop16_warmup: |
| add $TX[0]#b,$YY#b |
| movl ($dat,$YY,4),$TY#d |
| movl $TX[0]#d,($dat,$YY,4) |
| movl $TY#d,($dat,$XX[0],4) |
| add $TY#b,$TX[0]#b |
| inc $XX[0]#b |
| movl ($dat,$TX[0],4),$TY#d |
| movl ($dat,$XX[0],4),$TX[0]#d |
| xorb ($inp),$TY#b |
| movb $TY#b,($out,$inp) |
| lea 1($inp),$inp |
| dec $TX[1] |
| jnz .Loop16_warmup |
| |
| mov $YY,$TX[1] |
| xor $YY,$YY |
| mov $TX[1]#b,$YY#b |
| |
| .Loop16_is_hot: |
| lea ($dat,$XX[0],4),$XX[1] |
| ___ |
| sub RC4_loop { |
| my $i=shift; |
| my $j=$i<0?0:$i; |
| my $xmm="%xmm".($j&1); |
| |
| $code.=" add \$16,$XX[0]#b\n" if ($i==15); |
| $code.=" movdqu ($inp),%xmm2\n" if ($i==15); |
| $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0); |
| $code.=" movl ($dat,$YY,4),$TY#d\n"; |
| $code.=" pxor %xmm0,%xmm2\n" if ($i==0); |
| $code.=" psllq \$8,%xmm1\n" if ($i==0); |
| $code.=" pxor $xmm,$xmm\n" if ($i<=1); |
| $code.=" movl $TX[0]#d,($dat,$YY,4)\n"; |
| $code.=" add $TY#b,$TX[0]#b\n"; |
| $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15); |
| $code.=" movz $TX[0]#b,$TX[0]#d\n"; |
| $code.=" movl $TY#d,4*$j($XX[1])\n"; |
| $code.=" pxor %xmm1,%xmm2\n" if ($i==0); |
| $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15); |
| $code.=" add $TX[1]#b,$YY#b\n" if ($i<15); |
| $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n"; |
| $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0); |
| $code.=" lea 16($inp),$inp\n" if ($i==0); |
| $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15); |
| } |
| RC4_loop(-1); |
| $code.=<<___; |
| jmp .Loop16_enter |
| .align 16 |
| .Loop16: |
| ___ |
| |
| for ($i=0;$i<16;$i++) { |
| $code.=".Loop16_enter:\n" if ($i==1); |
| RC4_loop($i); |
| push(@TX,shift(@TX)); # "rotate" registers |
| } |
| $code.=<<___; |
| mov $YY,$TX[1] |
| xor $YY,$YY # keyword to partial register |
| sub \$16,$len |
| mov $TX[1]#b,$YY#b |
| test \$-16,$len |
| jnz .Loop16 |
| |
| psllq \$8,%xmm1 |
| pxor %xmm0,%xmm2 |
| pxor %xmm1,%xmm2 |
| movdqu %xmm2,($out,$inp) |
| lea 16($inp),$inp |
| |
| cmp \$0,$len |
| jne .Lloop1 |
| jmp .Lexit |
| |
| .align 16 |
| .Lloop1: |
| add $TX[0]#b,$YY#b |
| movl ($dat,$YY,4),$TY#d |
| movl $TX[0]#d,($dat,$YY,4) |
| movl $TY#d,($dat,$XX[0],4) |
| add $TY#b,$TX[0]#b |
| inc $XX[0]#b |
| movl ($dat,$TX[0],4),$TY#d |
| movl ($dat,$XX[0],4),$TX[0]#d |
| xorb ($inp),$TY#b |
| movb $TY#b,($out,$inp) |
| lea 1($inp),$inp |
| dec $len |
| jnz .Lloop1 |
| jmp .Lexit |
| |
| .align 16 |
| .LRC4_CHAR: |
| add \$1,$XX[0]#b |
| movzb ($dat,$XX[0]),$TX[0]#d |
| test \$-8,$len |
| jz .Lcloop1 |
| jmp .Lcloop8 |
| .align 16 |
| .Lcloop8: |
