| /* |
| * Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <string.h> |
| #include <openssl/crypto.h> |
| #include <openssl/err.h> |
| #include "crypto/modes.h" |
| |
| #ifndef OPENSSL_NO_OCB |
| |
| /* |
| * Calculate the number of binary trailing zero's in any given number |
| */ |
| static u32 ocb_ntz(u64 n) |
| { |
| u32 cnt = 0; |
| |
| /* |
| * We do a right-to-left simple sequential search. This is surprisingly |
| * efficient as the distribution of trailing zeros is not uniform, |
| * e.g. the number of possible inputs with no trailing zeros is equal to |
| * the number with 1 or more; the number with exactly 1 is equal to the |
| * number with 2 or more, etc. Checking the last two bits covers 75% of |
| * all numbers. Checking the last three covers 87.5% |
| */ |
| while (!(n & 1)) { |
| n >>= 1; |
| cnt++; |
| } |
| return cnt; |
| } |
| |
| /* |
| * Shift a block of 16 bytes left by shift bits |
| */ |
| static void ocb_block_lshift(const unsigned char *in, size_t shift, |
| unsigned char *out) |
| { |
| int i; |
| unsigned char carry = 0, carry_next; |
| |
| for (i = 15; i >= 0; i--) { |
| carry_next = in[i] >> (8 - shift); |
| out[i] = (in[i] << shift) | carry; |
| carry = carry_next; |
| } |
| } |
| |
| /* |
| * Perform a "double" operation as per OCB spec |
| */ |
| static void ocb_double(OCB_BLOCK *in, OCB_BLOCK *out) |
| { |
| unsigned char mask; |
| |
| /* |
| * Calculate the mask based on the most significant bit. There are more |
| * efficient ways to do this - but this way is constant time |
| */ |
| mask = in->c[0] & 0x80; |
| mask >>= 7; |
| mask = (0 - mask) & 0x87; |
| |
| ocb_block_lshift(in->c, 1, out->c); |
| |
| out->c[15] ^= mask; |
| } |
| |
| /* |
| * Perform an xor on in1 and in2 - each of len bytes. Store result in out |
| */ |
| static void ocb_block_xor(const unsigned char *in1, |
| const unsigned char *in2, size_t len, |
| unsigned char *out) |
| { |
| size_t i; |
| for (i = 0; i < len; i++) { |
| out[i] = in1[i] ^ in2[i]; |
| } |
| } |
| |
| /* |
| * Lookup L_index in our lookup table. If we haven't already got it we need to |
| * calculate it |
| */ |
| static OCB_BLOCK *ocb_lookup_l(OCB128_CONTEXT *ctx, size_t idx) |
| { |
| size_t l_index = ctx->l_index; |
| |
| if (idx <= l_index) { |
| return ctx->l + idx; |
| } |
| |
| /* We don't have it - so calculate it */ |
| if (idx >= ctx->max_l_index) { |
| void *tmp_ptr; |
| /* |
| * Each additional entry allows to process almost double as |
| * much data, so that in linear world the table will need to |
| * be expanded with smaller and smaller increments. Originally |
| * it was doubling in size, which was a waste. Growing it |
| * linearly is not formally optimal, but is simpler to implement. |
| * We grow table by minimally required 4*n that would accommodate |
| * the index. |
| */ |
| ctx->max_l_index += (idx - ctx->max_l_index + 4) & ~3; |
| tmp_ptr = OPENSSL_realloc(ctx->l, ctx->max_l_index * sizeof(OCB_BLOCK)); |
| if (tmp_ptr == NULL) /* prevent ctx->l from being clobbered */ |
| return NULL; |
| ctx->l = tmp_ptr; |
| } |
| while (l_index < idx) { |
| ocb_double(ctx->l + l_index, ctx->l + l_index + 1); |
| l_index++; |
| } |
| ctx->l_index = l_index; |
| |
| return ctx->l + idx; |
| } |
| |
| /* |
| * Create a new OCB128_CONTEXT |
| */ |
| OCB128_CONTEXT *CRYPTO_ocb128_new(void *keyenc, void *keydec, |
| block128_f encrypt, block128_f decrypt, |
| ocb128_f stream) |
| { |
| OCB128_CONTEXT *octx; |
| int ret; |
| |
| if ((octx = OPENSSL_malloc(sizeof(*octx))) != NULL) { |
| ret = CRYPTO_ocb128_init(octx, keyenc, keydec, encrypt, decrypt, |
| stream); |
| if (ret) |
| return octx; |
| OPENSSL_free(octx); |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Initialise an existing OCB128_CONTEXT |
| */ |
| int CRYPTO_ocb128_init(OCB128_CONTEXT *ctx, void *keyenc, void *keydec, |
| block128_f encrypt, block128_f decrypt, |
| ocb128_f stream) |
| { |
| memset(ctx, 0, sizeof(*ctx)); |
