| /* |
| * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| /* Copyright 2011 Google Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* |
| * ECDSA low level APIs are deprecated for public use, but still ok for |
| * internal use. |
| */ |
| #include "internal/deprecated.h" |
| |
| /* |
| * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication |
| * |
| * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. |
| * Otherwise based on Emilia's P224 work, which was inspired by my curve25519 |
| * work which got its smarts from Daniel J. Bernstein's work on the same. |
| */ |
| |
| #include <openssl/e_os2.h> |
| |
| #include <string.h> |
| #include <openssl/err.h> |
| #include "ec_local.h" |
| |
| #include "internal/numbers.h" |
| |
| #ifndef INT128_MAX |
| # error "Your compiler doesn't appear to support 128-bit integer types" |
| #endif |
| |
| typedef uint8_t u8; |
| typedef uint64_t u64; |
| |
| /* |
| * The underlying field. P521 operates over GF(2^521-1). We can serialize an |
| * element of this field into 66 bytes where the most significant byte |
| * contains only a single bit. We call this an felem_bytearray. |
| */ |
| |
| typedef u8 felem_bytearray[66]; |
| |
| /* |
| * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5. |
| * These values are big-endian. |
| */ |
| static const felem_bytearray nistp521_curve_params[5] = { |
| {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */ |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff}, |
| {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */ |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xfc}, |
| {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */ |
| 0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85, |
| 0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3, |
| 0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1, |
| 0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e, |
| 0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1, |
| 0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c, |
| 0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50, |
| 0x3f, 0x00}, |
| {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */ |
| 0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95, |
| 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f, |
| 0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d, |
| 0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7, |
| 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff, |
| 0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a, |
| 0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5, |
| 0xbd, 0x66}, |
| {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */ |
| 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, |
| 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, |
| 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, |
| 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, |
| 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, |
| 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, |
| 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1, |
| 0x66, 0x50} |
| }; |
| |
| /*- |
| * The representation of field elements. |
| * ------------------------------------ |
| * |
| * We represent field elements with nine values. These values are either 64 or |
