blob: 3e2738fb32a4aad15e8ee63d4fb62c158a2c08cc [file] [log] [blame]
/*
* Copyright 2019-2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <assert.h>
#include <openssl/core.h>
#include <openssl/core_dispatch.h>
#include <openssl/core_names.h>
#include <openssl/provider.h>
#include <openssl/params.h>
#include <openssl/opensslv.h>
#include "crypto/cryptlib.h"
#include "crypto/decoder.h" /* ossl_decoder_store_cache_flush */
#include "crypto/encoder.h" /* ossl_encoder_store_cache_flush */
#include "crypto/evp.h" /* evp_method_store_cache_flush */
#include "crypto/store.h" /* ossl_store_loader_store_cache_flush */
#include "crypto/rand.h"
#include "internal/nelem.h"
#include "internal/thread_once.h"
#include "internal/provider.h"
#include "internal/refcount.h"
#include "internal/bio.h"
#include "internal/core.h"
#include "provider_local.h"
#include "crypto/context.h"
#ifndef FIPS_MODULE
# include <openssl/self_test.h>
#endif
/*
* This file defines and uses a number of different structures:
*
* OSSL_PROVIDER (provider_st): Used to represent all information related to a
* single instance of a provider.
*
* provider_store_st: Holds information about the collection of providers that
* are available within the current library context (OSSL_LIB_CTX). It also
* holds configuration information about providers that could be loaded at some
* future point.
*
* OSSL_PROVIDER_CHILD_CB: An instance of this structure holds the callbacks
* that have been registered for a child library context and the associated
* provider that registered those callbacks.
*
* Where a child library context exists then it has its own instance of the
* provider store. Each provider that exists in the parent provider store, has
* an associated child provider in the child library context's provider store.
* As providers get activated or deactivated this needs to be mirrored in the
* associated child providers.
*
* LOCKING
* =======
*
* There are a number of different locks used in this file and it is important
* to understand how they should be used in order to avoid deadlocks.
*
* Fields within a structure can often be "write once" on creation, and then
* "read many". Creation of a structure is done by a single thread, and
* therefore no lock is required for the "write once/read many" fields. It is
* safe for multiple threads to read these fields without a lock, because they
* will never be changed.
*
* However some fields may be changed after a structure has been created and
* shared between multiple threads. Where this is the case a lock is required.
*
* The locks available are:
*
* The provider flag_lock: Used to control updates to the various provider
* "flags" (flag_initialized and flag_activated) and associated
* "counts" (activatecnt).
*
* The provider refcnt_lock: Only ever used to control updates to the provider
* refcnt value.
*
* The provider optbits_lock: Used to control access to the provider's
* operation_bits and operation_bits_sz fields.
*
* The store default_path_lock: Used to control access to the provider store's
* default search path value (default_path)
*
* The store lock: Used to control the stack of provider's held within the
* provider store, as well as the stack of registered child provider callbacks.
*
* As a general rule-of-thumb it is best to:
* - keep the scope of the code that is protected by a lock to the absolute
* minimum possible;
* - try to keep the scope of the lock to within a single function (i.e. avoid
* making calls to other functions while holding a lock);
* - try to only ever hold one lock at a time.
*
* Unfortunately, it is not always possible to stick to the above guidelines.
* Where they are not adhered to there is always a danger of inadvertently
* introducing the possibility of deadlock. The following rules MUST be adhered
* to in order to avoid that:
* - Holding multiple locks at the same time is only allowed for the
* provider store lock, the provider flag_lock and the provider refcnt_lock.
* - When holding multiple locks they must be acquired in the following order of
* precedence:
* 1) provider store lock
* 2) provider flag_lock
* 3) provider refcnt_lock
* - When releasing locks they must be released in the reverse order to which
* they were acquired
* - No locks may be held when making an upcall. NOTE: Some common functions
* can make upcalls as part of their normal operation. If you need to call
* some other function while holding a lock make sure you know whether it
* will make any upcalls or not. For example ossl_provider_up_ref() can call
* ossl_provider_up_ref_parent() which can call the c_prov_up_ref() upcall.
* - It is permissible to hold the store and flag locks when calling child
* provider callbacks. No other locks may be held during such callbacks.
*/
static OSSL_PROVIDER *provider_new(const char *name,
OSSL_provider_init_fn *init_function,
STACK_OF(INFOPAIR) *parameters);
/*-
* Provider Object structure
* =========================
*/
#ifndef FIPS_MODULE
typedef struct {
OSSL_PROVIDER *prov;
int (*create_cb)(const OSSL_CORE_HANDLE *provider, void *cbdata);
int (*remove_cb)(const OSSL_CORE_HANDLE *provider, void *cbdata);
int (*global_props_cb)(const char *props, void *cbdata);
void *cbdata;
} OSSL_PROVIDER_CHILD_CB;
DEFINE_STACK_OF(OSSL_PROVIDER_CHILD_CB)
#endif
struct provider_store_st; /* Forward declaration */
struct ossl_provider_st {
/* Flag bits */
unsigned int flag_initialized:1;
unsigned int flag_activated:1;
/* Getting and setting the flags require synchronization */
CRYPTO_RWLOCK *flag_lock;
/* OpenSSL library side data */
CRYPTO_REF_COUNT refcnt;
CRYPTO_RWLOCK *refcnt_lock; /* For the ref counter */
int activatecnt;
char *name;
char *path;
DSO *module;
OSSL_provider_init_fn *init_function;
STACK_OF(INFOPAIR) *parameters;
OSSL_LIB_CTX *libctx; /* The library context this instance is in */
struct provider_store_st *store; /* The store this instance belongs to */
#ifndef FIPS_MODULE
/*
* In the FIPS module inner provider, this isn't needed, since the
* error upcalls are always direct calls to the outer provider.
*/
int error_lib; /* ERR library number, one for each provider */
# ifndef OPENSSL_NO_ERR
ERR_STRING_DATA *error_strings; /* Copy of what the provider gives us */
# endif
#endif
/* Provider side functions */
OSSL_FUNC_provider_teardown_fn *teardown;
OSSL_FUNC_provider_gettable_params_fn *gettable_params;
OSSL_FUNC_provider_get_params_fn *get_params;
OSSL_FUNC_provider_get_capabilities_fn *get_capabilities;
OSSL_FUNC_provider_self_test_fn *self_test;
OSSL_FUNC_provider_query_operation_fn *query_operation;
OSSL_FUNC_provider_unquery_operation_fn *unquery_operation;
/*
* Cache of bit to indicate of query_operation() has been called on
* a specific operation or not.
*/
unsigned char *operation_bits;
size_t operation_bits_sz;
CRYPTO_RWLOCK *opbits_lock;
#ifndef FIPS_MODULE
/* Whether this provider is the child of some other provider */
const OSSL_CORE_HANDLE *handle;
unsigned int ischild:1;
#endif
/* Provider side data */
void *provctx;
const OSSL_DISPATCH *dispatch;
};
DEFINE_STACK_OF(OSSL_PROVIDER)
static int ossl_provider_cmp(const OSSL_PROVIDER * const *a,
const OSSL_PROVIDER * const *b)
{
return strcmp((*a)->name, (*b)->name);
}
/*-
* Provider Object store
* =====================
*
* The Provider Object store is a library context object, and therefore needs
* an index.
*/
struct provider_store_st {
OSSL_LIB_CTX *libctx;
STACK_OF(OSSL_PROVIDER) *providers;
STACK_OF(OSSL_PROVIDER_CHILD_CB) *child_cbs;
CRYPTO_RWLOCK *default_path_lock;
CRYPTO_RWLOCK *lock;
char *default_path;
OSSL_PROVIDER_INFO *provinfo;
size_t numprovinfo;
size_t provinfosz;
unsigned int use_fallbacks:1;
unsigned int freeing:1;
};
/*
* provider_deactivate_free() is a wrapper around ossl_provider_deactivate()
* and ossl_provider_free(), called as needed.
* Since this is only called when the provider store is being emptied, we
* don't need to care about any lock.