| ctx->l_index = 0; |
| ctx->max_l_index = 5; |
| if ((ctx->l = OPENSSL_malloc(ctx->max_l_index * 16)) == NULL) { |
| ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| /* |
| * We set both the encryption and decryption key schedules - decryption |
| * needs both. Don't really need decryption schedule if only doing |
| * encryption - but it simplifies things to take it anyway |
| */ |
| ctx->encrypt = encrypt; |
| ctx->decrypt = decrypt; |
| ctx->stream = stream; |
| ctx->keyenc = keyenc; |
| ctx->keydec = keydec; |
| |
| /* L_* = ENCIPHER(K, zeros(128)) */ |
| ctx->encrypt(ctx->l_star.c, ctx->l_star.c, ctx->keyenc); |
| |
| /* L_$ = double(L_*) */ |
| ocb_double(&ctx->l_star, &ctx->l_dollar); |
| |
| /* L_0 = double(L_$) */ |
| ocb_double(&ctx->l_dollar, ctx->l); |
| |
| /* L_{i} = double(L_{i-1}) */ |
| ocb_double(ctx->l, ctx->l+1); |
| ocb_double(ctx->l+1, ctx->l+2); |
| ocb_double(ctx->l+2, ctx->l+3); |
| ocb_double(ctx->l+3, ctx->l+4); |
| ctx->l_index = 4; /* enough to process up to 496 bytes */ |
| |
| return 1; |
| } |
| |
| /* |
| * Copy an OCB128_CONTEXT object |
| */ |
| int CRYPTO_ocb128_copy_ctx(OCB128_CONTEXT *dest, OCB128_CONTEXT *src, |
| void *keyenc, void *keydec) |
| { |
| memcpy(dest, src, sizeof(OCB128_CONTEXT)); |
| if (keyenc) |
| dest->keyenc = keyenc; |
| if (keydec) |
| dest->keydec = keydec; |
| if (src->l) { |
| if ((dest->l = OPENSSL_malloc(src->max_l_index * 16)) == NULL) { |
| ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| memcpy(dest->l, src->l, (src->l_index + 1) * 16); |
| } |
| return 1; |
| } |
| |
| /* |
| * Set the IV to be used for this operation. Must be 1 - 15 bytes. |
| */ |
| int CRYPTO_ocb128_setiv(OCB128_CONTEXT *ctx, const unsigned char *iv, |
| size_t len, size_t taglen) |
| { |
| unsigned char ktop[16], tmp[16], mask; |
| unsigned char stretch[24], nonce[16]; |
| size_t bottom, shift; |
| |
| /* |
| * Spec says IV is 120 bits or fewer - it allows non byte aligned lengths. |
| * We don't support this at this stage |
| */ |
| if ((len > 15) || (len < 1) || (taglen > 16) || (taglen < 1)) { |
| return -1; |
| } |
| |
| /* Reset nonce-dependent variables */ |
| memset(&ctx->sess, 0, sizeof(ctx->sess)); |
| |
| /* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */ |
| nonce[0] = ((taglen * 8) % 128) << 1; |
| memset(nonce + 1, 0, 15); |
| memcpy(nonce + 16 - len, iv, len); |
| nonce[15 - len] |= 1; |
| |
| /* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */ |
| memcpy(tmp, nonce, 16); |
| tmp[15] &= 0xc0; |
| ctx->encrypt(tmp, ktop, ctx->keyenc); |
| |
| /* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */ |
| memcpy(stretch, ktop, 16); |
| ocb_block_xor(ktop, ktop + 1, 8, stretch + 16); |
| |
| /* bottom = str2num(Nonce[123..128]) */ |
| bottom = nonce[15] & 0x3f; |
| |
| /* Offset_0 = Stretch[1+bottom..128+bottom] */ |
| shift = bottom % 8; |
| ocb_block_lshift(stretch + (bottom / 8), shift, ctx->sess.offset.c); |
| mask = 0xff; |
| mask <<= 8 - shift; |
| ctx->sess.offset.c[15] |= |
| (*(stretch + (bottom / 8) + 16) & mask) >> (8 - shift); |
| |
| return 1; |
| } |
| |
| /* |
| * Provide any AAD. This can be called multiple times. Only the final time can |
| * have a partial block |
| */ |
| int CRYPTO_ocb128_aad(OCB128_CONTEXT *ctx, const unsigned char *aad, |
| size_t len) |
| { |
| u64 i, all_num_blocks; |
| size_t num_blocks, last_len; |
| OCB_BLOCK tmp; |
| |
| /* Calculate the number of blocks of AAD provided now, and so far */ |
| num_blocks = len / 16; |
| all_num_blocks = num_blocks + ctx->sess.blocks_hashed; |
| |
| /* Loop through all full blocks of AAD */ |
| for (i = ctx->sess.blocks_hashed + 1; i <= all_num_blocks; i++) { |
| OCB_BLOCK *lookup; |
| |
| /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ |
| lookup = ocb_lookup_l(ctx, ocb_ntz(i)); |
| if (lookup == NULL) |
| return 0; |
| ocb_block16_xor(&ctx->sess.offset_aad, lookup, &ctx->sess.offset_aad); |
| |