| * 128 bits and the field element represented is: |
| * v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464 (mod p) |
| * Each of the nine values is called a 'limb'. Since the limbs are spaced only |
| * 58 bits apart, but are greater than 58 bits in length, the most significant |
| * bits of each limb overlap with the least significant bits of the next. |
| * |
| * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a |
| * 'largefelem' */ |
| |
| #define NLIMBS 9 |
| |
| typedef uint64_t limb; |
| typedef limb limb_aX __attribute((__aligned__(1))); |
| typedef limb felem[NLIMBS]; |
| typedef uint128_t largefelem[NLIMBS]; |
| |
| static const limb bottom57bits = 0x1ffffffffffffff; |
| static const limb bottom58bits = 0x3ffffffffffffff; |
| |
| /* |
| * bin66_to_felem takes a little-endian byte array and converts it into felem |
| * form. This assumes that the CPU is little-endian. |
| */ |
| static void bin66_to_felem(felem out, const u8 in[66]) |
| { |
| out[0] = (*((limb *) & in[0])) & bottom58bits; |
| out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits; |
| out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits; |
| out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits; |
| out[4] = (*((limb_aX *) & in[29])) & bottom58bits; |
| out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits; |
| out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits; |
| out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits; |
| out[8] = (*((limb_aX *) & in[58])) & bottom57bits; |
| } |
| |
| /* |
| * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte |
| * array. This assumes that the CPU is little-endian. |
| */ |
| static void felem_to_bin66(u8 out[66], const felem in) |
| { |
| memset(out, 0, 66); |
| (*((limb *) & out[0])) = in[0]; |
| (*((limb_aX *) & out[7])) |= in[1] << 2; |
| (*((limb_aX *) & out[14])) |= in[2] << 4; |
| (*((limb_aX *) & out[21])) |= in[3] << 6; |
| (*((limb_aX *) & out[29])) = in[4]; |
| (*((limb_aX *) & out[36])) |= in[5] << 2; |
| (*((limb_aX *) & out[43])) |= in[6] << 4; |
| (*((limb_aX *) & out[50])) |= in[7] << 6; |
| (*((limb_aX *) & out[58])) = in[8]; |
| } |
| |
| /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ |
| static int BN_to_felem(felem out, const BIGNUM *bn) |
| { |
| felem_bytearray b_out; |
| int num_bytes; |
| |
| if (BN_is_negative(bn)) { |
| ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE); |
| return 0; |
| } |
| num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out)); |
| if (num_bytes < 0) { |
| ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE); |
| return 0; |
| } |
| bin66_to_felem(out, b_out); |
| return 1; |
| } |
| |
| /* felem_to_BN converts an felem into an OpenSSL BIGNUM */ |
| static BIGNUM *felem_to_BN(BIGNUM *out, const felem in) |
| { |
| felem_bytearray b_out; |
| felem_to_bin66(b_out, in); |
| return BN_lebin2bn(b_out, sizeof(b_out), out); |
| } |
| |
| /*- |
| * Field operations |
| * ---------------- |
| */ |
| |
| static void felem_one(felem out) |
| { |
| out[0] = 1; |
| out[1] = 0; |
| out[2] = 0; |
| out[3] = 0; |
| out[4] = 0; |
| out[5] = 0; |
| out[6] = 0; |
| out[7] = 0; |
| out[8] = 0; |
| } |
| |
| static void felem_assign(felem out, const felem in) |
| { |
| out[0] = in[0]; |
| out[1] = in[1]; |
| out[2] = in[2]; |
| out[3] = in[3]; |
