| /* |
| * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| /* We need to use some deprecated APIs */ |
| #define OPENSSL_SUPPRESS_DEPRECATED |
| |
| #include <string.h> |
| #include "internal/nelem.h" |
| #include <openssl/crypto.h> |
| #include <openssl/err.h> |
| #include <openssl/rand.h> |
| #include <openssl/obj_mac.h> |
| #include <openssl/evp.h> |
| #include <openssl/aes.h> |
| #include "../crypto/rand/rand_local.h" |
| #include "../include/crypto/rand.h" |
| #include "../include/crypto/evp.h" |
| #include "../providers/implementations/rands/drbg_local.h" |
| #include "../crypto/evp/evp_local.h" |
| |
| #if defined(_WIN32) |
| # include <windows.h> |
| #endif |
| |
| #if defined(__TANDEM) |
| # if defined(OPENSSL_TANDEM_FLOSS) |
| # include <floss.h(floss_fork)> |
| # endif |
| #endif |
| |
| #if defined(OPENSSL_SYS_UNIX) |
| # include <sys/types.h> |
| # include <sys/wait.h> |
| # include <unistd.h> |
| #endif |
| |
| #include "testutil.h" |
| |
| /* |
| * DRBG generate wrappers |
| */ |
| static int gen_bytes(EVP_RAND_CTX *drbg, unsigned char *buf, int num) |
| { |
| #ifndef OPENSSL_NO_DEPRECATED_3_0 |
| const RAND_METHOD *meth = RAND_get_rand_method(); |
| |
| if (meth != NULL && meth != RAND_OpenSSL()) { |
| if (meth->bytes != NULL) |
| return meth->bytes(buf, num); |
| return -1; |
| } |
| #endif |
| |
| if (drbg != NULL) |
| return EVP_RAND_generate(drbg, buf, num, 0, 0, NULL, 0); |
| return 0; |
| } |
| |
| static int rand_bytes(unsigned char *buf, int num) |
| { |
| return gen_bytes(RAND_get0_public(NULL), buf, num); |
| } |
| |
| static int rand_priv_bytes(unsigned char *buf, int num) |
| { |
| return gen_bytes(RAND_get0_private(NULL), buf, num); |
| } |
| |
| |
| /* size of random output generated in test_drbg_reseed() */ |
| #define RANDOM_SIZE 16 |
| |
| /* |
| * DRBG query functions |
| */ |
| static int state(EVP_RAND_CTX *drbg) |
| { |
| return EVP_RAND_get_state(drbg); |
| } |
| |
| static unsigned int query_rand_uint(EVP_RAND_CTX *drbg, const char *name) |
| { |
| OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; |
| unsigned int n; |
| |
| *params = OSSL_PARAM_construct_uint(name, &n); |
| if (EVP_RAND_CTX_get_params(drbg, params)) |
| return n; |
| return 0; |
| } |
| |
| #define DRBG_UINT(name) \ |
| static unsigned int name(EVP_RAND_CTX *drbg) \ |
| { \ |
| return query_rand_uint(drbg, #name); \ |
| } |
| DRBG_UINT(reseed_counter) |
| |
| static PROV_DRBG *prov_rand(EVP_RAND_CTX *drbg) |
| { |
| return (PROV_DRBG *)drbg->algctx; |
| } |
| |
| static void set_reseed_counter(EVP_RAND_CTX *drbg, unsigned int n) |
| { |
| PROV_DRBG *p = prov_rand(drbg); |
| |
| p->reseed_counter = n; |
| } |
| |
| static void inc_reseed_counter(EVP_RAND_CTX *drbg) |
| { |
| set_reseed_counter(drbg, reseed_counter(drbg) + 1); |
| } |
| |
| static time_t reseed_time(EVP_RAND_CTX *drbg) |
| { |
| OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; |
| time_t t; |
| |
| *params = OSSL_PARAM_construct_time_t(OSSL_DRBG_PARAM_RESEED_TIME, &t); |
| if (EVP_RAND_CTX_get_params(drbg, params)) |
| return t; |
| return 0; |
| } |
| |
| /* |
| * When building the FIPS module, it isn't possible to disable the continuous |
| * RNG tests. Tests that require this are skipped. |