| memcpy(tmp.c, aad, 16); |
| aad += 16; |
| |
| /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */ |
| ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp); |
| ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); |
| ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum); |
| } |
| |
| /* |
| * Check if we have any partial blocks left over. This is only valid in the |
| * last call to this function |
| */ |
| last_len = len % 16; |
| |
| if (last_len > 0) { |
| /* Offset_* = Offset_m xor L_* */ |
| ocb_block16_xor(&ctx->sess.offset_aad, &ctx->l_star, |
| &ctx->sess.offset_aad); |
| |
| /* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */ |
| memset(tmp.c, 0, 16); |
| memcpy(tmp.c, aad, last_len); |
| tmp.c[last_len] = 0x80; |
| ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp); |
| |
| /* Sum = Sum_m xor ENCIPHER(K, CipherInput) */ |
| ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); |
| ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum); |
| } |
| |
| ctx->sess.blocks_hashed = all_num_blocks; |
| |
| return 1; |
| } |
| |
| /* |
| * Provide any data to be encrypted. This can be called multiple times. Only |
| * the final time can have a partial block |
| */ |
| int CRYPTO_ocb128_encrypt(OCB128_CONTEXT *ctx, |
| const unsigned char *in, unsigned char *out, |
| size_t len) |
| { |
| u64 i, all_num_blocks; |
| size_t num_blocks, last_len; |
| |
| /* |
| * Calculate the number of blocks of data to be encrypted provided now, and |
| * so far |
| */ |
| num_blocks = len / 16; |
| all_num_blocks = num_blocks + ctx->sess.blocks_processed; |
| |
| if (num_blocks && all_num_blocks == (size_t)all_num_blocks |
| && ctx->stream != NULL) { |
| size_t max_idx = 0, top = (size_t)all_num_blocks; |
| |
| /* |
| * See how many L_{i} entries we need to process data at hand |
| * and pre-compute missing entries in the table [if any]... |
| */ |
| while (top >>= 1) |
| max_idx++; |
| if (ocb_lookup_l(ctx, max_idx) == NULL) |
| return 0; |
| |
| ctx->stream(in, out, num_blocks, ctx->keyenc, |
| (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c, |
| (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c); |
| } else { |
| /* Loop through all full blocks to be encrypted */ |
| for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) { |
| OCB_BLOCK *lookup; |
| OCB_BLOCK tmp; |
| |
| /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ |
| lookup = ocb_lookup_l(ctx, ocb_ntz(i)); |
| if (lookup == NULL) |
| return 0; |
| ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset); |
| |
| memcpy(tmp.c, in, 16); |
| in += 16; |
| |
| /* Checksum_i = Checksum_{i-1} xor P_i */ |
| ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum); |
| |
| /* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */ |
| ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); |
| ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); |
| ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); |
| |
| memcpy(out, tmp.c, 16); |
| out += 16; |
| } |
| } |
| |
| /* |
| * Check if we have any partial blocks left over. This is only valid in the |
| * last call to this function |
| */ |
| last_len = len % 16; |
| |
| if (last_len > 0) { |
| OCB_BLOCK pad; |
| |
| /* Offset_* = Offset_m xor L_* */ |
| ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset); |
| |
| /* Pad = ENCIPHER(K, Offset_*) */ |
| ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc); |
| |
| /* C_* = P_* xor Pad[1..bitlen(P_*)] */ |
| ocb_block_xor(in, pad.c, last_len, out); |
| |
| /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ |
| memset(pad.c, 0, 16); /* borrow pad */ |
| memcpy(pad.c, in, last_len); |
| pad.c[last_len] = 0x80; |
| ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum); |
| } |
| |
| ctx->sess.blocks_processed = all_num_blocks; |
| |
| return 1; |
| } |
| |
| /* |
| * Provide any data to be decrypted. This can be called multiple times. Only |
