| /* |
| * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <stdio.h> |
| #include "internal/cryptlib.h" |
| #include "internal/numbers.h" |
| #include "internal/safe_math.h" |
| #include <openssl/stack.h> |
| #include <errno.h> |
| #include <openssl/e_os2.h> /* For ossl_inline */ |
| |
| OSSL_SAFE_MATH_SIGNED(int, int) |
| |
| /* |
| * The initial number of nodes in the array. |
| */ |
| static const int min_nodes = 4; |
| static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX |
| ? (int)(SIZE_MAX / sizeof(void *)) |
| : INT_MAX; |
| |
| struct stack_st { |
| int num; |
| const void **data; |
| int sorted; |
| int num_alloc; |
| OPENSSL_sk_compfunc comp; |
| }; |
| |
| OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, OPENSSL_sk_compfunc c) |
| { |
| OPENSSL_sk_compfunc old = sk->comp; |
| |
| if (sk->comp != c) |
| sk->sorted = 0; |
| sk->comp = c; |
| |
| return old; |
| } |
| |
| OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) |
| { |
| OPENSSL_STACK *ret; |
| |
| if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) |
| goto err; |
| |
| if (sk == NULL) { |
| ret->num = 0; |
| ret->sorted = 0; |
| ret->comp = NULL; |
| } else { |
| /* direct structure assignment */ |
| *ret = *sk; |
| } |
| |
| if (sk == NULL || sk->num == 0) { |
| /* postpone |ret->data| allocation */ |
| ret->data = NULL; |
| ret->num_alloc = 0; |
| return ret; |
| } |
| |
| /* duplicate |sk->data| content */ |
| if ((ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc)) == NULL) |
| goto err; |
| memcpy(ret->data, sk->data, sizeof(void *) * sk->num); |
| return ret; |
| |
| err: |
| ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE); |
| OPENSSL_sk_free(ret); |
| return NULL; |
| } |
| |
| OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk, |
| OPENSSL_sk_copyfunc copy_func, |
| OPENSSL_sk_freefunc free_func) |
| { |
| OPENSSL_STACK *ret; |
| int i; |
| |
| if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) |
| goto err; |
| |
| if (sk == NULL) { |
| ret->num = 0; |
| ret->sorted = 0; |
| ret->comp = NULL; |
| } else { |
| /* direct structure assignment */ |
| *ret = *sk; |
| } |
| |
| if (sk == NULL || sk->num == 0) { |
| /* postpone |ret| data allocation */ |
| ret->data = NULL; |
| ret->num_alloc = 0; |
| return ret; |
| } |
| |
| ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes; |
| ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc); |
| if (ret->data == NULL) |
| goto err; |
| |
| for (i = 0; i < ret->num; ++i) { |
| if (sk->data[i] == NULL) |
| continue; |
| if ((ret->data[i] = copy_func(sk->data[i])) == NULL) { |
| while (--i >= 0) |
| if (ret->data[i] != NULL) |
| free_func((void *)ret->data[i]); |
| goto err; |
| } |
| } |
| return ret; |
| |
| err: |
| ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE); |
| OPENSSL_sk_free(ret); |
| return NULL; |
| } |
| |
| OPENSSL_STACK *OPENSSL_sk_new_null(void) |
| { |
| return OPENSSL_sk_new_reserve(NULL, 0); |
| } |
| |
| OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c) |
| { |
| return OPENSSL_sk_new_reserve(c, 0); |
| } |
| |
| /* |
| * Calculate the array growth based on the target size. |
| * |
| * The growth factor is a rational number and is defined by a numerator |
| * and a denominator. According to Andrew Koenig in his paper "Why Are |
| * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less |
| * than the golden ratio (1.618...). |
| * |
| * Considering only the Fibonacci ratios less than the golden ratio, the |
| * number of steps from the minimum allocation to integer overflow is: |