| */ |
| static int crngt_skip(void) |
| { |
| #ifdef FIPS_MODULE |
| return 1; |
| #else |
| return 0; |
| #endif |
| } |
| |
| /* |
| * Disable CRNG testing if it is enabled. |
| * This stub remains to indicate the calling locations where it is necessary. |
| * Once the RNG infrastructure is able to disable these tests, it should be |
| * reconstituted. |
| */ |
| static int disable_crngt(EVP_RAND_CTX *drbg) |
| { |
| return 1; |
| } |
| |
| /* |
| * Generates random output using rand_bytes() and rand_priv_bytes() |
| * and checks whether the three shared DRBGs were reseeded as |
| * expected. |
| * |
| * |expect_success|: expected outcome (as reported by RAND_status()) |
| * |primary|, |public|, |private|: pointers to the three shared DRBGs |
| * |public_random|, |private_random|: generated random output |
| * |expect_xxx_reseed| = |
| * 1: it is expected that the specified DRBG is reseeded |
| * 0: it is expected that the specified DRBG is not reseeded |
| * -1: don't check whether the specified DRBG was reseeded or not |
| * |reseed_when|: if nonzero, used instead of time(NULL) to set the |
| * |before_reseed| time. |
| */ |
| static int test_drbg_reseed(int expect_success, |
| EVP_RAND_CTX *primary, |
| EVP_RAND_CTX *public, |
| EVP_RAND_CTX *private, |
| unsigned char *public_random, |
| unsigned char *private_random, |
| int expect_primary_reseed, |
| int expect_public_reseed, |
| int expect_private_reseed, |
| time_t reseed_when |
| ) |
| { |
| time_t before_reseed, after_reseed; |
| int expected_state = (expect_success ? DRBG_READY : DRBG_ERROR); |
| unsigned int primary_reseed, public_reseed, private_reseed; |
| unsigned char dummy[RANDOM_SIZE]; |
| |
| if (public_random == NULL) |
| public_random = dummy; |
| |
| if (private_random == NULL) |
| private_random = dummy; |
| |
| /* |
| * step 1: check preconditions |
| */ |
| |
| /* Test whether seed propagation is enabled */ |
| if (!TEST_int_ne(primary_reseed = reseed_counter(primary), 0) |
| || !TEST_int_ne(public_reseed = reseed_counter(public), 0) |
| || !TEST_int_ne(private_reseed = reseed_counter(private), 0)) |
| return 0; |
| |
| /* |
| * step 2: generate random output |
| */ |
| |
| if (reseed_when == 0) |
| reseed_when = time(NULL); |
| |
| /* Generate random output from the public and private DRBG */ |
| before_reseed = expect_primary_reseed == 1 ? reseed_when : 0; |
| if (!TEST_int_eq(rand_bytes((unsigned char*)public_random, |
| RANDOM_SIZE), expect_success) |
| || !TEST_int_eq(rand_priv_bytes((unsigned char*) private_random, |
| RANDOM_SIZE), expect_success)) |
| return 0; |
| after_reseed = time(NULL); |
| |
| |
| /* |
| * step 3: check postconditions |
| */ |
| |
| /* Test whether reseeding succeeded as expected */ |
| if (!TEST_int_eq(state(primary), expected_state) |
| || !TEST_int_eq(state(public), expected_state) |
| || !TEST_int_eq(state(private), expected_state)) |
| return 0; |
| |
| if (expect_primary_reseed >= 0) { |
| /* Test whether primary DRBG was reseeded as expected */ |
| if (!TEST_int_ge(reseed_counter(primary), primary_reseed)) |
| return 0; |
| } |
| |
| if (expect_public_reseed >= 0) { |
| /* Test whether public DRBG was reseeded as expected */ |
| if (!TEST_int_ge(reseed_counter(public), public_reseed) |