| * the final time can have a partial block |
| */ |
| int CRYPTO_ocb128_decrypt(OCB128_CONTEXT *ctx, |
| const unsigned char *in, unsigned char *out, |
| size_t len) |
| { |
| u64 i, all_num_blocks; |
| size_t num_blocks, last_len; |
| |
| /* |
| * Calculate the number of blocks of data to be decrypted provided now, and |
| * so far |
| */ |
| num_blocks = len / 16; |
| all_num_blocks = num_blocks + ctx->sess.blocks_processed; |
| |
| if (num_blocks && all_num_blocks == (size_t)all_num_blocks |
| && ctx->stream != NULL) { |
| size_t max_idx = 0, top = (size_t)all_num_blocks; |
| |
| /* |
| * See how many L_{i} entries we need to process data at hand |
| * and pre-compute missing entries in the table [if any]... |
| */ |
| while (top >>= 1) |
| max_idx++; |
| if (ocb_lookup_l(ctx, max_idx) == NULL) |
| return 0; |
| |
| ctx->stream(in, out, num_blocks, ctx->keydec, |
| (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c, |
| (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c); |
| } else { |
| OCB_BLOCK tmp; |
| |
| /* Loop through all full blocks to be decrypted */ |
| for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) { |
| |
| /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ |
| OCB_BLOCK *lookup = ocb_lookup_l(ctx, ocb_ntz(i)); |
| if (lookup == NULL) |
| return 0; |
| ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset); |
| |
| memcpy(tmp.c, in, 16); |
| in += 16; |
| |
| /* P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i) */ |
| ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); |
| ctx->decrypt(tmp.c, tmp.c, ctx->keydec); |
| ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); |
| |
| /* Checksum_i = Checksum_{i-1} xor P_i */ |
| ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum); |
| |
| memcpy(out, tmp.c, 16); |
| out += 16; |
| } |
| } |
| |
| /* |
| * Check if we have any partial blocks left over. This is only valid in the |
| * last call to this function |
| */ |
| last_len = len % 16; |
| |
| if (last_len > 0) { |
| OCB_BLOCK pad; |
| |
| /* Offset_* = Offset_m xor L_* */ |
| ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset); |
| |
| /* Pad = ENCIPHER(K, Offset_*) */ |
| ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc); |
| |
| /* P_* = C_* xor Pad[1..bitlen(C_*)] */ |
| ocb_block_xor(in, pad.c, last_len, out); |
| |
| /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ |
| memset(pad.c, 0, 16); /* borrow pad */ |
| memcpy(pad.c, out, last_len); |
| pad.c[last_len] = 0x80; |
| ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum); |
| } |
| |
| ctx->sess.blocks_processed = all_num_blocks; |
| |
| return 1; |
| } |
| |
| static int ocb_finish(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len, |
| int write) |
| { |
| OCB_BLOCK tmp; |
| |
| if (len > 16 || len < 1) { |
| return -1; |
| } |
| |
| /* |
| * Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A) |
| */ |
| ocb_block16_xor(&ctx->sess.checksum, &ctx->sess.offset, &tmp); |
| ocb_block16_xor(&ctx->l_dollar, &tmp, &tmp); |
| ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); |
| ocb_block16_xor(&tmp, &ctx->sess.sum, &tmp); |
| |
| if (write) { |
| memcpy(tag, &tmp, len); |
| return 1; |
| } else { |
| return CRYPTO_memcmp(&tmp, tag, len); |
| } |
| } |
| |
| /* |
| * Calculate the tag and verify it against the supplied tag |
| */ |
| int CRYPTO_ocb128_finish(OCB128_CONTEXT *ctx, const unsigned char *tag, |
| size_t len) |
| { |
| return ocb_finish(ctx, (unsigned char*)tag, len, 0); |
| } |
| |
| /* |
| * Retrieve the calculated tag |
| */ |
| int CRYPTO_ocb128_tag(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len) |
| { |
| return ocb_finish(ctx, tag, len, 1); |
| } |
| |
| /* |
| * Release all resources |
| */ |
| void CRYPTO_ocb128_cleanup(OCB128_CONTEXT *ctx) |
| { |
| if (ctx) { |
| OPENSSL_clear_free(ctx->l, ctx->max_l_index * 16); |
| OPENSSL_cleanse(ctx, sizeof(*ctx)); |
| } |
| } |
| |
| #endif /* OPENSSL_NO_OCB */ |