| out[4] = in[4]; |
| out[5] = in[5]; |
| out[6] = in[6]; |
| out[7] = in[7]; |
| out[8] = in[8]; |
| } |
| |
| /* felem_sum64 sets out = out + in. */ |
| static void felem_sum64(felem out, const felem in) |
| { |
| out[0] += in[0]; |
| out[1] += in[1]; |
| out[2] += in[2]; |
| out[3] += in[3]; |
| out[4] += in[4]; |
| out[5] += in[5]; |
| out[6] += in[6]; |
| out[7] += in[7]; |
| out[8] += in[8]; |
| } |
| |
| /* felem_scalar sets out = in * scalar */ |
| static void felem_scalar(felem out, const felem in, limb scalar) |
| { |
| out[0] = in[0] * scalar; |
| out[1] = in[1] * scalar; |
| out[2] = in[2] * scalar; |
| out[3] = in[3] * scalar; |
| out[4] = in[4] * scalar; |
| out[5] = in[5] * scalar; |
| out[6] = in[6] * scalar; |
| out[7] = in[7] * scalar; |
| out[8] = in[8] * scalar; |
| } |
| |
| /* felem_scalar64 sets out = out * scalar */ |
| static void felem_scalar64(felem out, limb scalar) |
| { |
| out[0] *= scalar; |
| out[1] *= scalar; |
| out[2] *= scalar; |
| out[3] *= scalar; |
| out[4] *= scalar; |
| out[5] *= scalar; |
| out[6] *= scalar; |
| out[7] *= scalar; |
| out[8] *= scalar; |
| } |
| |
| /* felem_scalar128 sets out = out * scalar */ |
| static void felem_scalar128(largefelem out, limb scalar) |
| { |
| out[0] *= scalar; |
| out[1] *= scalar; |
| out[2] *= scalar; |
| out[3] *= scalar; |
| out[4] *= scalar; |
| out[5] *= scalar; |
| out[6] *= scalar; |
| out[7] *= scalar; |
| out[8] *= scalar; |
| } |
| |
| /*- |
| * felem_neg sets |out| to |-in| |
| * On entry: |
| * in[i] < 2^59 + 2^14 |
| * On exit: |
| * out[i] < 2^62 |
| */ |
| static void felem_neg(felem out, const felem in) |
| { |
| /* In order to prevent underflow, we subtract from 0 mod p. */ |
| static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5); |
| static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4); |
| |
| out[0] = two62m3 - in[0]; |
| out[1] = two62m2 - in[1]; |
| out[2] = two62m2 - in[2]; |
| out[3] = two62m2 - in[3]; |
| out[4] = two62m2 - in[4]; |
| out[5] = two62m2 - in[5]; |
| out[6] = two62m2 - in[6]; |
| out[7] = two62m2 - in[7]; |
| out[8] = two62m2 - in[8]; |
| } |
| |
| /*- |
| * felem_diff64 subtracts |in| from |out| |
| * On entry: |
| * in[i] < 2^59 + 2^14 |
| * On exit: |
| * out[i] < out[i] + 2^62 |
| */ |
| static void felem_diff64(felem out, const felem in) |
| { |
| /* |
| * In order to prevent underflow, we add 0 mod p before subtracting. |
| */ |
| static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5); |
| static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4); |
| |
| out[0] += two62m3 - in[0]; |
| out[1] += two62m2 - in[1]; |
| out[2] += two62m2 - in[2]; |
| out[3] += two62m2 - in[3]; |
| out[4] += two62m2 - in[4]; |
| out[5] += two62m2 - in[5]; |
| out[6] += two62m2 - in[6]; |
| out[7] += two62m2 - in[7]; |
| out[8] += two62m2 - in[8]; |
| } |
| |
| /*- |
| * felem_diff_128_64 subtracts |in| from |out| |
| * On entry: |
| * in[i] < 2^62 + 2^17 |
| * On exit: |
| * out[i] < out[i] + 2^63 |
| */ |
| static void felem_diff_128_64(largefelem out, const felem in) |
| { |
| /* |
| * In order to prevent underflow, we add 64p mod p (which is equivalent |
| * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521 |
| * digit number with all bits set to 1. See "The representation of field |
| * elements" comment above for a description of how limbs are used to |