*/
static void provider_deactivate_free(OSSL_PROVIDER *prov)
{
if (prov->flag_activated)
ossl_provider_deactivate(prov, 1);
ossl_provider_free(prov);
}
#ifndef FIPS_MODULE
static void ossl_provider_child_cb_free(OSSL_PROVIDER_CHILD_CB *cb)
{
OPENSSL_free(cb);
}
#endif
static void infopair_free(INFOPAIR *pair)
{
OPENSSL_free(pair->name);
OPENSSL_free(pair->value);
OPENSSL_free(pair);
}
static INFOPAIR *infopair_copy(const INFOPAIR *src)
{
INFOPAIR *dest = OPENSSL_zalloc(sizeof(*dest));
if (dest == NULL)
return NULL;
if (src->name != NULL) {
dest->name = OPENSSL_strdup(src->name);
if (dest->name == NULL)
goto err;
}
if (src->value != NULL) {
dest->value = OPENSSL_strdup(src->value);
if (dest->value == NULL)
goto err;
}
return dest;
err:
OPENSSL_free(dest->name);
OPENSSL_free(dest);
return NULL;
}
void ossl_provider_info_clear(OSSL_PROVIDER_INFO *info)
{
OPENSSL_free(info->name);
OPENSSL_free(info->path);
sk_INFOPAIR_pop_free(info->parameters, infopair_free);
}
void ossl_provider_store_free(void *vstore)
{
struct provider_store_st *store = vstore;
size_t i;
if (store == NULL)
return;
store->freeing = 1;
OPENSSL_free(store->default_path);
sk_OSSL_PROVIDER_pop_free(store->providers, provider_deactivate_free);
#ifndef FIPS_MODULE
sk_OSSL_PROVIDER_CHILD_CB_pop_free(store->child_cbs,
ossl_provider_child_cb_free);
#endif
CRYPTO_THREAD_lock_free(store->default_path_lock);
CRYPTO_THREAD_lock_free(store->lock);
for (i = 0; i < store->numprovinfo; i++)
ossl_provider_info_clear(&store->provinfo[i]);
OPENSSL_free(store->provinfo);
OPENSSL_free(store);
}
void *ossl_provider_store_new(OSSL_LIB_CTX *ctx)
{
struct provider_store_st *store = OPENSSL_zalloc(sizeof(*store));
if (store == NULL
|| (store->providers = sk_OSSL_PROVIDER_new(ossl_provider_cmp)) == NULL
|| (store->default_path_lock = CRYPTO_THREAD_lock_new()) == NULL
#ifndef FIPS_MODULE
|| (store->child_cbs = sk_OSSL_PROVIDER_CHILD_CB_new_null()) == NULL
#endif
|| (store->lock = CRYPTO_THREAD_lock_new()) == NULL) {
ossl_provider_store_free(store);
return NULL;
}
store->libctx = ctx;
store->use_fallbacks = 1;
return store;
}
static struct provider_store_st *get_provider_store(OSSL_LIB_CTX *libctx)
{
struct provider_store_st *store = NULL;
store = ossl_lib_ctx_get_data(libctx, OSSL_LIB_CTX_PROVIDER_STORE_INDEX);
if (store == NULL)
ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR);
return store;
}
int ossl_provider_disable_fallback_loading(OSSL_LIB_CTX *libctx)
{
struct provider_store_st *store;
if ((store = get_provider_store(libctx)) != NULL) {
if (!CRYPTO_THREAD_write_lock(store->lock))
return 0;
store->use_fallbacks = 0;
CRYPTO_THREAD_unlock(store->lock);
return 1;
}
return 0;
}
#define BUILTINS_BLOCK_SIZE 10
int ossl_provider_info_add_to_store(OSSL_LIB_CTX *libctx,
OSSL_PROVIDER_INFO *entry)
{
struct provider_store_st *store = get_provider_store(libctx);
int ret = 0;
if (entry->name == NULL) {
ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (store == NULL) {
ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR);
return 0;
}
if (!CRYPTO_THREAD_write_lock(store->lock))
return 0;
if (store->provinfosz == 0) {
store->provinfo = OPENSSL_zalloc(sizeof(*store->provinfo)
* BUILTINS_BLOCK_SIZE);
if (store->provinfo == NULL) {
ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE);
goto err;
}
store->provinfosz = BUILTINS_BLOCK_SIZE;
} else if (store->numprovinfo == store->provinfosz) {
OSSL_PROVIDER_INFO *tmpbuiltins;
size_t newsz = store->provinfosz + BUILTINS_BLOCK_SIZE;
tmpbuiltins = OPENSSL_realloc(store->provinfo,
sizeof(*store->provinfo) * newsz);
if (tmpbuiltins == NULL) {
ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE);
goto err;
}
store->provinfo = tmpbuiltins;
store->provinfosz = newsz;
}
store->provinfo[store->numprovinfo] = *entry;
store->numprovinfo++;
ret = 1;
err:
CRYPTO_THREAD_unlock(store->lock);
return ret;
}
OSSL_PROVIDER *ossl_provider_find(OSSL_LIB_CTX *libctx, const char *name,
int noconfig)
{
struct provider_store_st *store = NULL;
OSSL_PROVIDER *prov = NULL;
if ((store = get_provider_store(libctx)) != NULL) {
OSSL_PROVIDER tmpl = { 0, };
int i;
#ifndef FIPS_MODULE
/*
* Make sure any providers are loaded from config before we try to find
* them.
*/
if (!noconfig) {
if (ossl_lib_ctx_is_default(libctx))
OPENSSL_init_crypto(OPENSSL_INIT_LOAD_CONFIG, NULL);
}
#endif
tmpl.name = (char *)name;
/*
* A "find" operation can sort the stack, and therefore a write lock is
* required.
*/
if (!CRYPTO_THREAD_write_lock(store->lock))
return NULL;
if ((i = sk_OSSL_PROVIDER_find(store->providers, &tmpl)) != -1)
prov = sk_OSSL_PROVIDER_value(store->providers, i);
CRYPTO_THREAD_unlock(store->lock);
if (prov != NULL && !ossl_provider_up_ref(prov))
prov = NULL;
}
return prov;
}
/*-
* Provider Object methods
* =======================
*/
static OSSL_PROVIDER *provider_new(const char *name,
OSSL_provider_init_fn *init_function,
STACK_OF(INFOPAIR) *parameters)
{
OSSL_PROVIDER *prov = NULL;
if ((prov = OPENSSL_zalloc(sizeof(*prov))) == NULL
#ifndef HAVE_ATOMICS
|| (prov->refcnt_lock = CRYPTO_THREAD_lock_new()) == NULL
#endif
|| (prov->opbits_lock = CRYPTO_THREAD_lock_new()) == NULL
|| (prov->flag_lock = CRYPTO_THREAD_lock_new()) == NULL
|| (prov->name = OPENSSL_strdup(name)) == NULL
|| (prov->parameters = sk_INFOPAIR_deep_copy(parameters,
infopair_copy,
infopair_free)) == NULL) {
ossl_provider_free(prov);
ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE);
return NULL;
}
prov->refcnt = 1; /* 1 One reference to be returned */
prov->init_function = init_function;
return prov;
}
int ossl_provider_up_ref(OSSL_PROVIDER *prov)
{
int ref = 0;
if (CRYPTO_UP_REF(&prov->refcnt, &ref, prov->refcnt_lock) <= 0)
return 0;
#ifndef FIPS_MODULE
if (prov->ischild) {
if (!ossl_provider_up_ref_parent(prov, 0)) {
ossl_provider_free(prov);
return 0;
}
}
#endif
return ref;
}
#ifndef FIPS_MODULE
static int provider_up_ref_intern(OSSL_PROVIDER *prov, int activate)
{
if (activate)
return ossl_provider_activate(prov, 1, 0);
return ossl_provider_up_ref(prov);
}
static int provider_free_intern(OSSL_PROVIDER *prov, int deactivate)
{
if (deactivate)
return ossl_provider_deactivate(prov, 1);
ossl_provider_free(prov);
return 1;
}
#endif
/*
* We assume that the requested provider does not already exist in the store.
* The caller should check. If it does exist then adding it to the store later
* will fail.