| * factor decimal growths |
| * 3/2 1.5 51 |
| * 8/5 1.6 45 |
| * 21/13 1.615... 44 |
| * |
| * All larger factors have the same number of growths. |
| * |
| * 3/2 and 8/5 have nice power of two shifts, so seem like a good choice. |
| */ |
| static ossl_inline int compute_growth(int target, int current) |
| { |
| int err = 0; |
| |
| while (current < target) { |
| if (current >= max_nodes) |
| return 0; |
| |
| current = safe_muldiv_int(current, 8, 5, &err); |
| if (err) |
| return 0; |
| if (current >= max_nodes) |
| current = max_nodes; |
| } |
| return current; |
| } |
| |
| /* internal STACK storage allocation */ |
| static int sk_reserve(OPENSSL_STACK *st, int n, int exact) |
| { |
| const void **tmpdata; |
| int num_alloc; |
| |
| /* Check to see the reservation isn't exceeding the hard limit */ |
| if (n > max_nodes - st->num) |
| return 0; |
| |
| /* Figure out the new size */ |
| num_alloc = st->num + n; |
| if (num_alloc < min_nodes) |
| num_alloc = min_nodes; |
| |
| /* If |st->data| allocation was postponed */ |
| if (st->data == NULL) { |
| /* |
| * At this point, |st->num_alloc| and |st->num| are 0; |
| * so |num_alloc| value is |n| or |min_nodes| if greater than |n|. |
| */ |
| if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) { |
| ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| st->num_alloc = num_alloc; |
| return 1; |
| } |
| |
| if (!exact) { |
| if (num_alloc <= st->num_alloc) |
| return 1; |
| num_alloc = compute_growth(num_alloc, st->num_alloc); |
| if (num_alloc == 0) |
| return 0; |
| } else if (num_alloc == st->num_alloc) { |
| return 1; |
| } |
| |
| tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc); |
| if (tmpdata == NULL) |
| return 0; |
| |
| st->data = tmpdata; |
| st->num_alloc = num_alloc; |
| return 1; |
| } |
| |
| OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n) |
| { |
| OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK)); |
| |
| if (st == NULL) |
| return NULL; |
| |
| st->comp = c; |
| |
| if (n <= 0) |
| return st; |
| |
| if (!sk_reserve(st, n, 1)) { |
| OPENSSL_sk_free(st); |
| return NULL; |
| } |
| |
| return st; |
| } |
| |
| int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n) |
| { |
| if (st == NULL) |
| return 0; |
| |
| if (n < 0) |
| return 1; |
| return sk_reserve(st, n, 1); |
| } |
| |
| int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc) |
| { |
| if (st == NULL || st->num == max_nodes) |
| return 0; |
| |
| if (!sk_reserve(st, 1, 0)) |
| return 0; |
| |
| if ((loc >= st->num) || (loc < 0)) { |
| st->data[st->num] = data; |
| } else { |
| memmove(&st->data[loc + 1], &st->data[loc], |
| sizeof(st->data[0]) * (st->num - loc)); |
| st->data[loc] = data; |
| } |
| st->num++; |
| st->sorted = 0; |
| return st->num; |
| } |
| |
| static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc) |
| { |
| const void *ret = st->data[loc]; |
| |
| if (loc != st->num - 1) |
| memmove(&st->data[loc], &st->data[loc + 1], |
| sizeof(st->data[0]) * (st->num - loc - 1)); |
| st->num--; |
| |
| return (void *)ret; |
| } |
| |
| void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p) |
| { |
| int i; |
| |
| for (i = 0; i < st->num; i++) |
| if (st->data[i] == p) |
| return internal_delete(st, i); |
| return NULL; |
| } |
| |
| void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc) |
| { |
| if (st == NULL || loc < 0 || loc >= st->num) |
| return NULL; |
| |
| return internal_delete(st, loc); |
| } |
| |
| static int internal_find(OPENSSL_STACK *st, const void *data, |
| int ret_val_options, int *pnum) |
| { |
| const void *r; |
| int i; |
| |
| if (st == NULL || st->num == 0) |
| return -1; |
| |
| if (st->comp == NULL) { |
| for (i = 0; i < st->num; i++) |
| if (st->data[i] == data) { |
| if (pnum != NULL) |
| *pnum = 1; |
| return i; |
| } |
| if (pnum != NULL) |
| *pnum = 0; |
| return -1; |
| } |
| |
| if (!st->sorted) { |
| if (st->num > 1) |
| qsort(st->data, st->num, sizeof(void *), st->comp); |
| st->sorted = 1; /* empty or single-element stack is considered sorted */ |
| } |
| if (data == NULL) |
| return -1; |
| if (pnum != NULL) |
| ret_val_options |= OSSL_BSEARCH_FIRST_VALUE_ON_MATCH; |
| r = ossl_bsearch(&data, st->data, st->num, sizeof(void *), st->comp, |
| ret_val_options); |
| |
| if (pnum != NULL) { |
| *pnum = 0; |
| if (r != NULL) { |
| const void **p = (const void **)r; |
| |
| while (p < st->data + st->num) { |
| if (st->comp(&data, p) != 0) |
| break; |
| ++*pnum; |
| ++p; |
| } |
| } |
| } |
| |
| return r == NULL ? -1 : (int)((const void **)r - st->data); |
| } |
| |
| int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data) |
| { |
| return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, NULL); |
| } |
| |
| int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data) |
| { |
| return internal_find(st, data, OSSL_BSEARCH_VALUE_ON_NOMATCH, NULL); |
| } |
| |
| int OPENSSL_sk_find_all(OPENSSL_STACK *st, const void *data, int *pnum) |
| { |
| return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, pnum); |
| } |
| |
| int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data) |
| { |
| if (st == NULL) |
| return -1; |
| return OPENSSL_sk_insert(st, data, st->num); |
| } |
| |
| int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data) |
| { |
| return OPENSSL_sk_insert(st, data, 0); |
| } |
| |
| void *OPENSSL_sk_shift(OPENSSL_STACK *st) |
| { |
| if (st == NULL || st->num == 0) |
| return NULL; |
| return internal_delete(st, 0); |
| } |
| |
| void *OPENSSL_sk_pop(OPENSSL_STACK *st) |
| { |
| if (st == NULL || st->num == 0) |
| return NULL; |
| return internal_delete(st, st->num - 1); |
| } |
| |
| void OPENSSL_sk_zero(OPENSSL_STACK *st) |
| { |
| if (st == NULL || st->num == 0) |
| return; |
| memset(st->data, 0, sizeof(*st->data) * st->num); |
| st->num = 0; |
| } |
| |
| void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func) |
| { |
| int i; |
| |
| if (st == NULL) |
| return; |
| for (i = 0; i < st->num; i++) |
| if (st->data[i] != NULL) |
| func((char *)st->data[i]); |
| OPENSSL_sk_free(st); |
| } |
| |
| void OPENSSL_sk_free(OPENSSL_STACK *st) |
| { |
| if (st == NULL) |
| return; |
| OPENSSL_free(st->data); |
| OPENSSL_free(st); |
| } |
| |
| int OPENSSL_sk_num(const OPENSSL_STACK *st) |
| { |
| return st == NULL ? -1 : st->num; |
| } |
| |
| void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i) |
| { |
| if (st == NULL || i < 0 || i >= st->num) |
| return NULL; |
| return (void *)st->data[i]; |
| } |
| |
| void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data) |
| { |
| if (st == NULL || i < 0 || i >= st->num) |
| return NULL; |
| st->data[i] = data; |
| st->sorted = 0; |
| return (void *)st->data[i]; |
| } |
| |
| void OPENSSL_sk_sort(OPENSSL_STACK *st) |
| { |
| if (st != NULL && !st->sorted && st->comp != NULL) { |
| if (st->num > 1) |
| qsort(st->data, st->num, sizeof(void *), st->comp); |
| st->sorted = 1; /* empty or single-element stack is considered sorted */ |
| } |
| } |
| |
| int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st) |
| { |
| return st == NULL ? 1 : st->sorted; |
| } |