| || !TEST_uint_ge(reseed_counter(public), |
| reseed_counter(primary))) |
| return 0; |
| } |
| |
| if (expect_private_reseed >= 0) { |
| /* Test whether public DRBG was reseeded as expected */ |
| if (!TEST_int_ge(reseed_counter(private), private_reseed) |
| || !TEST_uint_ge(reseed_counter(private), |
| reseed_counter(primary))) |
| return 0; |
| } |
| |
| if (expect_success == 1) { |
| /* Test whether reseed time of primary DRBG is set correctly */ |
| if (!TEST_time_t_le(before_reseed, reseed_time(primary)) |
| || !TEST_time_t_le(reseed_time(primary), after_reseed)) |
| return 0; |
| |
| /* Test whether reseed times of child DRBGs are synchronized with primary */ |
| if (!TEST_time_t_ge(reseed_time(public), reseed_time(primary)) |
| || !TEST_time_t_ge(reseed_time(private), reseed_time(primary))) |
| return 0; |
| } else { |
| ERR_clear_error(); |
| } |
| |
| return 1; |
| } |
| |
| |
| #if defined(OPENSSL_SYS_UNIX) |
| /* number of children to fork */ |
| #define DRBG_FORK_COUNT 9 |
| /* two results per child, two for the parent */ |
| #define DRBG_FORK_RESULT_COUNT (2 * (DRBG_FORK_COUNT + 1)) |
| |
| typedef struct drbg_fork_result_st { |
| |
| unsigned char random[RANDOM_SIZE]; /* random output */ |
| |
| int pindex; /* process index (0: parent, 1,2,3...: children)*/ |
| pid_t pid; /* process id */ |
| int private; /* true if the private drbg was used */ |
| char name[10]; /* 'parent' resp. 'child 1', 'child 2', ... */ |
| } drbg_fork_result; |
| |
| /* |
| * Sort the drbg_fork_result entries in lexicographical order |
| * |
| * This simplifies finding duplicate random output and makes |
| * the printout in case of an error more readable. |
| */ |
| static int compare_drbg_fork_result(const void * left, const void * right) |
| { |
| int result; |
| const drbg_fork_result *l = left; |
| const drbg_fork_result *r = right; |
| |
| /* separate public and private results */ |
| result = l->private - r->private; |
| |
| if (result == 0) |
| result = memcmp(l->random, r->random, RANDOM_SIZE); |
| |
| if (result == 0) |
| result = l->pindex - r->pindex; |
| |
| return result; |
| } |
| |
| /* |
| * Sort two-byte chunks of random data |
| * |
| * Used for finding collisions in two-byte chunks |
| */ |
| static int compare_rand_chunk(const void * left, const void * right) |
| { |
| return memcmp(left, right, 2); |
| } |
| |
| /* |
| * Test whether primary, public and private DRBG are reseeded |
| * in the child after forking the process. Collect the random |
| * output of the public and private DRBG and send it back to |
| * the parent process. |
| */ |
| static int test_drbg_reseed_in_child(EVP_RAND_CTX *primary, |
| EVP_RAND_CTX *public, |
| EVP_RAND_CTX *private, |
| drbg_fork_result result[2]) |
| { |
| int rv = 0, status; |
| int fd[2]; |
| pid_t pid; |
| unsigned char random[2 * RANDOM_SIZE]; |
| |
| if (!TEST_int_ge(pipe(fd), 0)) |
| return 0; |
| |
| if (!TEST_int_ge(pid = fork(), 0)) { |
| close(fd[0]); |
| close(fd[1]); |
| return 0; |
| } else if (pid > 0) { |
| |
| /* I'm the parent; close the write end */ |
| close(fd[1]); |
| |
| /* wait for children to terminate and collect their random output */ |
| if (TEST_int_eq(waitpid(pid, &status, 0), pid) |