*/
OSSL_PROVIDER *ossl_provider_new(OSSL_LIB_CTX *libctx, const char *name,
OSSL_provider_init_fn *init_function,
int noconfig)
{
struct provider_store_st *store = NULL;
OSSL_PROVIDER_INFO template;
OSSL_PROVIDER *prov = NULL;
if ((store = get_provider_store(libctx)) == NULL)
return NULL;
memset(&template, 0, sizeof(template));
if (init_function == NULL) {
const OSSL_PROVIDER_INFO *p;
size_t i;
/* Check if this is a predefined builtin provider */
for (p = ossl_predefined_providers; p->name != NULL; p++) {
if (strcmp(p->name, name) == 0) {
template = *p;
break;
}
}
if (p->name == NULL) {
/* Check if this is a user added builtin provider */
if (!CRYPTO_THREAD_read_lock(store->lock))
return NULL;
for (i = 0, p = store->provinfo; i < store->numprovinfo; p++, i++) {
if (strcmp(p->name, name) == 0) {
template = *p;
break;
}
}
CRYPTO_THREAD_unlock(store->lock);
}
} else {
template.init = init_function;
}
/* provider_new() generates an error, so no need here */
if ((prov = provider_new(name, template.init, template.parameters)) == NULL)
return NULL;
prov->libctx = libctx;
#ifndef FIPS_MODULE
prov->error_lib = ERR_get_next_error_library();
#endif
/*
* At this point, the provider is only partially "loaded". To be
* fully "loaded", ossl_provider_activate() must also be called and it must
* then be added to the provider store.
*/
return prov;
}
/* Assumes that the store lock is held */
static int create_provider_children(OSSL_PROVIDER *prov)
{
int ret = 1;
#ifndef FIPS_MODULE
struct provider_store_st *store = prov->store;
OSSL_PROVIDER_CHILD_CB *child_cb;
int i, max;
max = sk_OSSL_PROVIDER_CHILD_CB_num(store->child_cbs);
for (i = 0; i < max; i++) {
/*
* This is newly activated (activatecnt == 1), so we need to
* create child providers as necessary.
*/
child_cb = sk_OSSL_PROVIDER_CHILD_CB_value(store->child_cbs, i);
ret &= child_cb->create_cb((OSSL_CORE_HANDLE *)prov, child_cb->cbdata);
}
#endif
return ret;
}
int ossl_provider_add_to_store(OSSL_PROVIDER *prov, OSSL_PROVIDER **actualprov,
int retain_fallbacks)
{
struct provider_store_st *store;
int idx;
OSSL_PROVIDER tmpl = { 0, };
OSSL_PROVIDER *actualtmp = NULL;
if (actualprov != NULL)
*actualprov = NULL;
if ((store = get_provider_store(prov->libctx)) == NULL)
return 0;
if (!CRYPTO_THREAD_write_lock(store->lock))
return 0;
tmpl.name = (char *)prov->name;
idx = sk_OSSL_PROVIDER_find(store->providers, &tmpl);
if (idx == -1)
actualtmp = prov;
else
actualtmp = sk_OSSL_PROVIDER_value(store->providers, idx);
if (idx == -1) {
if (sk_OSSL_PROVIDER_push(store->providers, prov) == 0)
goto err;
prov->store = store;
if (!create_provider_children(prov)) {
sk_OSSL_PROVIDER_delete_ptr(store->providers, prov);
goto err;
}
if (!retain_fallbacks)
store->use_fallbacks = 0;
}
CRYPTO_THREAD_unlock(store->lock);
if (actualprov != NULL) {
if (!ossl_provider_up_ref(actualtmp)) {
ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE);
actualtmp = NULL;
goto err;
}
*actualprov = actualtmp;
}
if (idx >= 0) {
/*
* The provider is already in the store. Probably two threads
* independently initialised their own provider objects with the same
* name and raced to put them in the store. This thread lost. We
* deactivate the one we just created and use the one that already
* exists instead.
* If we get here then we know we did not create provider children
* above, so we inform ossl_provider_deactivate not to attempt to remove
* any.
*/
ossl_provider_deactivate(prov, 0);
ossl_provider_free(prov);
}
return 1;
err:
CRYPTO_THREAD_unlock(store->lock);
if (actualprov != NULL)
ossl_provider_free(*actualprov);
return 0;
}
void ossl_provider_free(OSSL_PROVIDER *prov)
{
if (prov != NULL) {
int ref = 0;
CRYPTO_DOWN_REF(&prov->refcnt, &ref, prov->refcnt_lock);
/*
* When the refcount drops to zero, we clean up the provider.
* Note that this also does teardown, which may seem late,
* considering that init happens on first activation. However,
* there may be other structures hanging on to the provider after
* the last deactivation and may therefore need full access to the
* provider's services. Therefore, we deinit late.
*/
if (ref == 0) {
if (prov->flag_initialized) {
ossl_provider_teardown(prov);
#ifndef OPENSSL_NO_ERR
# ifndef FIPS_MODULE
if (prov->error_strings != NULL) {
ERR_unload_strings(prov->error_lib, prov->error_strings);
OPENSSL_free(prov->error_strings);
prov->error_strings = NULL;
}
# endif
#endif
OPENSSL_free(prov->operation_bits);
prov->operation_bits = NULL;
prov->operation_bits_sz = 0;
prov->flag_initialized = 0;
}
#ifndef FIPS_MODULE
/*
* We deregister thread handling whether or not the provider was
* initialized. If init was attempted but was not successful then
* the provider may still have registered a thread handler.
*/
ossl_init_thread_deregister(prov);
DSO_free(prov->module);
#endif
OPENSSL_free(prov->name);
OPENSSL_free(prov->path);
sk_INFOPAIR_pop_free(prov->parameters, infopair_free);
CRYPTO_THREAD_lock_free(prov->opbits_lock);
CRYPTO_THREAD_lock_free(prov->flag_lock);
#ifndef HAVE_ATOMICS
CRYPTO_THREAD_lock_free(prov->refcnt_lock);
#endif
OPENSSL_free(prov);
}
#ifndef FIPS_MODULE
else if (prov->ischild) {
ossl_provider_free_parent(prov, 0);
}
#endif
}
}
/* Setters */
int ossl_provider_set_module_path(OSSL_PROVIDER *prov, const char *module_path)
{
OPENSSL_free(prov->path);
prov->path = NULL;
if (module_path == NULL)
return 1;
if ((prov->path = OPENSSL_strdup(module_path)) != NULL)
return 1;
ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE);
return 0;
}
static int infopair_add(STACK_OF(INFOPAIR) **infopairsk, const char *name,
const char *value)
{
INFOPAIR *pair = NULL;
if ((pair = OPENSSL_zalloc(sizeof(*pair))) != NULL
&& (*infopairsk != NULL
|| (*infopairsk = sk_INFOPAIR_new_null()) != NULL)
&& (pair->name = OPENSSL_strdup(name)) != NULL
&& (pair->value = OPENSSL_strdup(value)) != NULL
&& sk_INFOPAIR_push(*infopairsk, pair) > 0)
return 1;
if (pair != NULL) {
OPENSSL_free(pair->name);
OPENSSL_free(pair->value);
OPENSSL_free(pair);
}
ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE);
return 0;
}
int ossl_provider_add_parameter(OSSL_PROVIDER *prov,
const char *name, const char *value)
{
return infopair_add(&prov->parameters, name, value);
}
int ossl_provider_info_add_parameter(OSSL_PROVIDER_INFO *provinfo,
const char *name,
const char *value)
{
return infopair_add(&provinfo->parameters, name, value);
}
/*
* Provider activation.
*
* What "activation" means depends on the provider form; for built in
* providers (in the library or the application alike), the provider
* can already be considered to be loaded, all that's needed is to
* initialize it. However, for dynamically loadable provider modules,
* we must first load that module.
*
* Built in modules are distinguished from dynamically loaded modules
* with an already assigned init function.
*/
static const OSSL_DISPATCH *core_dispatch; /* Define further down */
int OSSL_PROVIDER_set_default_search_path(OSSL_LIB_CTX *libctx,
const char *path)
{
struct provider_store_st *store;
char *p = NULL;
if (path != NULL) {
p = OPENSSL_strdup(path);
if (p == NULL) {
ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE);
return 0;
}
}
if ((store = get_provider_store(libctx)) != NULL
&& CRYPTO_THREAD_write_lock(store->default_path_lock)) {
OPENSSL_free(store->default_path);
store->default_path = p;
CRYPTO_THREAD_unlock(store->default_path_lock);
return 1;
}
OPENSSL_free(p);
return 0;
}
/*
* Internal version that doesn't affect the store flags, and thereby avoid
* locking. Direct callers must remember to set the store flags when
* appropriate.
*/
static int provider_init(OSSL_PROVIDER *prov)
{
const OSSL_DISPATCH *provider_dispatch = NULL;
void *tmp_provctx = NULL; /* safety measure */
#ifndef OPENSSL_NO_ERR
# ifndef FIPS_MODULE
OSSL_FUNC_provider_get_reason_strings_fn *p_get_reason_strings = NULL;
# endif
#endif
int ok = 0;
if (!ossl_assert(!prov->flag_initialized)) {
ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR);
goto end;
}
/*
* If the init function isn't set, it indicates that this provider is
* a loadable module.
