|  | /* | 
|  | * Copyright 2022 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * | 
|  | * Licensed under the Apache License 2.0 (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | #include <stdio.h> | 
|  | #include <string.h> | 
|  | #include <openssl/core_names.h> | 
|  | #include <openssl/evp.h> | 
|  |  | 
|  | /* | 
|  | * This is a demonstration of key exchange using X25519. | 
|  | * | 
|  | * The variables beginning `peer1_` / `peer2_` are data which would normally be | 
|  | * accessible to that peer. | 
|  | * | 
|  | * Ordinarily you would use random keys, which are demonstrated | 
|  | * below when use_kat=0. A known answer test is demonstrated | 
|  | * when use_kat=1. | 
|  | */ | 
|  |  | 
|  | /* A property query used for selecting the X25519 implementation. */ | 
|  | static const char *propq = NULL; | 
|  |  | 
|  | static const unsigned char peer1_privk_data[32] = { | 
|  | 0x80, 0x5b, 0x30, 0x20, 0x25, 0x4a, 0x70, 0x2c, | 
|  | 0xad, 0xa9, 0x8d, 0x7d, 0x47, 0xf8, 0x1b, 0x20, | 
|  | 0x89, 0xd2, 0xf9, 0x14, 0xac, 0x92, 0x27, 0xf2, | 
|  | 0x10, 0x7e, 0xdb, 0x21, 0xbd, 0x73, 0x73, 0x5d | 
|  | }; | 
|  |  | 
|  | static const unsigned char peer2_privk_data[32] = { | 
|  | 0xf8, 0x84, 0x19, 0x69, 0x79, 0x13, 0x0d, 0xbd, | 
|  | 0xb1, 0x76, 0xd7, 0x0e, 0x7e, 0x0f, 0xb6, 0xf4, | 
|  | 0x8c, 0x4a, 0x8c, 0x5f, 0xd8, 0x15, 0x09, 0x0a, | 
|  | 0x71, 0x78, 0x74, 0x92, 0x0f, 0x85, 0xc8, 0x43 | 
|  | }; | 
|  |  | 
|  | static const unsigned char expected_result[32] = { | 
|  | 0x19, 0x71, 0x26, 0x12, 0x74, 0xb5, 0xb1, 0xce, | 
|  | 0x77, 0xd0, 0x79, 0x24, 0xb6, 0x0a, 0x5c, 0x72, | 
|  | 0x0c, 0xa6, 0x56, 0xc0, 0x11, 0xeb, 0x43, 0x11, | 
|  | 0x94, 0x3b, 0x01, 0x45, 0xca, 0x19, 0xfe, 0x09 | 
|  | }; | 
|  |  | 
|  | typedef struct peer_data_st { | 
|  | const char *name;               /* name of peer */ | 
|  | EVP_PKEY *privk;                /* privk generated for peer */ | 
|  | unsigned char pubk_data[32];    /* generated pubk to send to other peer */ | 
|  |  | 
|  | unsigned char *secret;          /* allocated shared secret buffer */ | 
|  | size_t secret_len; | 
|  | } PEER_DATA; | 
|  |  | 
|  | /* | 
|  | * Prepare for X25519 key exchange. The public key to be sent to the remote peer | 
|  | * is put in pubk_data, which should be a 32-byte buffer. Returns 1 on success. | 
|  | */ | 
|  | static int keyexch_x25519_before( | 
|  | OSSL_LIB_CTX *libctx, | 
|  | const unsigned char *kat_privk_data, | 
|  | PEER_DATA *local_peer) | 
|  | { | 
|  | int rv = 0; | 
|  | size_t pubk_data_len = 0; | 
|  |  | 
|  | /* Generate or load X25519 key for the peer */ | 
|  | if (kat_privk_data != NULL) | 
|  | local_peer->privk = | 
|  | EVP_PKEY_new_raw_private_key_ex(libctx, "X25519", propq, | 
|  | kat_privk_data, | 
|  | sizeof(peer1_privk_data)); | 
|  | else | 
|  | local_peer->privk = EVP_PKEY_Q_keygen(libctx, propq, "X25519"); | 
|  |  | 
|  | if (local_peer->privk == NULL) { | 
|  | fprintf(stderr, "Could not load or generate private key\n"); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* Get public key corresponding to the private key */ | 
|  | if (EVP_PKEY_get_octet_string_param(local_peer->privk, | 
|  | OSSL_PKEY_PARAM_PUB_KEY, | 
|  | local_peer->pubk_data, | 