| && TEST_int_eq(status, 0) |
| && TEST_true(read(fd[0], &random[0], sizeof(random)) |
| == sizeof(random))) { |
| |
| /* random output of public drbg */ |
| result[0].pid = pid; |
| result[0].private = 0; |
| memcpy(result[0].random, &random[0], RANDOM_SIZE); |
| |
| /* random output of private drbg */ |
| result[1].pid = pid; |
| result[1].private = 1; |
| memcpy(result[1].random, &random[RANDOM_SIZE], RANDOM_SIZE); |
| |
| rv = 1; |
| } |
| |
| /* close the read end */ |
| close(fd[0]); |
| |
| return rv; |
| |
| } else { |
| |
| /* I'm the child; close the read end */ |
| close(fd[0]); |
| |
| /* check whether all three DRBGs reseed and send output to parent */ |
| if (TEST_true(test_drbg_reseed(1, primary, public, private, |
| &random[0], &random[RANDOM_SIZE], |
| 1, 1, 1, 0)) |
| && TEST_true(write(fd[1], random, sizeof(random)) |
| == sizeof(random))) { |
| |
| rv = 1; |
| } |
| |
| /* close the write end */ |
| close(fd[1]); |
| |
| /* convert boolean to exit code */ |
| exit(rv == 0); |
| } |
| } |
| |
| static int test_rand_reseed_on_fork(EVP_RAND_CTX *primary, |
| EVP_RAND_CTX *public, |
| EVP_RAND_CTX *private) |
| { |
| unsigned int i; |
| pid_t pid = getpid(); |
| int verbose = (getenv("V") != NULL); |
| int success = 1; |
| int duplicate[2] = {0, 0}; |
| unsigned char random[2 * RANDOM_SIZE]; |
| unsigned char sample[DRBG_FORK_RESULT_COUNT * RANDOM_SIZE]; |
| unsigned char *psample = &sample[0]; |
| drbg_fork_result result[DRBG_FORK_RESULT_COUNT]; |
| drbg_fork_result *presult = &result[2]; |
| |
| memset(&result, 0, sizeof(result)); |
| |
| for (i = 1 ; i <= DRBG_FORK_COUNT ; ++i) { |
| |
| presult[0].pindex = presult[1].pindex = i; |
| |
| sprintf(presult[0].name, "child %d", i); |
| strcpy(presult[1].name, presult[0].name); |
| |
| /* collect the random output of the children */ |
| if (!TEST_true(test_drbg_reseed_in_child(primary, |
| public, |
| private, |
| presult))) |
| return 0; |
| |
| presult += 2; |
| } |
| |
| /* collect the random output of the parent */ |
| if (!TEST_true(test_drbg_reseed(1, |
| primary, public, private, |
| &random[0], &random[RANDOM_SIZE], |
| 0, 0, 0, 0))) |
| return 0; |
| |
| strcpy(result[0].name, "parent"); |
| strcpy(result[1].name, "parent"); |
| |
| /* output of public drbg */ |
| result[0].pid = pid; |
| result[0].private = 0; |
| memcpy(result[0].random, &random[0], RANDOM_SIZE); |
| |
| /* output of private drbg */ |
| result[1].pid = pid; |
| result[1].private = 1; |
| memcpy(result[1].random, &random[RANDOM_SIZE], RANDOM_SIZE); |
| |
| /* collect all sampled random data in a single buffer */ |
| for (i = 0 ; i < DRBG_FORK_RESULT_COUNT ; ++i) { |
| memcpy(psample, &result[i].random[0], RANDOM_SIZE); |
| psample += RANDOM_SIZE; |
| } |
| |
| /* sort the results... */ |
| qsort(result, DRBG_FORK_RESULT_COUNT, sizeof(drbg_fork_result), |
| compare_drbg_fork_result); |
| |
| /* ...and count duplicate prefixes by looking at the first byte only */ |
| for (i = 1 ; i < DRBG_FORK_RESULT_COUNT ; ++i) { |
| if (result[i].random[0] == result[i-1].random[0]) { |
| /* count public and private duplicates separately */ |
| ++duplicate[result[i].private]; |
| } |
| } |
| |
| if (duplicate[0] >= DRBG_FORK_COUNT - 1) { |