*/
if (prov->init_function == NULL) {
#ifdef FIPS_MODULE
goto end;
#else
if (prov->module == NULL) {
char *allocated_path = NULL;
const char *module_path = NULL;
char *merged_path = NULL;
const char *load_dir = NULL;
char *allocated_load_dir = NULL;
struct provider_store_st *store;
if ((prov->module = DSO_new()) == NULL) {
/* DSO_new() generates an error already */
goto end;
}
if ((store = get_provider_store(prov->libctx)) == NULL
|| !CRYPTO_THREAD_read_lock(store->default_path_lock))
goto end;
if (store->default_path != NULL) {
allocated_load_dir = OPENSSL_strdup(store->default_path);
CRYPTO_THREAD_unlock(store->default_path_lock);
if (allocated_load_dir == NULL) {
ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE);
goto end;
}
load_dir = allocated_load_dir;
} else {
CRYPTO_THREAD_unlock(store->default_path_lock);
}
if (load_dir == NULL) {
load_dir = ossl_safe_getenv("OPENSSL_MODULES");
if (load_dir == NULL)
load_dir = MODULESDIR;
}
DSO_ctrl(prov->module, DSO_CTRL_SET_FLAGS,
DSO_FLAG_NAME_TRANSLATION_EXT_ONLY, NULL);
module_path = prov->path;
if (module_path == NULL)
module_path = allocated_path =
DSO_convert_filename(prov->module, prov->name);
if (module_path != NULL)
merged_path = DSO_merge(prov->module, module_path, load_dir);
if (merged_path == NULL
|| (DSO_load(prov->module, merged_path, NULL, 0)) == NULL) {
DSO_free(prov->module);
prov->module = NULL;
}
OPENSSL_free(merged_path);
OPENSSL_free(allocated_path);
OPENSSL_free(allocated_load_dir);
}
if (prov->module != NULL)
prov->init_function = (OSSL_provider_init_fn *)
DSO_bind_func(prov->module, "OSSL_provider_init");
#endif
}
/* Call the initialise function for the provider. */
if (prov->init_function == NULL
|| !prov->init_function((OSSL_CORE_HANDLE *)prov, core_dispatch,
&provider_dispatch, &tmp_provctx)) {
ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_INIT_FAIL,
"name=%s", prov->name);
goto end;
}
prov->provctx = tmp_provctx;
prov->dispatch = provider_dispatch;
for (; provider_dispatch->function_id != 0; provider_dispatch++) {
switch (provider_dispatch->function_id) {
case OSSL_FUNC_PROVIDER_TEARDOWN:
prov->teardown =
OSSL_FUNC_provider_teardown(provider_dispatch);
break;
case OSSL_FUNC_PROVIDER_GETTABLE_PARAMS:
prov->gettable_params =
OSSL_FUNC_provider_gettable_params(provider_dispatch);
break;
case OSSL_FUNC_PROVIDER_GET_PARAMS:
prov->get_params =
OSSL_FUNC_provider_get_params(provider_dispatch);
break;
case OSSL_FUNC_PROVIDER_SELF_TEST:
prov->self_test =
OSSL_FUNC_provider_self_test(provider_dispatch);
break;
case OSSL_FUNC_PROVIDER_GET_CAPABILITIES:
prov->get_capabilities =
OSSL_FUNC_provider_get_capabilities(provider_dispatch);
break;
case OSSL_FUNC_PROVIDER_QUERY_OPERATION:
prov->query_operation =
OSSL_FUNC_provider_query_operation(provider_dispatch);
break;
case OSSL_FUNC_PROVIDER_UNQUERY_OPERATION:
prov->unquery_operation =
OSSL_FUNC_provider_unquery_operation(provider_dispatch);
break;
#ifndef OPENSSL_NO_ERR
# ifndef FIPS_MODULE
case OSSL_FUNC_PROVIDER_GET_REASON_STRINGS:
p_get_reason_strings =
OSSL_FUNC_provider_get_reason_strings(provider_dispatch);
break;
# endif
#endif
}
}
#ifndef OPENSSL_NO_ERR
# ifndef FIPS_MODULE
if (p_get_reason_strings != NULL) {
const OSSL_ITEM *reasonstrings = p_get_reason_strings(prov->provctx);
size_t cnt, cnt2;
/*
* ERR_load_strings() handles ERR_STRING_DATA rather than OSSL_ITEM,
* although they are essentially the same type.
* Furthermore, ERR_load_strings() patches the array's error number
* with the error library number, so we need to make a copy of that
* array either way.
*/
cnt = 0;
while (reasonstrings[cnt].id != 0) {
if (ERR_GET_LIB(reasonstrings[cnt].id) != 0)
goto end;
cnt++;
}
cnt++; /* One for the terminating item */
/* Allocate one extra item for the "library" name */
prov->error_strings =
OPENSSL_zalloc(sizeof(ERR_STRING_DATA) * (cnt + 1));
if (prov->error_strings == NULL)
goto end;
/*
* Set the "library" name.
*/
prov->error_strings[0].error = ERR_PACK(prov->error_lib, 0, 0);
prov->error_strings[0].string = prov->name;
/*
* Copy reasonstrings item 0..cnt-1 to prov->error_trings positions
* 1..cnt.
*/
for (cnt2 = 1; cnt2 <= cnt; cnt2++) {
prov->error_strings[cnt2].error = (int)reasonstrings[cnt2-1].id;
prov->error_strings[cnt2].string = reasonstrings[cnt2-1].ptr;
}
ERR_load_strings(prov->error_lib, prov->error_strings);
}
# endif
#endif
/* With this flag set, this provider has become fully "loaded". */
prov->flag_initialized = 1;
ok = 1;
end:
return ok;
}
/*
* Deactivate a provider. If upcalls is 0 then we suppress any upcalls to a
* parent provider. If removechildren is 0 then we suppress any calls to remove
* child providers.
* Return -1 on failure and the activation count on success
*/
static int provider_deactivate(OSSL_PROVIDER *prov, int upcalls,
int removechildren)
{
int count;
struct provider_store_st *store;
#ifndef FIPS_MODULE
int freeparent = 0;
#endif
int lock = 1;
if (!ossl_assert(prov != NULL))
return -1;
/*
* No need to lock if we've got no store because we've not been shared with
* other threads.
*/
store = get_provider_store(prov->libctx);
if (store == NULL)
lock = 0;
if (lock && !CRYPTO_THREAD_read_lock(store->lock))
return -1;
if (lock && !CRYPTO_THREAD_write_lock(prov->flag_lock)) {
CRYPTO_THREAD_unlock(store->lock);
return -1;
}
#ifndef FIPS_MODULE
if (prov->activatecnt >= 2 && prov->ischild && upcalls) {
/*
* We have had a direct activation in this child libctx so we need to
* now down the ref count in the parent provider. We do the actual down
* ref outside of the flag_lock, since it could involve getting other
* locks.
*/
freeparent = 1;
}
#endif
if ((count = --prov->activatecnt) < 1)
prov->flag_activated = 0;
#ifndef FIPS_MODULE
else
removechildren = 0;
#endif
#ifndef FIPS_MODULE
if (removechildren && store != NULL) {
int i, max = sk_OSSL_PROVIDER_CHILD_CB_num(store->child_cbs);
OSSL_PROVIDER_CHILD_CB *child_cb;
for (i = 0; i < max; i++) {
child_cb = sk_OSSL_PROVIDER_CHILD_CB_value(store->child_cbs, i);
child_cb->remove_cb((OSSL_CORE_HANDLE *)prov, child_cb->cbdata);
}
}
#endif
if (lock) {
CRYPTO_THREAD_unlock(prov->flag_lock);
CRYPTO_THREAD_unlock(store->lock);
}
#ifndef FIPS_MODULE
if (freeparent)
ossl_provider_free_parent(prov, 1);
#endif
/* We don't deinit here, that's done in ossl_provider_free() */
return count;
}
/*
* Activate a provider.
* Return -1 on failure and the activation count on success
*/
static int provider_activate(OSSL_PROVIDER *prov, int lock, int upcalls)
{
int count = -1;
struct provider_store_st *store;
int ret = 1;
store = prov->store;
/*
* If the provider hasn't been added to the store, then we don't need
* any locks because we've not shared it with other threads.
*/
if (store == NULL) {
lock = 0;
if (!provider_init(prov))
return -1;
}
#ifndef FIPS_MODULE
if (prov->ischild && upcalls && !ossl_provider_up_ref_parent(prov, 1))
return -1;
#endif
if (lock && !CRYPTO_THREAD_read_lock(store->lock)) {
#ifndef FIPS_MODULE
if (prov->ischild && upcalls)
ossl_provider_free_parent(prov, 1);
#endif
return -1;
}
if (lock && !CRYPTO_THREAD_write_lock(prov->flag_lock)) {
CRYPTO_THREAD_unlock(store->lock);
#ifndef FIPS_MODULE
if (prov->ischild && upcalls)
ossl_provider_free_parent(prov, 1);
#endif
return -1;
}
count = ++prov->activatecnt;
prov->flag_activated = 1;
if (prov->activatecnt == 1 && store != NULL) {
ret = create_provider_children(prov);
}
if (lock) {
CRYPTO_THREAD_unlock(prov->flag_lock);
CRYPTO_THREAD_unlock(store->lock);
}
if (!ret)
return -1;
return count;
}
static int provider_flush_store_cache(const OSSL_PROVIDER *prov)
{
struct provider_store_st *store;
int freeing;
if ((store = get_provider_store(prov->libctx)) == NULL)
return 0;
if (!CRYPTO_THREAD_read_lock(store->lock))
return 0;
freeing = store->freeing;
CRYPTO_THREAD_unlock(store->lock);
if (!freeing) {
int acc
= evp_method_store_cache_flush(prov->libctx)
#ifndef FIPS_MODULE
+ ossl_encoder_store_cache_flush(prov->libctx)
+ ossl_decoder_store_cache_flush(prov->libctx)
+ ossl_store_loader_store_cache_flush(prov->libctx)
#endif
;
#ifndef FIPS_MODULE
return acc == 4;
#else
return acc == 1;
#endif
}
return 1;
}
static int provider_remove_store_methods(OSSL_PROVIDER *prov)
{
struct provider_store_st *store;
int freeing;
if ((store = get_provider_store(prov->libctx)) == NULL)
return 0;
if (!CRYPTO_THREAD_read_lock(store->lock))
return 0;
freeing = store->freeing;
CRYPTO_THREAD_unlock(store->lock);
if (!freeing) {
int acc;
if (!CRYPTO_THREAD_read_lock(prov->opbits_lock))
return 0;
OPENSSL_free(prov->operation_bits);
prov->operation_bits = NULL;
prov->operation_bits_sz = 0;
CRYPTO_THREAD_unlock(prov->opbits_lock);
acc = evp_method_store_remove_all_provided(prov)
#ifndef FIPS_MODULE
+ ossl_encoder_store_remove_all_provided(prov)
+ ossl_decoder_store_remove_all_provided(prov)
+ ossl_store_loader_store_remove_all_provided(prov)
#endif
;
#ifndef FIPS_MODULE
return acc == 4;
#else
return acc == 1;
#endif
}
return 1;
}
int ossl_provider_activate(OSSL_PROVIDER *prov, int upcalls, int aschild)
{
int count;
if (prov == NULL)
return 0;
#ifndef FIPS_MODULE
/*
* If aschild is true, then we only actually do the activation if the
* provider is a child. If its not, this is still success.
*/
if (aschild && !prov->ischild)
return 1;
#endif
if ((count = provider_activate(prov, 1, upcalls)) > 0)
return count == 1 ? provider_flush_store_cache(prov) : 1;
return 0;
}
int ossl_provider_deactivate(OSSL_PROVIDER *prov, int removechildren)
{
int count;
if (prov == NULL
|| (count = provider_deactivate(prov, 1, removechildren)) < 0)
return 0;
return count == 0 ? provider_remove_store_methods(prov) : 1;
}
void *ossl_provider_ctx(const OSSL_PROVIDER *prov)
{
return prov->provctx;
}
/*
* This function only does something once when store->use_fallbacks == 1,
* and then sets store->use_fallbacks = 0, so the second call and so on is
* effectively a no-op.
*/
static int provider_activate_fallbacks(struct provider_store_st *store)
{
int use_fallbacks;
int activated_fallback_count = 0;
int ret = 0;
const OSSL_PROVIDER_INFO *p;
if (!CRYPTO_THREAD_read_lock(store->lock))
return 0;
use_fallbacks = store->use_fallbacks;
CRYPTO_THREAD_unlock(store->lock);
if (!use_fallbacks)
return 1;
if (!CRYPTO_THREAD_write_lock(store->lock))
return 0;
/* Check again, just in case another thread changed it */
use_fallbacks = store->use_fallbacks;
if (!use_fallbacks) {
CRYPTO_THREAD_unlock(store->lock);
return 1;
}
for (p = ossl_predefined_providers; p->name != NULL; p++) {
OSSL_PROVIDER *prov = NULL;
if (!p->is_fallback)
continue;
/*
* We use the internal constructor directly here,
* otherwise we get a call loop
*/
prov = provider_new(p->name, p->init, NULL);
if (prov == NULL)
goto err;
prov->libctx = store->libctx;
#ifndef FIPS_MODULE
prov->error_lib = ERR_get_next_error_library();
#endif
/*
* We are calling provider_activate while holding the store lock. This
* means the init function will be called while holding a lock. Normally
* we try to avoid calling a user callback while holding a lock.
* However, fallbacks are never third party providers so we accept this.
*/
if (provider_activate(prov, 0, 0) < 0) {
ossl_provider_free(prov);
goto err;
}
prov->store = store;
if (sk_OSSL_PROVIDER_push(store->providers, prov) == 0) {
ossl_provider_free(prov);
goto err;
}
activated_fallback_count++;
}
if (activated_fallback_count > 0) {
store->use_fallbacks = 0;
ret = 1;
}
err:
CRYPTO_THREAD_unlock(store->lock);
return ret;
}
int ossl_provider_doall_activated(OSSL_LIB_CTX *ctx,
int (*cb)(OSSL_PROVIDER *provider,
void *cbdata),
void *cbdata)
{
int ret = 0, curr, max, ref = 0;
struct provider_store_st *store = get_provider_store(ctx);
STACK_OF(OSSL_PROVIDER) *provs = NULL;
#ifndef FIPS_MODULE
/*
* Make sure any providers are loaded from config before we try to use
* them.
*/
if (ossl_lib_ctx_is_default(ctx))
OPENSSL_init_crypto(OPENSSL_INIT_LOAD_CONFIG, NULL);
#endif
if (store == NULL)
return 1;
if (!provider_activate_fallbacks(store))
return 0;
/*
* Under lock, grab a copy of the provider list and up_ref each
* provider so that they don't disappear underneath us.
*/
if (!CRYPTO_THREAD_read_lock(store->lock))
return 0;
provs = sk_OSSL_PROVIDER_dup(store->providers);
if (provs == NULL) {
CRYPTO_THREAD_unlock(store->lock);
return 0;
}
max = sk_OSSL_PROVIDER_num(provs);
/*
* We work backwards through the stack so that we can safely delete items
* as we go.
*/
for (curr = max - 1; curr >= 0; curr--) {
OSSL_PROVIDER *prov = sk_OSSL_PROVIDER_value(provs, curr);
if (!CRYPTO_THREAD_write_lock(prov->flag_lock))
goto err_unlock;
if (prov->flag_activated) {
/*
* We call CRYPTO_UP_REF directly rather than ossl_provider_up_ref
* to avoid upping the ref count on the parent provider, which we
* must not do while holding locks.
*/
if (CRYPTO_UP_REF(&prov->refcnt, &ref, prov->refcnt_lock) <= 0) {
CRYPTO_THREAD_unlock(prov->flag_lock);
goto err_unlock;
}
/*
* It's already activated, but we up the activated count to ensure
* it remains activated until after we've called the user callback.
* We do this with no locking (because we already hold the locks)
* and no upcalls (which must not be called when locks are held). In
* theory this could mean the parent provider goes inactive, whilst
* still activated in the child for a short period. That's ok.
*/
if (provider_activate(prov, 0, 0) < 0) {
CRYPTO_DOWN_REF(&prov->refcnt, &ref, prov->refcnt_lock);
CRYPTO_THREAD_unlock(prov->flag_lock);
goto err_unlock;
}
} else {
sk_OSSL_PROVIDER_delete(provs, curr);
max--;
}
CRYPTO_THREAD_unlock(prov->flag_lock);
}
CRYPTO_THREAD_unlock(store->lock);
/*
* Now, we sweep through all providers not under lock
*/
for (curr = 0; curr < max; curr++) {
OSSL_PROVIDER *prov = sk_OSSL_PROVIDER_value(provs, curr);
if (!cb(prov, cbdata))
goto finish;
}
curr = -1;
ret = 1;
goto finish;
err_unlock:
CRYPTO_THREAD_unlock(store->lock);
finish:
/*
* The pop_free call doesn't do what we want on an error condition. We
* either start from the first item in the stack, or part way through if
* we only processed some of the items.
*/
for (curr++; curr < max; curr++) {
OSSL_PROVIDER *prov = sk_OSSL_PROVIDER_value(provs, curr);
provider_deactivate(prov, 0, 1);
/*
* As above where we did the up-ref, we don't call ossl_provider_free
* to avoid making upcalls. There should always be at least one ref
* to the provider in the store, so this should never drop to 0.
*/
CRYPTO_DOWN_REF(&prov->refcnt, &ref, prov->refcnt_lock);
/*
* Not much we can do if this assert ever fails. So we don't use
* ossl_assert here.
*/
assert(ref > 0);
}
sk_OSSL_PROVIDER_free(provs);
return ret;
}
int OSSL_PROVIDER_available(OSSL_LIB_CTX *libctx, const char *name)
{
OSSL_PROVIDER *prov = NULL;
int available = 0;
struct provider_store_st *store = get_provider_store(libctx);
if (store == NULL || !provider_activate_fallbacks(store))
return 0;
prov = ossl_provider_find(libctx, name, 0);
if (prov != NULL) {
if (!CRYPTO_THREAD_read_lock(prov->flag_lock))
return 0;
available = prov->flag_activated;
CRYPTO_THREAD_unlock(prov->flag_lock);
ossl_provider_free(prov);
}
return available;
}
/* Getters of Provider Object data */
const char *ossl_provider_name(const OSSL_PROVIDER *prov)
{
return prov->name;
}
const DSO *ossl_provider_dso(const OSSL_PROVIDER *prov)
{
return prov->module;
}
const char *ossl_provider_module_name(const OSSL_PROVIDER *prov)
{
#ifdef FIPS_MODULE
return NULL;
#else
return DSO_get_filename(prov->module);
#endif
}
const char *ossl_provider_module_path(const OSSL_PROVIDER *prov)
{
#ifdef FIPS_MODULE
return NULL;
#else
/* FIXME: Ensure it's a full path */
return DSO_get_filename(prov->module);
#endif
}
void *ossl_provider_prov_ctx(const OSSL_PROVIDER *prov)
{
if (prov != NULL)
return prov->provctx;
return NULL;
}
const OSSL_DISPATCH *ossl_provider_get0_dispatch(const OSSL_PROVIDER *prov)
{
if (prov != NULL)
return prov->dispatch;
return NULL;
}
OSSL_LIB_CTX *ossl_provider_libctx(const OSSL_PROVIDER *prov)
{
return prov != NULL ? prov->libctx : NULL;
}
/* Wrappers around calls to the provider */
void ossl_provider_teardown(const OSSL_PROVIDER *prov)
{
if (prov->teardown != NULL
#ifndef FIPS_MODULE
&& !prov->ischild
#endif
)
prov->teardown(prov->provctx);
}
const OSSL_PARAM *ossl_provider_gettable_params(const OSSL_PROVIDER *prov)
{
return prov->gettable_params == NULL
? NULL : prov->gettable_params(prov->provctx);
}
int ossl_provider_get_params(const OSSL_PROVIDER *prov, OSSL_PARAM params[])
{
return prov->get_params == NULL
? 0 : prov->get_params(prov->provctx, params);
}
int ossl_provider_self_test(const OSSL_PROVIDER *prov)
{
int ret;
if (prov->self_test == NULL)
return 1;
ret = prov->self_test(prov->provctx);
if (ret == 0)
(void)provider_remove_store_methods((OSSL_PROVIDER *)prov);
return ret;
}
int ossl_provider_get_capabilities(const OSSL_PROVIDER *prov,
const char *capability,
OSSL_CALLBACK *cb,
void *arg)
{
return prov->get_capabilities == NULL
? 1 : prov->get_capabilities(prov->provctx, capability, cb, arg);
}
const OSSL_ALGORITHM *ossl_provider_query_operation(const OSSL_PROVIDER *prov,
int operation_id,
int *no_cache)
{
const OSSL_ALGORITHM *res;
if (prov->query_operation == NULL)
return NULL;
res = prov->query_operation(prov->provctx, operation_id, no_cache);
#if defined(OPENSSL_NO_CACHED_FETCH)
/* Forcing the non-caching of queries */
if (no_cache != NULL)
*no_cache = 1;
#endif
return res;
}
void ossl_provider_unquery_operation(const OSSL_PROVIDER *prov,
int operation_id,
const OSSL_ALGORITHM *algs)
{
if (prov->unquery_operation != NULL)
prov->unquery_operation(prov->provctx, operation_id, algs);
}
int ossl_provider_set_operation_bit(OSSL_PROVIDER *provider, size_t bitnum)
{
size_t byte = bitnum / 8;
unsigned char bit = (1 << (bitnum % 8)) & 0xFF;
if (!CRYPTO_THREAD_write_lock(provider->opbits_lock))
return 0;
if (provider->operation_bits_sz <= byte) {
unsigned char *tmp = OPENSSL_realloc(provider->operation_bits,
byte + 1);
if (tmp == NULL) {
CRYPTO_THREAD_unlock(provider->opbits_lock);
ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE);
return 0;
}
provider->operation_bits = tmp;
memset(provider->operation_bits + provider->operation_bits_sz,
'\0', byte + 1 - provider->operation_bits_sz);
provider->operation_bits_sz = byte + 1;
}
provider->operation_bits[byte] |= bit;
CRYPTO_THREAD_unlock(provider->opbits_lock);
return 1;
}
int ossl_provider_test_operation_bit(OSSL_PROVIDER *provider, size_t bitnum,
int *result)
{
size_t byte = bitnum / 8;
unsigned char bit = (1 << (bitnum % 8)) & 0xFF;
if (!ossl_assert(result != NULL)) {
ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
*result = 0;
if (!CRYPTO_THREAD_read_lock(provider->opbits_lock))
return 0;
if (provider->operation_bits_sz > byte)
*result = ((provider->operation_bits[byte] & bit) != 0);
CRYPTO_THREAD_unlock(provider->opbits_lock);
return 1;
}
#ifndef FIPS_MODULE
const OSSL_CORE_HANDLE *ossl_provider_get_parent(OSSL_PROVIDER *prov)
{
return prov->handle;
}
int ossl_provider_is_child(const OSSL_PROVIDER *prov)
{
return prov->ischild;
}
int ossl_provider_set_child(OSSL_PROVIDER *prov, const OSSL_CORE_HANDLE *handle)
{
prov->handle = handle;
prov->ischild = 1;
return 1;
}
int ossl_provider_default_props_update(OSSL_LIB_CTX *libctx, const char *props)
{
#ifndef FIPS_MODULE
struct provider_store_st *store = NULL;
int i, max;
OSSL_PROVIDER_CHILD_CB *child_cb;
if ((store = get_provider_store(libctx)) == NULL)
return 0;
if (!CRYPTO_THREAD_read_lock(store->lock))
return 0;
max = sk_OSSL_PROVIDER_CHILD_CB_num(store->child_cbs);
for (i = 0; i < max; i++) {
child_cb = sk_OSSL_PROVIDER_CHILD_CB_value(store->child_cbs, i);
child_cb->global_props_cb(props, child_cb->cbdata);
}
CRYPTO_THREAD_unlock(store->lock);
#endif
return 1;
}
static int ossl_provider_register_child_cb(const OSSL_CORE_HANDLE *handle,
int (*create_cb)(
const OSSL_CORE_HANDLE *provider,
void *cbdata),
int (*remove_cb)(
const OSSL_CORE_HANDLE *provider,
void *cbdata),
int (*global_props_cb)(
const char *props,
void *cbdata),
void *cbdata)
{
/*
* This is really an OSSL_PROVIDER that we created and cast to
* OSSL_CORE_HANDLE originally. Therefore it is safe to cast it back.