|  | sizeof(local_peer->pubk_data), | 
|  | &pubk_data_len) == 0) { | 
|  | fprintf(stderr, "EVP_PKEY_get_octet_string_param() failed\n"); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* X25519 public keys are always 32 bytes */ | 
|  | if (pubk_data_len != 32) { | 
|  | fprintf(stderr, "EVP_PKEY_get_octet_string_param() " | 
|  | "yielded wrong length\n"); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | rv = 1; | 
|  | end: | 
|  | if (rv == 0) { | 
|  | EVP_PKEY_free(local_peer->privk); | 
|  | local_peer->privk = NULL; | 
|  | } | 
|  |  | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Complete X25519 key exchange. remote_peer_pubk_data should be the 32 byte | 
|  | * public key value received from the remote peer. On success, returns 1 and the | 
|  | * secret is pointed to by *secret. The caller must free it. | 
|  | */ | 
|  | static int keyexch_x25519_after( | 
|  | OSSL_LIB_CTX *libctx, | 
|  | int use_kat, | 
|  | PEER_DATA *local_peer, | 
|  | const unsigned char *remote_peer_pubk_data) | 
|  | { | 
|  | int rv = 0; | 
|  | EVP_PKEY *remote_peer_pubk = NULL; | 
|  | EVP_PKEY_CTX *ctx = NULL; | 
|  |  | 
|  | local_peer->secret = NULL; | 
|  |  | 
|  | /* Load public key for remote peer. */ | 
|  | remote_peer_pubk = | 
|  | EVP_PKEY_new_raw_public_key_ex(libctx, "X25519", propq, | 
|  | remote_peer_pubk_data, 32); | 
|  | if (remote_peer_pubk == NULL) { | 
|  | fprintf(stderr, "EVP_PKEY_new_raw_public_key_ex() failed\n"); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* Create key exchange context. */ | 
|  | ctx = EVP_PKEY_CTX_new_from_pkey(libctx, local_peer->privk, propq); | 
|  | if (ctx == NULL) { | 
|  | fprintf(stderr, "EVP_PKEY_CTX_new_from_pkey() failed\n"); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* Initialize derivation process. */ | 
|  | if (EVP_PKEY_derive_init(ctx) == 0) { | 
|  | fprintf(stderr, "EVP_PKEY_derive_init() failed\n"); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* Configure each peer with the other peer's public key. */ | 
|  | if (EVP_PKEY_derive_set_peer(ctx, remote_peer_pubk) == 0) { | 
|  | fprintf(stderr, "EVP_PKEY_derive_set_peer() failed\n"); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* Determine the secret length. */ | 
|  | if (EVP_PKEY_derive(ctx, NULL, &local_peer->secret_len) == 0) { | 
|  | fprintf(stderr, "EVP_PKEY_derive() failed\n"); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are using X25519, so the secret generated will always be 32 bytes. | 
|  | * However for exposition, the code below demonstrates a generic | 
|  | * implementation for arbitrary lengths. | 
|  | */ | 
|  | if (local_peer->secret_len != 32) { /* unreachable */ | 
|  | fprintf(stderr, "Secret is always 32 bytes for X25519\n"); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* Allocate memory for shared secrets. */ | 
|  | local_peer->secret = OPENSSL_malloc(local_peer->secret_len); | 
|  | if (local_peer->secret == NULL) { | 
|  | fprintf(stderr, "Could not allocate memory for secret\n"); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* Derive the shared secret. */ | 
|  | if (EVP_PKEY_derive(ctx, local_peer->secret, | 
|  | &local_peer->secret_len) == 0) { | 