| mov ($inp),%r8d |
| mov 4($inp),%r9d |
| ___ |
| # unroll 2x4-wise, because 64-bit rotates kill Intel P4... |
| for ($i=0;$i<4;$i++) { |
| $code.=<<___; |
| add $TX[0]#b,$YY#b |
| lea 1($XX[0]),$XX[1] |
| movzb ($dat,$YY),$TY#d |
| movzb $XX[1]#b,$XX[1]#d |
| movzb ($dat,$XX[1]),$TX[1]#d |
| movb $TX[0]#b,($dat,$YY) |
| cmp $XX[1],$YY |
| movb $TY#b,($dat,$XX[0]) |
| jne .Lcmov$i # Intel cmov is sloooow... |
| mov $TX[0],$TX[1] |
| .Lcmov$i: |
| add $TX[0]#b,$TY#b |
| xor ($dat,$TY),%r8b |
| ror \$8,%r8d |
| ___ |
| push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers |
| } |
| for ($i=4;$i<8;$i++) { |
| $code.=<<___; |
| add $TX[0]#b,$YY#b |
| lea 1($XX[0]),$XX[1] |
| movzb ($dat,$YY),$TY#d |
| movzb $XX[1]#b,$XX[1]#d |
| movzb ($dat,$XX[1]),$TX[1]#d |
| movb $TX[0]#b,($dat,$YY) |
| cmp $XX[1],$YY |
| movb $TY#b,($dat,$XX[0]) |
| jne .Lcmov$i # Intel cmov is sloooow... |
| mov $TX[0],$TX[1] |
| .Lcmov$i: |
| add $TX[0]#b,$TY#b |
| xor ($dat,$TY),%r9b |
| ror \$8,%r9d |
| ___ |
| push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers |
| } |
| $code.=<<___; |
| lea -8($len),$len |
| mov %r8d,($out) |
| lea 8($inp),$inp |
| mov %r9d,4($out) |
| lea 8($out),$out |
| |
| test \$-8,$len |
| jnz .Lcloop8 |
| cmp \$0,$len |
| jne .Lcloop1 |
| jmp .Lexit |
| ___ |
| $code.=<<___; |
| .align 16 |
| .Lcloop1: |
| add $TX[0]#b,$YY#b |
| movzb $YY#b,$YY#d |
| movzb ($dat,$YY),$TY#d |
| movb $TX[0]#b,($dat,$YY) |
| movb $TY#b,($dat,$XX[0]) |
| add $TX[0]#b,$TY#b |
| add \$1,$XX[0]#b |
| movzb $TY#b,$TY#d |
| movzb $XX[0]#b,$XX[0]#d |
| movzb ($dat,$TY),$TY#d |
| movzb ($dat,$XX[0]),$TX[0]#d |
| xorb ($inp),$TY#b |
| lea 1($inp),$inp |
| movb $TY#b,($out) |
| lea 1($out),$out |
| sub \$1,$len |
| jnz .Lcloop1 |
| jmp .Lexit |
| |
| .align 16 |
| .Lexit: |
| sub \$1,$XX[0]#b |
| movl $XX[0]#d,-8($dat) |
| movl $YY#d,-4($dat) |
| |
| mov (%rsp),%r13 |
| .cfi_restore %r13 |
| mov 8(%rsp),%r12 |
| .cfi_restore %r12 |
| mov 16(%rsp),%rbx |
| .cfi_restore %rbx |
| add \$24,%rsp |
| .cfi_adjust_cfa_offset -24 |
| .Lepilogue: |
| ret |
| .cfi_endproc |
| .size RC4,.-RC4 |
| ___ |
| } |
| |
| $idx="%r8"; |
| $ido="%r9"; |
| |
| $code.=<<___; |
| .globl RC4_set_key |
| .type RC4_set_key,\@function,3 |
| .align 16 |
| RC4_set_key: |
| .cfi_startproc |
| endbranch |
| lea 8($dat),$dat |
| lea ($inp,$len),$inp |
| neg $len |
| mov $len,%rcx |
| xor %eax,%eax |
| xor $ido,$ido |
| xor %r10,%r10 |
| xor %r11,%r11 |
| |
| mov OPENSSL_ia32cap_P(%rip),$idx#d |
| bt \$20,$idx#d # RC4_CHAR? |
| jc .Lc1stloop |
| jmp .Lw1stloop |
| |
| .align 16 |
| .Lw1stloop: |