*/
OSSL_PROVIDER *thisprov = (OSSL_PROVIDER *)handle;
OSSL_PROVIDER *prov;
OSSL_LIB_CTX *libctx = thisprov->libctx;
struct provider_store_st *store = NULL;
int ret = 0, i, max;
OSSL_PROVIDER_CHILD_CB *child_cb;
char *propsstr = NULL;
if ((store = get_provider_store(libctx)) == NULL)
return 0;
child_cb = OPENSSL_malloc(sizeof(*child_cb));
if (child_cb == NULL)
return 0;
child_cb->prov = thisprov;
child_cb->create_cb = create_cb;
child_cb->remove_cb = remove_cb;
child_cb->global_props_cb = global_props_cb;
child_cb->cbdata = cbdata;
if (!CRYPTO_THREAD_write_lock(store->lock)) {
OPENSSL_free(child_cb);
return 0;
}
propsstr = evp_get_global_properties_str(libctx, 0);
if (propsstr != NULL) {
global_props_cb(propsstr, cbdata);
OPENSSL_free(propsstr);
}
max = sk_OSSL_PROVIDER_num(store->providers);
for (i = 0; i < max; i++) {
int activated;
prov = sk_OSSL_PROVIDER_value(store->providers, i);
if (!CRYPTO_THREAD_read_lock(prov->flag_lock))
break;
activated = prov->flag_activated;
CRYPTO_THREAD_unlock(prov->flag_lock);
/*
* We hold the store lock while calling the user callback. This means
* that the user callback must be short and simple and not do anything
* likely to cause a deadlock. We don't hold the flag_lock during this
* call. In theory this means that another thread could deactivate it
* while we are calling create. This is ok because the other thread
* will also call remove_cb, but won't be able to do so until we release
* the store lock.
*/
if (activated && !create_cb((OSSL_CORE_HANDLE *)prov, cbdata))
break;
}
if (i == max) {
/* Success */
ret = sk_OSSL_PROVIDER_CHILD_CB_push(store->child_cbs, child_cb);
}
if (i != max || ret <= 0) {
/* Failed during creation. Remove everything we just added */
for (; i >= 0; i--) {
prov = sk_OSSL_PROVIDER_value(store->providers, i);
remove_cb((OSSL_CORE_HANDLE *)prov, cbdata);
}
OPENSSL_free(child_cb);
ret = 0;
}
CRYPTO_THREAD_unlock(store->lock);
return ret;
}
static void ossl_provider_deregister_child_cb(const OSSL_CORE_HANDLE *handle)
{
/*
* This is really an OSSL_PROVIDER that we created and cast to
* OSSL_CORE_HANDLE originally. Therefore it is safe to cast it back.
*/
OSSL_PROVIDER *thisprov = (OSSL_PROVIDER *)handle;
OSSL_LIB_CTX *libctx = thisprov->libctx;
struct provider_store_st *store = NULL;
int i, max;
OSSL_PROVIDER_CHILD_CB *child_cb;
if ((store = get_provider_store(libctx)) == NULL)
return;
if (!CRYPTO_THREAD_write_lock(store->lock))
return;
max = sk_OSSL_PROVIDER_CHILD_CB_num(store->child_cbs);
for (i = 0; i < max; i++) {
child_cb = sk_OSSL_PROVIDER_CHILD_CB_value(store->child_cbs, i);
if (child_cb->prov == thisprov) {
/* Found an entry */
sk_OSSL_PROVIDER_CHILD_CB_delete(store->child_cbs, i);
OPENSSL_free(child_cb);
break;
}
}
CRYPTO_THREAD_unlock(store->lock);
}
#endif
/*-
* Core functions for the provider
* ===============================
*
* This is the set of functions that the core makes available to the provider
*/
/*
* This returns a list of Provider Object parameters with their types, for
* discovery. We do not expect that many providers will use this, but one
* never knows.
*/
static const OSSL_PARAM param_types[] = {
OSSL_PARAM_DEFN(OSSL_PROV_PARAM_CORE_VERSION, OSSL_PARAM_UTF8_PTR, NULL, 0),
OSSL_PARAM_DEFN(OSSL_PROV_PARAM_CORE_PROV_NAME, OSSL_PARAM_UTF8_PTR,
NULL, 0),
#ifndef FIPS_MODULE
OSSL_PARAM_DEFN(OSSL_PROV_PARAM_CORE_MODULE_FILENAME, OSSL_PARAM_UTF8_PTR,
NULL, 0),
#endif
OSSL_PARAM_END
};
/*
* Forward declare all the functions that are provided aa dispatch.
* This ensures that the compiler will complain if they aren't defined
* with the correct signature.
*/
static OSSL_FUNC_core_gettable_params_fn core_gettable_params;
static OSSL_FUNC_core_get_params_fn core_get_params;
static OSSL_FUNC_core_thread_start_fn core_thread_start;
static OSSL_FUNC_core_get_libctx_fn core_get_libctx;
#ifndef FIPS_MODULE
static OSSL_FUNC_core_new_error_fn core_new_error;
static OSSL_FUNC_core_set_error_debug_fn core_set_error_debug;
static OSSL_FUNC_core_vset_error_fn core_vset_error;
static OSSL_FUNC_core_set_error_mark_fn core_set_error_mark;
static OSSL_FUNC_core_clear_last_error_mark_fn core_clear_last_error_mark;
static OSSL_FUNC_core_pop_error_to_mark_fn core_pop_error_to_mark;
static OSSL_FUNC_core_obj_add_sigid_fn core_obj_add_sigid;
static OSSL_FUNC_core_obj_create_fn core_obj_create;
#endif
static const OSSL_PARAM *core_gettable_params(const OSSL_CORE_HANDLE *handle)
{
return param_types;
}
static int core_get_params(const OSSL_CORE_HANDLE *handle, OSSL_PARAM params[])
{
int i;
OSSL_PARAM *p;
/*
* We created this object originally and we know it is actually an
* OSSL_PROVIDER *, so the cast is safe
*/
OSSL_PROVIDER *prov = (OSSL_PROVIDER *)handle;
if ((p = OSSL_PARAM_locate(params, OSSL_PROV_PARAM_CORE_VERSION)) != NULL)
OSSL_PARAM_set_utf8_ptr(p, OPENSSL_VERSION_STR);
if ((p = OSSL_PARAM_locate(params, OSSL_PROV_PARAM_CORE_PROV_NAME)) != NULL)
OSSL_PARAM_set_utf8_ptr(p, prov->name);
#ifndef FIPS_MODULE
if ((p = OSSL_PARAM_locate(params,
OSSL_PROV_PARAM_CORE_MODULE_FILENAME)) != NULL)
OSSL_PARAM_set_utf8_ptr(p, ossl_provider_module_path(prov));
#endif
if (prov->parameters == NULL)
return 1;
for (i = 0; i < sk_INFOPAIR_num(prov->parameters); i++) {
INFOPAIR *pair = sk_INFOPAIR_value(prov->parameters, i);
if ((p = OSSL_PARAM_locate(params, pair->name)) != NULL)
OSSL_PARAM_set_utf8_ptr(p, pair->value);
}
return 1;
}
static OPENSSL_CORE_CTX *core_get_libctx(const OSSL_CORE_HANDLE *handle)
{
/*
* We created this object originally and we know it is actually an
* OSSL_PROVIDER *, so the cast is safe
*/
OSSL_PROVIDER *prov = (OSSL_PROVIDER *)handle;
/*
* Using ossl_provider_libctx would be wrong as that returns
* NULL for |prov| == NULL and NULL libctx has a special meaning
* that does not apply here. Here |prov| == NULL can happen only in
* case of a coding error.
*/
assert(prov != NULL);
return (OPENSSL_CORE_CTX *)prov->libctx;
}
static int core_thread_start(const OSSL_CORE_HANDLE *handle,
OSSL_thread_stop_handler_fn handfn,
void *arg)
{
/*
* We created this object originally and we know it is actually an
* OSSL_PROVIDER *, so the cast is safe
*/
OSSL_PROVIDER *prov = (OSSL_PROVIDER *)handle;
return ossl_init_thread_start(prov, arg, handfn);
}
/*
* The FIPS module inner provider doesn't implement these. They aren't
* needed there, since the FIPS module upcalls are always the outer provider
* ones.
*/
#ifndef FIPS_MODULE
/*
* These error functions should use |handle| to select the proper
* library context to report in the correct error stack if error
* stacks become tied to the library context.
* We cannot currently do that since there's no support for it in the
* ERR subsystem.