|  | fprintf(stderr, "EVP_PKEY_derive() failed\n"); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | printf("Shared secret (%s):\n", local_peer->name); | 
|  | BIO_dump_indent_fp(stdout, local_peer->secret, local_peer->secret_len, 2); | 
|  | putchar('\n'); | 
|  |  | 
|  | rv = 1; | 
|  | end: | 
|  | EVP_PKEY_CTX_free(ctx); | 
|  | EVP_PKEY_free(remote_peer_pubk); | 
|  | if (rv == 0) { | 
|  | OPENSSL_clear_free(local_peer->secret, local_peer->secret_len); | 
|  | local_peer->secret = NULL; | 
|  | } | 
|  |  | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | static int keyexch_x25519(int use_kat) | 
|  | { | 
|  | int rv = 0; | 
|  | OSSL_LIB_CTX *libctx = NULL; | 
|  | PEER_DATA peer1 = {"peer 1"}, peer2 = {"peer 2"}; | 
|  |  | 
|  | /* | 
|  | * Each peer generates its private key and sends its public key | 
|  | * to the other peer. The private key is stored locally for | 
|  | * later use. | 
|  | */ | 
|  | if (keyexch_x25519_before(libctx, use_kat ? peer1_privk_data : NULL, | 
|  | &peer1) == 0) | 
|  | return 0; | 
|  |  | 
|  | if (keyexch_x25519_before(libctx, use_kat ? peer2_privk_data : NULL, | 
|  | &peer2) == 0) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Each peer uses the other peer's public key to perform key exchange. | 
|  | * After this succeeds, each peer has the same secret in its | 
|  | * PEER_DATA. | 
|  | */ | 
|  | if (keyexch_x25519_after(libctx, use_kat, &peer1, peer2.pubk_data) == 0) | 
|  | return 0; | 
|  |  | 
|  | if (keyexch_x25519_after(libctx, use_kat, &peer2, peer1.pubk_data) == 0) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Here we demonstrate the secrets are equal for exposition purposes. | 
|  | * | 
|  | * Although in practice you will generally not need to compare secrets | 
|  | * produced through key exchange, if you do compare cryptographic secrets, | 
|  | * always do so using a constant-time function such as CRYPTO_memcmp, never | 
|  | * using memcmp(3). | 
|  | */ | 
|  | if (CRYPTO_memcmp(peer1.secret, peer2.secret, peer1.secret_len) != 0) { | 
|  | fprintf(stderr, "Negotiated secrets do not match\n"); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* If we are doing the KAT, the secret should equal our reference result. */ | 
|  | if (use_kat && CRYPTO_memcmp(peer1.secret, expected_result, | 
|  | peer1.secret_len) != 0) { | 
|  | fprintf(stderr, "Did not get expected result\n"); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | rv = 1; | 
|  | end: | 
|  | /* The secrets are sensitive, so ensure they are erased before freeing. */ | 
|  | OPENSSL_clear_free(peer1.secret, peer1.secret_len); | 
|  | OPENSSL_clear_free(peer2.secret, peer2.secret_len); | 
|  |  | 
|  | EVP_PKEY_free(peer1.privk); | 
|  | EVP_PKEY_free(peer2.privk); | 
|  | OSSL_LIB_CTX_free(libctx); | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | int main(int argc, char **argv) | 
|  | { | 
|  | /* Test X25519 key exchange with known result. */ | 
|  | printf("Key exchange using known answer (deterministic):\n"); | 
|  | if (keyexch_x25519(1) == 0) | 
|  | return 1; | 
|  |  | 
|  | /* Test X25519 key exchange with random keys. */ | 
|  | printf("Key exchange using random keys:\n"); | 
|  | if (keyexch_x25519(0) == 0) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } |