| /* crypto/rsa/rsa_oaep.c */ |
| /* Written by Ulf Moeller. This software is distributed on an "AS IS" |
| basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. */ |
| |
| /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */ |
| |
| /* See Victor Shoup, "OAEP reconsidered," Nov. 2000, |
| * <URL: http://www.shoup.net/papers/oaep.ps.Z> |
| * for problems with the security proof for the |
| * original OAEP scheme, which EME-OAEP is based on. |
| * |
| * A new proof can be found in E. Fujisaki, T. Okamoto, |
| * D. Pointcheval, J. Stern, "RSA-OEAP is Still Alive!", |
| * Dec. 2000, <URL: http://eprint.iacr.org/2000/061/>. |
| * The new proof has stronger requirements for the |
| * underlying permutation: "partial-one-wayness" instead |
| * of one-wayness. For the RSA function, this is |
| * an equivalent notion. |
| */ |
| |
| #define OPENSSL_FIPSAPI |
| |
| |
| #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA1) |
| #include <stdio.h> |
| #include "cryptlib.h" |
| #include <openssl/bn.h> |
| #include <openssl/rsa.h> |
| #include <openssl/evp.h> |
| #include <openssl/rand.h> |
| #include <openssl/sha.h> |
| |
| int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen, |
| const unsigned char *from, int flen, |
| const unsigned char *param, int plen) |
| { |
| return RSA_padding_add_PKCS1_OAEP_mgf1(to, tlen, from, flen, |
| param, plen, NULL, NULL); |
| } |
| |
| int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen, |
| const unsigned char *from, int flen, |
| const unsigned char *param, int plen, |
| const EVP_MD *md, const EVP_MD *mgf1md) |
| { |
| int i, emlen = tlen - 1; |
| unsigned char *db, *seed; |
| unsigned char *dbmask, seedmask[EVP_MAX_MD_SIZE]; |
| int mdlen; |
| |
| if (md == NULL) |
| md = EVP_sha1(); |
| if (mgf1md == NULL) |
| mgf1md = md; |
| |
| mdlen = EVP_MD_size(md); |
| |
| if (flen > emlen - 2 * mdlen - 1) |
| { |
| RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, |
| RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
| return 0; |
| } |
| |
| if (emlen < 2 * mdlen + 1) |
| { |
| RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, RSA_R_KEY_SIZE_TOO_SMALL); |
| return 0; |
| } |
| |
| to[0] = 0; |
| seed = to + 1; |
| db = to + mdlen + 1; |
| |
| if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL)) |
| return 0; |
| memset(db + mdlen, 0, |
| emlen - flen - 2 * mdlen - 1); |
| db[emlen - flen - mdlen - 1] = 0x01; |
| memcpy(db + emlen - flen - mdlen, from, (unsigned int) flen); |
| if (RAND_bytes(seed, mdlen) <= 0) |
| return 0; |
| #ifdef PKCS_TESTVECT |
| memcpy(seed, |
| "\xaa\xfd\x12\xf6\x59\xca\xe6\x34\x89\xb4\x79\xe5\x07\x6d\xde\xc2\xf0\x6c\xb5\x8f", |
| 20); |
| #endif |
| |
| dbmask = OPENSSL_malloc(emlen - mdlen); |
| if (dbmask == NULL) |
| { |
| RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| if (PKCS1_MGF1(dbmask, emlen - mdlen, seed, mdlen, mgf1md) < 0) |
| return 0; |
| for (i = 0; i < emlen - mdlen; i++) |
| db[i] ^= dbmask[i]; |
| |
| if (PKCS1_MGF1(seedmask, mdlen, db, emlen - mdlen, mgf1md) < 0) |
| return 0; |
| for (i = 0; i < mdlen; i++) |
| seed[i] ^= seedmask[i]; |
| |
| OPENSSL_free(dbmask); |
| return 1; |
| } |
| |
| int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen, |
| const unsigned char *from, int flen, int num, |
| const unsigned char *param, int plen) |
| { |
| return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from , flen, num, |
| param, plen, |
| NULL, NULL); |
| } |
| |
| int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen, |
| const unsigned char *from, int flen, int num, |
| const unsigned char *param, int plen, |
| const EVP_MD *md, const EVP_MD *mgf1md) |
| { |
| int i, dblen, mlen = -1; |
| const unsigned char *maskeddb; |
| int lzero; |
| unsigned char *db = NULL, seed[EVP_MAX_MD_SIZE], phash[EVP_MAX_MD_SIZE]; |
| unsigned char *padded_from; |
| int bad = 0; |
| int mdlen; |
| |
| if (md == NULL) |
| md = EVP_sha1(); |
| if (mgf1md == NULL) |
| mgf1md = md; |
| |
| mdlen = EVP_MD_size(md); |
| |
| if (--num < 2 * mdlen + 1) |
| /* 'num' is the length of the modulus, i.e. does not depend on the |
| * particular ciphertext. */ |
| goto decoding_err; |
| |
| lzero = num - flen; |
| if (lzero < 0) |
| { |
| /* signalling this error immediately after detection might allow |
| * for side-channel attacks (e.g. timing if 'plen' is huge |
| * -- cf. James H. Manger, "A Chosen Ciphertext Attack on RSA Optimal |
| * Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001), |
| * so we use a 'bad' flag */ |
| bad = 1; |
| lzero = 0; |
| flen = num; /* don't overflow the memcpy to padded_from */ |
| } |
| |
| dblen = num - mdlen; |
| db = OPENSSL_malloc(dblen + num); |
| if (db == NULL) |
| { |
| RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE); |
| return -1; |
| } |
| |
| /* Always do this zero-padding copy (even when lzero == 0) |
| * to avoid leaking timing info about the value of lzero. */ |
| padded_from = db + dblen; |
| memset(padded_from, 0, lzero); |
| memcpy(padded_from + lzero, from, flen); |
| |
| maskeddb = padded_from + mdlen; |
| |
| if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) |
| return -1; |
| for (i = 0; i < mdlen; i++) |
| seed[i] ^= padded_from[i]; |
| |
| if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) |
| return -1; |
| for (i = 0; i < dblen; i++) |
| db[i] ^= maskeddb[i]; |
| |
| if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL)) |
| return -1; |
| |
| if (CRYPTO_memcmp(db, phash, mdlen) != 0 || bad) |
| goto decoding_err; |
| else |
| { |
| for (i = mdlen; i < dblen; i++) |
| if (db[i] != 0x00) |
| break; |
| if (i == dblen || db[i] != 0x01) |
| goto decoding_err; |
| else |
| { |
| /* everything looks OK */ |
| |
| mlen = dblen - ++i; |
| if (tlen < mlen) |
| { |
| RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, RSA_R_DATA_TOO_LARGE); |
| mlen = -1; |
| } |
| else |
| memcpy(to, db + i, mlen); |
| } |
| } |
| OPENSSL_free(db); |
| return mlen; |
| |
| decoding_err: |
| /* to avoid chosen ciphertext attacks, the error message should not reveal |
| * which kind of decoding error happened */ |
| RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, RSA_R_OAEP_DECODING_ERROR); |
| if (db != NULL) OPENSSL_free(db); |
| return -1; |
| } |
| |
| int PKCS1_MGF1(unsigned char *mask, long len, |
| const unsigned char *seed, long seedlen, const EVP_MD *dgst) |
| { |
| long i, outlen = 0; |
| unsigned char cnt[4]; |
| EVP_MD_CTX c; |
| unsigned char md[EVP_MAX_MD_SIZE]; |
| int mdlen; |
| int rv = -1; |
| |
| EVP_MD_CTX_init(&c); |
| mdlen = M_EVP_MD_size(dgst); |
| if (mdlen < 0) |
| goto err; |
| for (i = 0; outlen < len; i++) |
| { |
| cnt[0] = (unsigned char)((i >> 24) & 255); |
| cnt[1] = (unsigned char)((i >> 16) & 255); |
| cnt[2] = (unsigned char)((i >> 8)) & 255; |
| cnt[3] = (unsigned char)(i & 255); |
| if (!EVP_DigestInit_ex(&c,dgst, NULL) |
| || !EVP_DigestUpdate(&c, seed, seedlen) |
| || !EVP_DigestUpdate(&c, cnt, 4)) |
| goto err; |
| if (outlen + mdlen <= len) |
| { |
| if (!EVP_DigestFinal_ex(&c, mask + outlen, NULL)) |
| goto err; |
| outlen += mdlen; |
| } |
| else |
| { |
| if (!EVP_DigestFinal_ex(&c, md, NULL)) |
| goto err; |
| memcpy(mask + outlen, md, len - outlen); |
| outlen = len; |
| } |
| } |
| rv = 0; |
| err: |
| EVP_MD_CTX_cleanup(&c); |
| return rv; |
| } |
| |
| #endif |