| /* just too many duplicates to be a coincidence */ |
| TEST_note("ERROR: %d duplicate prefixes in public random output", duplicate[0]); |
| success = 0; |
| } |
| |
| if (duplicate[1] >= DRBG_FORK_COUNT - 1) { |
| /* just too many duplicates to be a coincidence */ |
| TEST_note("ERROR: %d duplicate prefixes in private random output", duplicate[1]); |
| success = 0; |
| } |
| |
| duplicate[0] = 0; |
| |
| /* sort the two-byte chunks... */ |
| qsort(sample, sizeof(sample)/2, 2, compare_rand_chunk); |
| |
| /* ...and count duplicate chunks */ |
| for (i = 2, psample = sample + 2 ; i < sizeof(sample) ; i += 2, psample += 2) { |
| if (compare_rand_chunk(psample - 2, psample) == 0) |
| ++duplicate[0]; |
| } |
| |
| if (duplicate[0] >= DRBG_FORK_COUNT - 1) { |
| /* just too many duplicates to be a coincidence */ |
| TEST_note("ERROR: %d duplicate chunks in random output", duplicate[0]); |
| success = 0; |
| } |
| |
| if (verbose || !success) { |
| |
| for (i = 0 ; i < DRBG_FORK_RESULT_COUNT ; ++i) { |
| char *rand_hex = OPENSSL_buf2hexstr(result[i].random, RANDOM_SIZE); |
| |
| TEST_note(" random: %s, pid: %d (%s, %s)", |
| rand_hex, |
| result[i].pid, |
| result[i].name, |
| result[i].private ? "private" : "public" |
| ); |
| |
| OPENSSL_free(rand_hex); |
| } |
| } |
| |
| return success; |
| } |
| |
| static int test_rand_fork_safety(int i) |
| { |
| int success = 1; |
| unsigned char random[1]; |
| EVP_RAND_CTX *primary, *public, *private; |
| |
| /* All three DRBGs should be non-null */ |
| if (!TEST_ptr(primary = RAND_get0_primary(NULL)) |
| || !TEST_ptr(public = RAND_get0_public(NULL)) |
| || !TEST_ptr(private = RAND_get0_private(NULL))) |
| return 0; |
| |
| /* run the actual test */ |
| if (!TEST_true(test_rand_reseed_on_fork(primary, public, private))) |
| success = 0; |
| |
| /* request a single byte from each of the DRBGs before the next run */ |
| if (!TEST_true(RAND_bytes(random, 1) && RAND_priv_bytes(random, 1))) |
| success = 0; |
| |
| return success; |
| } |
| #endif |
| |
| /* |
| * Test whether the default rand_method (RAND_OpenSSL()) is |
| * setup correctly, in particular whether reseeding works |
| * as designed. |
| */ |
| static int test_rand_reseed(void) |
| { |
| EVP_RAND_CTX *primary, *public, *private; |
| unsigned char rand_add_buf[256]; |
| int rv = 0; |
| time_t before_reseed; |
| |
| if (crngt_skip()) |
| return TEST_skip("CRNGT cannot be disabled"); |
| |
| #ifndef OPENSSL_NO_DEPRECATED_3_0 |
| /* Check whether RAND_OpenSSL() is the default method */ |
| if (!TEST_ptr_eq(RAND_get_rand_method(), RAND_OpenSSL())) |
| return 0; |
| #endif |
| |
| /* All three DRBGs should be non-null */ |
| if (!TEST_ptr(primary = RAND_get0_primary(NULL)) |
| || !TEST_ptr(public = RAND_get0_public(NULL)) |
| || !TEST_ptr(private = RAND_get0_private(NULL))) |
| return 0; |
| |
| /* There should be three distinct DRBGs, two of them chained to primary */ |
| if (!TEST_ptr_ne(public, private) |
| || !TEST_ptr_ne(public, primary) |
| || !TEST_ptr_ne(private, primary) |
| || !TEST_ptr_eq(prov_rand(public)->parent, prov_rand(primary)) |
| || !TEST_ptr_eq(prov_rand(private)->parent, prov_rand(primary))) |
| return 0; |
| |
| /* Disable CRNG testing for the primary DRBG */ |