*/
static void core_new_error(const OSSL_CORE_HANDLE *handle)
{
ERR_new();
}
static void core_set_error_debug(const OSSL_CORE_HANDLE *handle,
const char *file, int line, const char *func)
{
ERR_set_debug(file, line, func);
}
static void core_vset_error(const OSSL_CORE_HANDLE *handle,
uint32_t reason, const char *fmt, va_list args)
{
/*
* We created this object originally and we know it is actually an
* OSSL_PROVIDER *, so the cast is safe
*/
OSSL_PROVIDER *prov = (OSSL_PROVIDER *)handle;
/*
* If the uppermost 8 bits are non-zero, it's an OpenSSL library
* error and will be treated as such. Otherwise, it's a new style
* provider error and will be treated as such.
*/
if (ERR_GET_LIB(reason) != 0) {
ERR_vset_error(ERR_GET_LIB(reason), ERR_GET_REASON(reason), fmt, args);
} else {
ERR_vset_error(prov->error_lib, (int)reason, fmt, args);
}
}
static int core_set_error_mark(const OSSL_CORE_HANDLE *handle)
{
return ERR_set_mark();
}
static int core_clear_last_error_mark(const OSSL_CORE_HANDLE *handle)
{
return ERR_clear_last_mark();
}
static int core_pop_error_to_mark(const OSSL_CORE_HANDLE *handle)
{
return ERR_pop_to_mark();
}
static int core_obj_add_sigid(const OSSL_CORE_HANDLE *prov,
const char *sign_name, const char *digest_name,
const char *pkey_name)
{
int sign_nid = OBJ_txt2nid(sign_name);
int digest_nid = NID_undef;
int pkey_nid = OBJ_txt2nid(pkey_name);
if (digest_name != NULL && digest_name[0] != '\0'
&& (digest_nid = OBJ_txt2nid(digest_name)) == NID_undef)
return 0;
if (sign_nid == NID_undef)
return 0;
/*
* Check if it already exists. This is a success if so (even if we don't
* have nids for the digest/pkey)
*/
if (OBJ_find_sigid_algs(sign_nid, NULL, NULL))
return 1;
if (pkey_nid == NID_undef)
return 0;
return OBJ_add_sigid(sign_nid, digest_nid, pkey_nid);
}
static int core_obj_create(const OSSL_CORE_HANDLE *prov, const char *oid,
const char *sn, const char *ln)
{
/* Check if it already exists and create it if not */
return OBJ_txt2nid(oid) != NID_undef
|| OBJ_create(oid, sn, ln) != NID_undef;
}
#endif /* FIPS_MODULE */
/*
* Functions provided by the core.
*/
static const OSSL_DISPATCH core_dispatch_[] = {
{ OSSL_FUNC_CORE_GETTABLE_PARAMS, (void (*)(void))core_gettable_params },
{ OSSL_FUNC_CORE_GET_PARAMS, (void (*)(void))core_get_params },
{ OSSL_FUNC_CORE_GET_LIBCTX, (void (*)(void))core_get_libctx },
{ OSSL_FUNC_CORE_THREAD_START, (void (*)(void))core_thread_start },
#ifndef FIPS_MODULE
{ OSSL_FUNC_CORE_NEW_ERROR, (void (*)(void))core_new_error },
{ OSSL_FUNC_CORE_SET_ERROR_DEBUG, (void (*)(void))core_set_error_debug },
{ OSSL_FUNC_CORE_VSET_ERROR, (void (*)(void))core_vset_error },
{ OSSL_FUNC_CORE_SET_ERROR_MARK, (void (*)(void))core_set_error_mark },
{ OSSL_FUNC_CORE_CLEAR_LAST_ERROR_MARK,
(void (*)(void))core_clear_last_error_mark },
{ OSSL_FUNC_CORE_POP_ERROR_TO_MARK, (void (*)(void))core_pop_error_to_mark },
{ OSSL_FUNC_BIO_NEW_FILE, (void (*)(void))ossl_core_bio_new_file },
{ OSSL_FUNC_BIO_NEW_MEMBUF, (void (*)(void))ossl_core_bio_new_mem_buf },
{ OSSL_FUNC_BIO_READ_EX, (void (*)(void))ossl_core_bio_read_ex },
{ OSSL_FUNC_BIO_WRITE_EX, (void (*)(void))ossl_core_bio_write_ex },
{ OSSL_FUNC_BIO_GETS, (void (*)(void))ossl_core_bio_gets },
{ OSSL_FUNC_BIO_PUTS, (void (*)(void))ossl_core_bio_puts },
{ OSSL_FUNC_BIO_CTRL, (void (*)(void))ossl_core_bio_ctrl },
{ OSSL_FUNC_BIO_UP_REF, (void (*)(void))ossl_core_bio_up_ref },
{ OSSL_FUNC_BIO_FREE, (void (*)(void))ossl_core_bio_free },
{ OSSL_FUNC_BIO_VPRINTF, (void (*)(void))ossl_core_bio_vprintf },
{ OSSL_FUNC_BIO_VSNPRINTF, (void (*)(void))BIO_vsnprintf },
{ OSSL_FUNC_SELF_TEST_CB, (void (*)(void))OSSL_SELF_TEST_get_callback },
{ OSSL_FUNC_GET_ENTROPY, (void (*)(void))ossl_rand_get_entropy },
{ OSSL_FUNC_CLEANUP_ENTROPY, (void (*)(void))ossl_rand_cleanup_entropy },
{ OSSL_FUNC_GET_NONCE, (void (*)(void))ossl_rand_get_nonce },
{ OSSL_FUNC_CLEANUP_NONCE, (void (*)(void))ossl_rand_cleanup_nonce },
#endif
{ OSSL_FUNC_CRYPTO_MALLOC, (void (*)(void))CRYPTO_malloc },
{ OSSL_FUNC_CRYPTO_ZALLOC, (void (*)(void))CRYPTO_zalloc },
{ OSSL_FUNC_CRYPTO_FREE, (void (*)(void))CRYPTO_free },
{ OSSL_FUNC_CRYPTO_CLEAR_FREE, (void (*)(void))CRYPTO_clear_free },
{ OSSL_FUNC_CRYPTO_REALLOC, (void (*)(void))CRYPTO_realloc },
{ OSSL_FUNC_CRYPTO_CLEAR_REALLOC, (void (*)(void))CRYPTO_clear_realloc },
{ OSSL_FUNC_CRYPTO_SECURE_MALLOC, (void (*)(void))CRYPTO_secure_malloc },
{ OSSL_FUNC_CRYPTO_SECURE_ZALLOC, (void (*)(void))CRYPTO_secure_zalloc },
{ OSSL_FUNC_CRYPTO_SECURE_FREE, (void (*)(void))CRYPTO_secure_free },
{ OSSL_FUNC_CRYPTO_SECURE_CLEAR_FREE,
(void (*)(void))CRYPTO_secure_clear_free },
{ OSSL_FUNC_CRYPTO_SECURE_ALLOCATED,
(void (*)(void))CRYPTO_secure_allocated },
{ OSSL_FUNC_OPENSSL_CLEANSE, (void (*)(void))OPENSSL_cleanse },
#ifndef FIPS_MODULE
{ OSSL_FUNC_PROVIDER_REGISTER_CHILD_CB,
(void (*)(void))ossl_provider_register_child_cb },
{ OSSL_FUNC_PROVIDER_DEREGISTER_CHILD_CB,
(void (*)(void))ossl_provider_deregister_child_cb },
{ OSSL_FUNC_PROVIDER_NAME,
(void (*)(void))OSSL_PROVIDER_get0_name },
{ OSSL_FUNC_PROVIDER_GET0_PROVIDER_CTX,
(void (*)(void))OSSL_PROVIDER_get0_provider_ctx },
{ OSSL_FUNC_PROVIDER_GET0_DISPATCH,
(void (*)(void))OSSL_PROVIDER_get0_dispatch },
{ OSSL_FUNC_PROVIDER_UP_REF,
(void (*)(void))provider_up_ref_intern },
{ OSSL_FUNC_PROVIDER_FREE,
(void (*)(void))provider_free_intern },
{ OSSL_FUNC_CORE_OBJ_ADD_SIGID, (void (*)(void))core_obj_add_sigid },
{ OSSL_FUNC_CORE_OBJ_CREATE, (void (*)(void))core_obj_create },
#endif
{ 0, NULL }
};
static const OSSL_DISPATCH *core_dispatch = core_dispatch_;