| mov %eax,($dat,%rax,4) |
| add \$1,%al |
| jnc .Lw1stloop |
| |
| xor $ido,$ido |
| xor $idx,$idx |
| .align 16 |
| .Lw2ndloop: |
| mov ($dat,$ido,4),%r10d |
| add ($inp,$len,1),$idx#b |
| add %r10b,$idx#b |
| add \$1,$len |
| mov ($dat,$idx,4),%r11d |
| cmovz %rcx,$len |
| mov %r10d,($dat,$idx,4) |
| mov %r11d,($dat,$ido,4) |
| add \$1,$ido#b |
| jnc .Lw2ndloop |
| jmp .Lexit_key |
| |
| .align 16 |
| .Lc1stloop: |
| mov %al,($dat,%rax) |
| add \$1,%al |
| jnc .Lc1stloop |
| |
| xor $ido,$ido |
| xor $idx,$idx |
| .align 16 |
| .Lc2ndloop: |
| mov ($dat,$ido),%r10b |
| add ($inp,$len),$idx#b |
| add %r10b,$idx#b |
| add \$1,$len |
| mov ($dat,$idx),%r11b |
| jnz .Lcnowrap |
| mov %rcx,$len |
| .Lcnowrap: |
| mov %r10b,($dat,$idx) |
| mov %r11b,($dat,$ido) |
| add \$1,$ido#b |
| jnc .Lc2ndloop |
| movl \$-1,256($dat) |
| |
| .align 16 |
| .Lexit_key: |
| xor %eax,%eax |
| mov %eax,-8($dat) |
| mov %eax,-4($dat) |
| ret |
| .cfi_endproc |
| .size RC4_set_key,.-RC4_set_key |
| |
| .globl RC4_options |
| .type RC4_options,\@abi-omnipotent |
| .align 16 |
| RC4_options: |
| .cfi_startproc |
| endbranch |
| lea .Lopts(%rip),%rax |
| mov OPENSSL_ia32cap_P(%rip),%edx |
| bt \$20,%edx |
| jc .L8xchar |
| bt \$30,%edx |
| jnc .Ldone |
| add \$25,%rax |
| ret |
| .L8xchar: |
| add \$12,%rax |
| .Ldone: |
| ret |
| .cfi_endproc |
| .align 64 |
| .Lopts: |
| .asciz "rc4(8x,int)" |
| .asciz "rc4(8x,char)" |
| .asciz "rc4(16x,int)" |
| .asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>" |
| .align 64 |
| .size RC4_options,.-RC4_options |
| ___ |
| |
| # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, |
| # CONTEXT *context,DISPATCHER_CONTEXT *disp) |
| if ($win64) { |
| $rec="%rcx"; |
| $frame="%rdx"; |
| $context="%r8"; |
| $disp="%r9"; |
| |
| $code.=<<___; |
| .extern __imp_RtlVirtualUnwind |
| .type stream_se_handler,\@abi-omnipotent |
| .align 16 |
| stream_se_handler: |
| push %rsi |
| push %rdi |
| push %rbx |
| push %rbp |
| push %r12 |
| push %r13 |
| push %r14 |
| push %r15 |
| pushfq |
| sub \$64,%rsp |
| |
| mov 120($context),%rax # pull context->Rax |
| mov 248($context),%rbx # pull context->Rip |
| |
| lea .Lprologue(%rip),%r10 |
| cmp %r10,%rbx # context->Rip<prologue label |
| jb .Lin_prologue |
| |
| mov 152($context),%rax # pull context->Rsp |
| |
| lea .Lepilogue(%rip),%r10 |
| cmp %r10,%rbx # context->Rip>=epilogue label |
| jae .Lin_prologue |
| |
| lea 24(%rax),%rax |
| |
| mov -8(%rax),%rbx |
| mov -16(%rax),%r12 |
| mov -24(%rax),%r13 |
| mov %rbx,144($context) # restore context->Rbx |
| mov %r12,216($context) # restore context->R12 |
| mov %r13,224($context) # restore context->R13 |
| |
| .Lin_prologue: |
| mov 8(%rax),%rdi |
| mov 16(%rax),%rsi |
| mov %rax,152($context) # restore context->Rsp |
| mov %rsi,168($context) # restore context->Rsi |
| mov %rdi,176($context) # restore context->Rdi |
| |
| jmp .Lcommon_seh_exit |
| .size stream_se_handler,.-stream_se_handler |
| |
| .type key_se_handler,\@abi-omnipotent |
| .align 16 |
| key_se_handler: |
| push %rsi |
| push %rdi |
| push %rbx |
| push %rbp |
| push %r12 |
| push %r13 |
| push %r14 |
| push %r15 |
| pushfq |
| sub \$64,%rsp |
| |
| mov 152($context),%rax # pull context->Rsp |
| mov 8(%rax),%rdi |
| mov 16(%rax),%rsi |
| mov %rsi,168($context) # restore context->Rsi |
| mov %rdi,176($context) # restore context->Rdi |
| |
| .Lcommon_seh_exit: |
| |
| mov 40($disp),%rdi # disp->ContextRecord |
| mov $context,%rsi # context |
| mov \$154,%ecx # sizeof(CONTEXT) |
| .long 0xa548f3fc # cld; rep movsq |
| |
| mov $disp,%rsi |
| xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER |
| mov 8(%rsi),%rdx # arg2, disp->ImageBase |
| mov 0(%rsi),%r8 # arg3, disp->ControlPc |
| mov 16(%rsi),%r9 # arg4, disp->FunctionEntry |
| mov 40(%rsi),%r10 # disp->ContextRecord |
| lea 56(%rsi),%r11 # &disp->HandlerData |
| lea 24(%rsi),%r12 # &disp->EstablisherFrame |
| mov %r10,32(%rsp) # arg5 |
| mov %r11,40(%rsp) # arg6 |
| mov %r12,48(%rsp) # arg7 |
| mov %rcx,56(%rsp) # arg8, (NULL) |
| call *__imp_RtlVirtualUnwind(%rip) |
| |
| mov \$1,%eax # ExceptionContinueSearch |
| add \$64,%rsp |
| popfq |
| pop %r15 |
| pop %r14 |
| pop %r13 |
| pop %r12 |
| pop %rbp |
| pop %rbx |
| pop %rdi |
| pop %rsi |
| ret |
| .size key_se_handler,.-key_se_handler |
| |
| .section .pdata |
| .align 4 |
| .rva .LSEH_begin_RC4 |
| .rva .LSEH_end_RC4 |
| .rva .LSEH_info_RC4 |
| |
| .rva .LSEH_begin_RC4_set_key |
| .rva .LSEH_end_RC4_set_key |
| .rva .LSEH_info_RC4_set_key |
| |
| .section .xdata |
| .align 8 |
| .LSEH_info_RC4: |
| .byte 9,0,0,0 |
| .rva stream_se_handler |
| .LSEH_info_RC4_set_key: |
| .byte 9,0,0,0 |
| .rva key_se_handler |
| ___ |
| } |
| |
| sub reg_part { |
| my ($reg,$conv)=@_; |
| if ($reg =~ /%r[0-9]+/) { $reg .= $conv; } |
| elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; } |
| elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; } |
| elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; } |
| return $reg; |
| } |
| |
| $code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem; |
| $code =~ s/\`([^\`]*)\`/eval $1/gem; |
| |
| print $code; |
| |
| close STDOUT or die "error closing STDOUT: $!"; |