| if (!TEST_true(disable_crngt(primary))) |
| return 0; |
| |
| /* uninstantiate the three global DRBGs */ |
| EVP_RAND_uninstantiate(primary); |
| EVP_RAND_uninstantiate(private); |
| EVP_RAND_uninstantiate(public); |
| |
| |
| /* |
| * Test initial seeding of shared DRBGs |
| */ |
| if (!TEST_true(test_drbg_reseed(1, |
| primary, public, private, |
| NULL, NULL, |
| 1, 1, 1, 0))) |
| goto error; |
| |
| |
| /* |
| * Test initial state of shared DRBGs |
| */ |
| if (!TEST_true(test_drbg_reseed(1, |
| primary, public, private, |
| NULL, NULL, |
| 0, 0, 0, 0))) |
| goto error; |
| |
| /* |
| * Test whether the public and private DRBG are both reseeded when their |
| * reseed counters differ from the primary's reseed counter. |
| */ |
| inc_reseed_counter(primary); |
| if (!TEST_true(test_drbg_reseed(1, |
| primary, public, private, |
| NULL, NULL, |
| 0, 1, 1, 0))) |
| goto error; |
| |
| /* |
| * Test whether the public DRBG is reseeded when its reseed counter differs |
| * from the primary's reseed counter. |
| */ |
| inc_reseed_counter(primary); |
| inc_reseed_counter(private); |
| if (!TEST_true(test_drbg_reseed(1, |
| primary, public, private, |
| NULL, NULL, |
| 0, 1, 0, 0))) |
| goto error; |
| |
| /* |
| * Test whether the private DRBG is reseeded when its reseed counter differs |
| * from the primary's reseed counter. |
| */ |
| inc_reseed_counter(primary); |
| inc_reseed_counter(public); |
| if (!TEST_true(test_drbg_reseed(1, |
| primary, public, private, |
| NULL, NULL, |
| 0, 0, 1, 0))) |
| goto error; |
| |
| /* fill 'randomness' buffer with some arbitrary data */ |
| memset(rand_add_buf, 'r', sizeof(rand_add_buf)); |
| |
| #ifndef FIPS_MODULE |
| /* |
| * Test whether all three DRBGs are reseeded by RAND_add(). |
| * The before_reseed time has to be measured here and passed into the |
| * test_drbg_reseed() test, because the primary DRBG gets already reseeded |
| * in RAND_add(), whence the check for the condition |
| * before_reseed <= reseed_time(primary) will fail if the time value happens |
| * to increase between the RAND_add() and the test_drbg_reseed() call. |
| */ |
| before_reseed = time(NULL); |
| RAND_add(rand_add_buf, sizeof(rand_add_buf), sizeof(rand_add_buf)); |
| if (!TEST_true(test_drbg_reseed(1, |
| primary, public, private, |
| NULL, NULL, |
| 1, 1, 1, |
| before_reseed))) |
| goto error; |
| #else /* FIPS_MODULE */ |
| /* |
| * In FIPS mode, random data provided by the application via RAND_add() |
| * is not considered a trusted entropy source. It is only treated as |
| * additional_data and no reseeding is forced. This test assures that |
| * no reseeding occurs. |
| */ |
| before_reseed = time(NULL); |
| RAND_add(rand_add_buf, sizeof(rand_add_buf), sizeof(rand_add_buf)); |
| if (!TEST_true(test_drbg_reseed(1, |
| primary, public, private, |
| NULL, NULL, |
| 0, 0, 0, |
| before_reseed))) |
| goto error; |
| #endif |
| |
| rv = 1; |
| |
| error: |
| return rv; |
| } |
| |
| #if defined(OPENSSL_THREADS) |
| static int multi_thread_rand_bytes_succeeded = 1; |
| static int multi_thread_rand_priv_bytes_succeeded = 1; |
| |
| static int set_reseed_time_interval(EVP_RAND_CTX *drbg, int t) |
| { |
| OSSL_PARAM params[2]; |
| |
| params[0] = OSSL_PARAM_construct_int(OSSL_DRBG_PARAM_RESEED_TIME_INTERVAL, |
| &t); |
| params[1] = OSSL_PARAM_construct_end(); |
| return EVP_RAND_CTX_set_params(drbg, params); |
| } |
| |
| static void run_multi_thread_test(void) |
| { |
| unsigned char buf[256]; |
| time_t start = time(NULL); |
| EVP_RAND_CTX *public = NULL, *private = NULL; |
| |
| if (!TEST_ptr(public = RAND_get0_public(NULL)) |
| || !TEST_ptr(private = RAND_get0_private(NULL)) |
| || !TEST_true(set_reseed_time_interval(private, 1)) |
| || !TEST_true(set_reseed_time_interval(public, 1))) { |
| multi_thread_rand_bytes_succeeded = 0; |
| return; |
| } |
| |
| do { |
| if (rand_bytes(buf, sizeof(buf)) <= 0) |
| multi_thread_rand_bytes_succeeded = 0; |
| if (rand_priv_bytes(buf, sizeof(buf)) <= 0) |
| multi_thread_rand_priv_bytes_succeeded = 0; |
| } |
| while (time(NULL) - start < 5); |
| } |
| |
| # if defined(OPENSSL_SYS_WINDOWS) |
| |
| typedef HANDLE thread_t; |
| |
| static DWORD WINAPI thread_run(LPVOID arg) |
| { |
| run_multi_thread_test(); |
| /* |
| * Because we're linking with a static library, we must stop each |
| * thread explicitly, or so says OPENSSL_thread_stop(3) |
| */ |
| OPENSSL_thread_stop(); |
| return 0; |
| } |
| |
| static int run_thread(thread_t *t) |
| { |
| *t = CreateThread(NULL, 0, thread_run, NULL, 0, NULL); |
| return *t != NULL; |
| } |
| |
| static int wait_for_thread(thread_t thread) |
| { |
| return WaitForSingleObject(thread, INFINITE) == 0; |
| } |
| |
| # else |
| |
| typedef pthread_t thread_t; |
| |
| static void *thread_run(void *arg) |
| { |
| run_multi_thread_test(); |
| /* |
| * Because we're linking with a static library, we must stop each |
| * thread explicitly, or so says OPENSSL_thread_stop(3) |
| */ |
| OPENSSL_thread_stop(); |
| return NULL; |
| } |
| |
| static int run_thread(thread_t *t) |
| { |
| return pthread_create(t, NULL, thread_run, NULL) == 0; |
| } |
| |
| static int wait_for_thread(thread_t thread) |
| { |
| return pthread_join(thread, NULL) == 0; |
| } |
| |
| # endif |
| |
| /* |
| * The main thread will also run the test, so we'll have THREADS+1 parallel |
| * tests running |
| */ |
| # define THREADS 3 |
| |
| static int test_multi_thread(void) |
| { |
| thread_t t[THREADS]; |
| int i; |
| |
| for (i = 0; i < THREADS; i++) |
| run_thread(&t[i]); |
| run_multi_thread_test(); |
| for (i = 0; i < THREADS; i++) |
| wait_for_thread(t[i]); |
| |
| if (!TEST_true(multi_thread_rand_bytes_succeeded)) |
| return 0; |
| if (!TEST_true(multi_thread_rand_priv_bytes_succeeded)) |
| return 0; |
| |
| return 1; |
| } |
| #endif |
| |
| static EVP_RAND_CTX *new_drbg(EVP_RAND_CTX *parent) |
| { |
| OSSL_PARAM params[2]; |
| EVP_RAND *rand = NULL; |
| EVP_RAND_CTX *drbg = NULL; |
| |
| params[0] = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_CIPHER, |
| "AES-256-CTR", 0); |
| params[1] = OSSL_PARAM_construct_end(); |
| |
| if (!TEST_ptr(rand = EVP_RAND_fetch(NULL, "CTR-DRBG", NULL)) |
| || !TEST_ptr(drbg = EVP_RAND_CTX_new(rand, parent)) |
| || !TEST_true(EVP_RAND_CTX_set_params(drbg, params))) { |
| EVP_RAND_CTX_free(drbg); |
| drbg = NULL; |
| } |
| EVP_RAND_free(rand); |
| return drbg; |
| } |
| |
| static int test_rand_prediction_resistance(void) |
| { |
| EVP_RAND_CTX *x = NULL, *y = NULL, *z = NULL; |
| unsigned char buf1[51], buf2[sizeof(buf1)]; |
| int ret = 0, xreseed, yreseed, zreseed; |
| |
| if (crngt_skip()) |
| return TEST_skip("CRNGT cannot be disabled"); |
| |
| /* Initialise a three long DRBG chain */ |
| if (!TEST_ptr(x = new_drbg(NULL)) |
| || !TEST_true(disable_crngt(x)) |
| || !TEST_true(EVP_RAND_instantiate(x, 0, 0, NULL, 0, NULL)) |
| || !TEST_ptr(y = new_drbg(x)) |
| || !TEST_true(EVP_RAND_instantiate(y, 0, 0, NULL, 0, NULL)) |
| || !TEST_ptr(z = new_drbg(y)) |
| || !TEST_true(EVP_RAND_instantiate(z, 0, 0, NULL, 0, NULL))) |
| goto err; |
| |
| /* |
| * During a normal reseed, only the last DRBG in the chain should |
| * be reseeded. |
| */ |
| inc_reseed_counter(y); |
| xreseed = reseed_counter(x); |
| yreseed = reseed_counter(y); |
| zreseed = reseed_counter(z); |
| if (!TEST_true(EVP_RAND_reseed(z, 0, NULL, 0, NULL, 0)) |
| || !TEST_int_eq(reseed_counter(x), xreseed) |
| || !TEST_int_eq(reseed_counter(y), yreseed) |
| || !TEST_int_gt(reseed_counter(z), zreseed)) |
| goto err; |
| |
| /* |
| * When prediction resistance is requested, the request should be |
| * propagated to the primary, so that the entire DRBG chain reseeds. |
| */ |
| zreseed = reseed_counter(z); |
| if (!TEST_true(EVP_RAND_reseed(z, 1, NULL, 0, NULL, 0)) |
| || !TEST_int_gt(reseed_counter(x), xreseed) |
| || !TEST_int_gt(reseed_counter(y), yreseed) |
| || !TEST_int_gt(reseed_counter(z), zreseed)) |
| goto err; |
| |
| /* |
| * During a normal generate, only the last DRBG should be reseed */ |
| inc_reseed_counter(y); |
| xreseed = reseed_counter(x); |
| yreseed = reseed_counter(y); |
| zreseed = reseed_counter(z); |
| if (!TEST_true(EVP_RAND_generate(z, buf1, sizeof(buf1), 0, 0, NULL, 0)) |
| || !TEST_int_eq(reseed_counter(x), xreseed) |
| || !TEST_int_eq(reseed_counter(y), yreseed) |
| || !TEST_int_gt(reseed_counter(z), zreseed)) |
| goto err; |
| |
| /* |
| * When a prediction resistant generate is requested, the request |
| * should be propagated to the primary, reseeding the entire DRBG chain. |
| */ |
| zreseed = reseed_counter(z); |
| if (!TEST_true(EVP_RAND_generate(z, buf2, sizeof(buf2), 0, 1, NULL, 0)) |
| || !TEST_int_gt(reseed_counter(x), xreseed) |
| || !TEST_int_gt(reseed_counter(y), yreseed) |
| || !TEST_int_gt(reseed_counter(z), zreseed) |
| || !TEST_mem_ne(buf1, sizeof(buf1), buf2, sizeof(buf2))) |
| goto err; |
| |
| /* Verify that a normal reseed still only reseeds the last DRBG */ |
| inc_reseed_counter(y); |
| xreseed = reseed_counter(x); |
| yreseed = reseed_counter(y); |
| zreseed = reseed_counter(z); |
| if (!TEST_true(EVP_RAND_reseed(z, 0, NULL, 0, NULL, 0)) |
| || !TEST_int_eq(reseed_counter(x), xreseed) |
| || !TEST_int_eq(reseed_counter(y), yreseed) |
| || !TEST_int_gt(reseed_counter(z), zreseed)) |
| goto err; |
| |
| ret = 1; |
| err: |
| EVP_RAND_CTX_free(z); |
| EVP_RAND_CTX_free(y); |
| EVP_RAND_CTX_free(x); |
| return ret; |
| } |
| |
| int setup_tests(void) |
| { |
| ADD_TEST(test_rand_reseed); |
| #if defined(OPENSSL_SYS_UNIX) |
| ADD_ALL_TESTS(test_rand_fork_safety, RANDOM_SIZE); |
| #endif |
| ADD_TEST(test_rand_prediction_resistance); |
| #if defined(OPENSSL_THREADS) |
| ADD_TEST(test_multi_thread); |
| #endif |
| return 1; |
| } |