| * represent a number. 64p is represented with 8 limbs containing a number |
| * with 58 bits set and one limb with a number with 57 bits set. |
| */ |
| static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6); |
| static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5); |
| |
| out[0] += two63m6 - in[0]; |
| out[1] += two63m5 - in[1]; |
| out[2] += two63m5 - in[2]; |
| out[3] += two63m5 - in[3]; |
| out[4] += two63m5 - in[4]; |
| out[5] += two63m5 - in[5]; |
| out[6] += two63m5 - in[6]; |
| out[7] += two63m5 - in[7]; |
| out[8] += two63m5 - in[8]; |
| } |
| |
| /*- |
| * felem_diff_128_64 subtracts |in| from |out| |
| * On entry: |
| * in[i] < 2^126 |
| * On exit: |
| * out[i] < out[i] + 2^127 - 2^69 |
| */ |
| static void felem_diff128(largefelem out, const largefelem in) |
| { |
| /* |
| * In order to prevent underflow, we add 0 mod p before subtracting. |
| */ |
| static const uint128_t two127m70 = |
| (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70); |
| static const uint128_t two127m69 = |
| (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69); |
| |
| out[0] += (two127m70 - in[0]); |
| out[1] += (two127m69 - in[1]); |
| out[2] += (two127m69 - in[2]); |
| out[3] += (two127m69 - in[3]); |
| out[4] += (two127m69 - in[4]); |
| out[5] += (two127m69 - in[5]); |
| out[6] += (two127m69 - in[6]); |
| out[7] += (two127m69 - in[7]); |
| out[8] += (two127m69 - in[8]); |
| } |
| |
| /*- |
| * felem_square sets |out| = |in|^2 |
| * On entry: |
| * in[i] < 2^62 |
| * On exit: |
| * out[i] < 17 * max(in[i]) * max(in[i]) |
| */ |
| static void felem_square(largefelem out, const felem in) |
| { |
| felem inx2, inx4; |
| felem_scalar(inx2, in, 2); |
| felem_scalar(inx4, in, 4); |
| |
| /*- |
| * We have many cases were we want to do |
| * in[x] * in[y] + |
| * in[y] * in[x] |
| * This is obviously just |
| * 2 * in[x] * in[y] |
| * However, rather than do the doubling on the 128 bit result, we |
| * double one of the inputs to the multiplication by reading from |
| * |inx2| |
| */ |
| |
| out[0] = ((uint128_t) in[0]) * in[0]; |
| out[1] = ((uint128_t) in[0]) * inx2[1]; |
| out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1]; |
| out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2]; |
| out[4] = ((uint128_t) in[0]) * inx2[4] + |
| ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2]; |
| out[5] = ((uint128_t) in[0]) * inx2[5] + |
| ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3]; |
| out[6] = ((uint128_t) in[0]) * inx2[6] + |
| ((uint128_t) in[1]) * inx2[5] + |
| ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3]; |
| out[7] = ((uint128_t) in[0]) * inx2[7] + |
| ((uint128_t) in[1]) * inx2[6] + |
| ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4]; |
| out[8] = ((uint128_t) in[0]) * inx2[8] + |
| ((uint128_t) in[1]) * inx2[7] + |
| ((uint128_t) in[2]) * inx2[6] + |
| ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4]; |
| |
| /* |
| * The remaining limbs fall above 2^521, with the first falling at 2^522. |
| * They correspond to locations one bit up from the limbs produced above |
| * so we would have to multiply by two to align them. Again, rather than |
| * operate on the 128-bit result, we double one of the inputs to the |
| * multiplication. If we want to double for both this reason, and the |
| * reason above, then we end up multiplying by four. |
| */ |
| |
| /* 9 */ |
| out[0] += ((uint128_t) in[1]) * inx4[8] + |
| ((uint128_t) in[2]) * inx4[7] + |
| ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5]; |
| |
| /* 10 */ |
| out[1] += ((uint128_t) in[2]) * inx4[8] + |
| ((uint128_t) in[3]) * inx4[7] + |
| ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5]; |
| |
| /* 11 */ |
| out[2] += ((uint128_t) in[3]) * inx4[8] + |
| ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6]; |
| |
| /* 12 */ |
| out[3] += ((uint128_t) in[4]) * inx4[8] + |
| ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6]; |
| |
| /* 13 */ |
| out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7]; |
| |
| /* 14 */ |
| out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7]; |
| |
| /* 15 */ |
| out[6] += ((uint128_t) in[7]) * inx4[8]; |
| |
| /* 16 */ |
| out[7] += ((uint128_t) in[8]) * inx2[8]; |
| } |
| |
| /*- |
| * felem_mul sets |out| = |in1| * |in2| |
| * On entry: |
| * in1[i] < 2^64 |
| * in2[i] < 2^63 |
| * On exit: |
| * out[i] < 17 * max(in1[i]) * max(in2[i]) |
| */ |
| static void felem_mul(largefelem out, const felem in1, const felem in2) |
| { |
| felem in2x2; |
| felem_scalar(in2x2, in2, 2); |
| |
| out[0] = ((uint128_t) in1[0]) * in2[0]; |
| |
| out[1] = ((uint128_t) in1[0]) * in2[1] + |
| ((uint128_t) in1[1]) * in2[0]; |
| |
| out[2] = ((uint128_t) in1[0]) * in2[2] + |
| ((uint128_t) in1[1]) * in2[1] + |
| ((uint128_t) in1[2]) * in2[0]; |
| |
| out[3] = ((uint128_t) in1[0]) * in2[3] + |
| ((uint128_t) in1[1]) * in2[2] + |
| ((uint128_t) in1[2]) * in2[1] + |
| ((uint128_t) in1[3]) * in2[0]; |
| |
| out[4] = ((uint128_t) in1[0]) * in2[4] + |
| ((uint128_t) in1[1]) * in2[3] + |
| ((uint128_t) in1[2]) * in2[2] + |
| ((uint128_t) in1[3]) * in2[1] + |
| ((uint128_t) in1[4]) * in2[0]; |
| |
| out[5] = ((uint128_t) in1[0]) * in2[5] + |
| ((uint128_t) in1[1]) * in2[4] + |
| ((uint128_t) in1[2]) * in2[3] + |
| ((uint128_t) in1[3]) * in2[2] + |
| ((uint128_t) in1[4]) * in2[1] + |
| ((uint128_t) in1[5]) * in2[0]; |
| |
| out[6] = ((uint128_t) in1[0]) * in2[6] + |
| ((uint128_t) in1[1]) * in2[5] + |
| ((uint128_t) in1[2]) * in2[4] + |
| ((uint128_t) in1[3]) * in2[3] + |
| ((uint128_t) in1[4]) * in2[2] + |
| ((uint128_t) in1[5]) * in2[1] + |
| ((uint128_t) in1[6]) * in2[0]; |
| |
| out[7] = ((uint128_t) in1[0]) * in2[7] + |
| ((uint128_t) in1[1]) * in2[6] + |
| ((uint128_t) in1[2]) * in2[5] + |
| ((uint128_t) in1[3]) * in2[4] + |
| ((uint128_t) in1[4]) * in2[3] + |
| ((uint128_t) in1[5]) * in2[2] + |
| ((uint128_t) in1[6]) * in2[1] + |
| ((uint128_t) in1[7]) * in2[0]; |
| |
| out[8] = ((uint128_t) in1[0]) * in2[8] + |
| ((uint128_t) in1[1]) * in2[7] + |
| ((uint128_t) in1[2]) * in2[6] + |
| ((uint128_t) in1[3]) * in2[5] + |
| ((uint128_t) in1[4]) * in2[4] + |
| ((uint128_t) in1[5]) * in2[3] + |
| ((uint128_t) in1[6]) * in2[2] + |
| ((uint128_t) in1[7]) * in2[1] + |
| ((uint128_t) in1[8]) * in2[0]; |
| |
| /* See comment in felem_square about the use of in2x2 here */ |
| |
| out[0] += ((uint128_t) in1[1]) * in2x2[8] + |
| ((uint128_t) in1[2]) * in2x2[7] + |
| ((uint128_t) in1[3]) * in2x2[6] + |
| ((uint128_t) in1[4]) * in2x2[5] + |
| ((uint128_t) in1[5]) * in2x2[4] + |
| ((uint128_t) in1[6]) * in2x2[3] + |
| ((uint128_t) in1[7]) * in2x2[2] + |
| ((uint128_t) in1[8]) * in2x2[1]; |
| |
| out[1] += ((uint128_t) in1[2]) * in2x2[8] + |
| ((uint128_t) in1[3]) * in2x2[7] + |
| ((uint128_t) in1[4]) * in2x2[6] + |
| ((uint128_t) in1[5]) * in2x2[5] + |
| ((uint128_t) in1[6]) * in2x2[4] + |
| ((uint128_t) in1[7]) * in2x2[3] + |
| ((uint128_t) in1[8]) * in2x2[2]; |
| |
| out[2] += ((uint128_t) in1[3]) * in2x2[8] + |
| ((uint128_t) in1[4]) * in2x2[7] + |
| ((uint128_t) in1[5]) * in2x2[6] + |
| ((uint128_t) in1[6]) * in2x2[5] + |
| ((uint128_t) in1[7]) * in2x2[4] + |
| ((uint128_t) in1[8]) * in2x2[3]; |
| |
| out[3] += ((uint128_t) in1[4]) * in2x2[8] + |
| ((uint128_t) in1[5]) * in2x2[7] + |
| ((uint128_t) in1[6]) * in2x2[6] + |
| ((uint128_t) in1[7]) * in2x2[5] + |
| ((uint128_t) in1[8]) * in2x2[4]; |
| |
| out[4] += ((uint128_t) in1[5]) * in2x2[8] + |
| ((uint128_t) in1[6]) * in2x2[7] + |
| ((uint128_t) in1[7]) * in2x2[6] + |
| ((uint128_t) in1[8]) * in2x2[5]; |
| |
| out[5] += ((uint128_t) in1[6]) * in2x2[8] + |
| ((uint128_t) in1[7]) * in2x2[7] + |
| ((uint128_t) in1[8]) * in2x2[6]; |
| |
| out[6] += ((uint128_t) in1[7]) * in2x2[8] + |
| ((uint128_t) in1[8]) * in2x2[7]; |
| |
| out[7] += ((uint128_t) in1[8]) * in2x2[8]; |
| } |
| |
| static const limb bottom52bits = 0xfffffffffffff; |
| |
| /*- |
| * felem_reduce converts a largefelem to an felem. |
| * On entry: |
| * in[i] < 2^128 |
| * On exit: |
| * out[i] < 2^59 + 2^14 |
| */ |
| static void felem_reduce(felem out, const largefelem in) |
| { |
| u64 overflow1, overflow2; |
| |
| out[0] = ((limb) in[0]) & bottom58bits; |
| out[1] = ((limb) in[1]) & bottom58bits; |
| out[2] = ((limb) in[2]) & bottom58bits; |
| out[3] = ((limb) in[3]) & bottom58bits; |
| out[4] = ((limb) in[4]) & bottom58bits; |
| out[5] = ((limb) in[5]) & bottom58bits; |
| out[6] = ((limb) in[6]) & bottom58bits; |
| out[7] = ((limb) in[7]) & bottom58bits; |
| out[8] = ((limb) in[8]) & bottom58bits; |
| |
| /* out[i] < 2^58 */ |
| |
| out[1] += ((limb) in[0]) >> 58; |
| out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6; |
| /*- |
| * out[1] < 2^58 + 2^6 + 2^58 |
| * = 2^59 + 2^6 |
| */ |
| out[2] += ((limb) (in[0] >> 64)) >> 52; |
| |
| out[2] += ((limb) in[1]) >> 58; |
| out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6; |
| out[3] += ((limb) (in[1] >> 64)) >> 52; |
| |
| out[3] += ((limb) in[2]) >> 58; |
| out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6; |
| out[4] += ((limb) (in[2] >> 64)) >> 52; |
| |
| out[4] += ((limb) in[3]) >> 58; |
| out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6; |
| out[5] += ((limb) (in[3] >> 64)) >> 52; |
| |
| out[5] += ((limb) in[4]) >> 58; |
| out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6; |
| out[6] += ((limb) (in[4] >> 64)) >> 52; |
| |
| out[6] += ((limb) in[5]) >> 58; |
| out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6; |
| out[7] += ((limb) (in[5] >> 64)) >> 52; |
| |
| out[7] += ((limb) in[6]) >> 58; |
| out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6; |
| out[8] += ((limb) (in[6] >> 64)) >> 52; |
| |
| out[8] += ((limb) in[7]) >> 58; |
| out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6; |
| /*- |
| * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12 |
| * < 2^59 + 2^13 |
| */ |
| overflow1 = ((limb) (in[7] >> 64)) >> 52; |
| |
| overflow1 += ((limb) in[8]) >> 58; |
| overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6; |
| overflow2 = ((limb) (in[8] >> 64)) >> 52; |
| |
| overflow1 <<= 1; /* overflow1 < 2^13 + 2^7 + 2^59 */ |
| overflow2 <<= 1; /* overflow2 < 2^13 */ |
| |
| out[0] += overflow1; /* out[0] < 2^60 */ |
| out[1] += overflow2; /* out[1] < 2^59 + 2^6 + 2^13 */ |
| |
| out[1] += out[0] >> 58; |
| out[0] &= bottom58bits; |
| /*- |
| * out[0] < 2^58 |
| * out[1] < 2^59 + 2^6 + 2^13 + 2^2 |
| * < 2^59 + 2^14 |
| */ |
| } |
| |
| static void felem_square_reduce(felem out, const felem in) |
| { |
| largefelem tmp; |
| felem_square(tmp, in); |
| felem_reduce(out, tmp); |
| } |
| |
| static void felem_mul_reduce(felem out, const felem in1, const felem in2) |
| { |
| largefelem tmp; |
| felem_mul(tmp, in1, in2); |
| felem_reduce(out, tmp); |
| } |
| |
| /*- |
| * felem_inv calculates |out| = |in|^{-1} |
| * |
| * Based on Fermat's Little Theorem: |
| * a^p = a (mod p) |
| * a^{p-1} = 1 (mod p) |
| * a^{p-2} = a^{-1} (mod p) |
| */ |
| static void felem_inv(felem out, const felem in) |
| { |
| felem ftmp, ftmp2, ftmp3, ftmp4; |
| largefelem tmp; |
| unsigned i; |
| |
| felem_square(tmp, in); |
| felem_reduce(ftmp, tmp); /* 2^1 */ |
| felem_mul(tmp, in, ftmp); |
| felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */ |
| felem_assign(ftmp2, ftmp); |
| felem_square(tmp, ftmp); |
| felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */ |
| felem_mul(tmp, in, ftmp); |
| felem_reduce(ftmp, tmp); /* 2^3 - 2^0 */ |
| felem_square(tmp, ftmp); |
| felem_reduce(ftmp, tmp); /* 2^4 - 2^1 */ |
| |
| felem_square(tmp, ftmp2); |
| felem_reduce(ftmp3, tmp); /* 2^3 - 2^1 */ |
| felem_square(tmp, ftmp3); |
| felem_reduce(ftmp3, tmp); /* 2^4 - 2^2 */ |
| felem_mul(tmp, ftmp3, ftmp2); |
| felem_reduce(ftmp3, tmp); /* 2^4 - 2^0 */ |
| |
| felem_assign(ftmp2, ftmp3); |
| felem_square(tmp, ftmp3); |
| felem_reduce(ftmp3, tmp); /* 2^5 - 2^1 */ |
| felem_square(tmp, ftmp3); |
| felem_reduce(ftmp3, tmp); /* 2^6 - 2^2 */ |
| felem_square(tmp, ftmp3); |
| felem_reduce(ftmp3, tmp); /* 2^7 - 2^3 */ |
| felem_square(tmp, ftmp3); |
| felem_reduce(ftmp3, tmp); /* 2^8 - 2^4 */ |
| felem_assign(ftmp4, ftmp3); |
| felem_mul(tmp, ftmp3, ftmp); |
| felem_reduce(ftmp4, tmp); /* 2^8 - 2^1 */ |
| felem_square(tmp, ftmp4); |
| felem_reduce(ftmp4, tmp); /* 2^9 - 2^2 */ |
| felem_mul(tmp, ftmp3, ftmp2); |
| felem_reduce(ftmp3, tmp); /* 2^8 - 2^0 */ |
| felem_assign(ftmp2, ftmp3); |
| |
| for (i = 0; i < 8; i++) { |
| felem_square(tmp, ftmp3); |
| felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */ |
| } |
| felem_mul(tmp, ftmp3, ftmp2); |
| felem_reduce(ftmp3, tmp); /* 2^16 - 2^0 */ |
| felem_assign(ftmp2, ftmp3); |
| |
| for (i = 0; i < 16; i++) { |
| felem_square(tmp, ftmp3); |
| felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */ |
| } |
| felem_mul(tmp, ftmp3, ftmp2); |
| felem_reduce(ftmp3, tmp); /* 2^32 - 2^0 */ |
| felem_assign(ftmp2, ftmp3); |
| |
| for (i = 0; i < 32; i++) { |
| felem_square(tmp, ftmp3); |
| felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */ |
| } |
| felem_mul(tmp, ftmp3, ftmp2); |
| felem_reduce(ftmp3, tmp); /* 2^64 - 2^0 */ |
| felem_assign(ftmp2, ftmp3); |
| |
| for (i = 0; i < 64; i++) { |
| felem_square(tmp, ftmp3); |
| felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */ |
| } |
| felem_mul(tmp, ftmp3, ftmp2); |
| felem_reduce(ftmp3, tmp); /* 2^128 - 2^0 */ |
| felem_assign(ftmp2, ftmp3); |
| |
| for (i = 0; i < 128; i++) { |
| felem_square(tmp, ftmp3); |
| felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */ |
| } |
| felem_mul(tmp, ftmp3, ftmp2); |
| felem_reduce(ftmp3, tmp); /* 2^256 - 2^0 */ |
| felem_assign(ftmp2, ftmp3); |
| |
| for (i = 0; i < 256; i++) { |
| felem_square(tmp, ftmp3); |
| felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */ |
| } |
| felem_mul(tmp, ftmp3, ftmp2); |
| felem_reduce(ftmp3, tmp); /* 2^512 - 2^0 */ |
| |
| for (i = 0; i < 9; i++) { |
| felem_square(tmp, ftmp3); |
| felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */ |
| } |
| felem_mul(tmp, ftmp3, ftmp4); |
| felem_reduce(ftmp3, tmp); /* 2^512 - 2^2 */ |
| felem_mul(tmp, ftmp3, in); |
| felem_reduce(out, tmp); /* 2^512 - 3 */ |
| } |
| |
| /* This is 2^521-1, expressed as an felem */ |
| static const felem kPrime = { |
| 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, |
| 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, |
| 0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff |
| }; |
| |
| /*- |
| * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 |
| * otherwise. |
| * On entry: |
| * in[i] < 2^59 + 2^14 |
| */ |
| static limb felem_is_zero(const felem in) |
| { |
| felem ftmp; |
| limb is_zero, is_p; |
| felem_assign(ftmp, in); |
| |
| ftmp[0] += ftmp[8] >> 57; |
| ftmp[8] &= bottom57bits; |
| /* ftmp[8] < 2^57 */ |
| ftmp[1] += ftmp[0] >> 58; |
| ftmp[0] &= bottom58bits; |
| ftmp[2] += ftmp[1] >> 58; |
| ftmp[1] &= bottom58bits; |
| ftmp[3] += ftmp[2] >> 58; |
| ftmp[2] &= bottom58bits; |
| ftmp[4] += ftmp[3] >> 58; |
| ftmp[3] &= bottom58bits; |
| ftmp[5] += ftmp[4] >> 58; |
| ftmp[4] &= bottom58bits; |
| ftmp[6] += ftmp[5] >> 58; |
| ftmp[5] &= bottom58bits; |
| ftmp[7] += ftmp[6] >> 58; |
| ftmp[6] &= bottom58bits; |
| ftmp[8] += ftmp[7] >> 58; |
| ftmp[7] &= bottom58bits; |
| /* ftmp[8] < 2^57 + 4 */ |
| |
| /* |
| * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater |
| * than our bound for ftmp[8]. Therefore we only have to check if the |
| * zero is zero or 2^521-1. |
| */ |
| |
| is_zero = 0; |
| is_zero |= ftmp[0]; |
| is_zero |= ftmp[1]; |
| is_zero |= ftmp[2]; |
| is_zero |= ftmp[3]; |
| is_zero |= ftmp[4]; |
| is_zero |= ftmp[5]; |
| is_zero |= ftmp[6]; |
| is_zero |= ftmp[7]; |
| is_zero |= ftmp[8]; |
| |
| is_zero--; |
| /* |
| * We know that ftmp[i] < 2^63, therefore the only way that the top bit |
| * can be set is if is_zero was 0 before the decrement. |
| */ |
| is_zero = 0 - (is_zero >> 63); |
| |
| is_p = ftmp[0] ^ kPrime[0]; |
| is_p |= ftmp[1] ^ kPrime[1]; |
| is_p |= ftmp[2] ^ kPrime[2]; |
| is_p |= ftmp[3] ^ kPrime[3]; |
| is_p |= ftmp[4] ^ kPrime[4]; |
| is_p |= ftmp[5] ^ kPrime[5]; |
| is_p |= ftmp[6] ^ kPrime[6]; |
| is_p |= ftmp[7] ^ kPrime[7]; |
| is_p |= ftmp[8] ^ kPrime[8]; |
| |
| is_p--; |
| is_p = 0 - (is_p >> 63); |
| |
| is_zero |= is_p; |
| return is_zero; |
| } |
| |
| static int felem_is_zero_int(const void *in) |
| { |
| return (int)(felem_is_zero(in) & ((limb) 1)); |
| } |
| |
| /*- |
| * felem_contract converts |in| to its unique, minimal representation. |
| * On entry: |
| * in[i] < 2^59 + 2^14 |
| */ |
| static void felem_contract(felem out, const felem in) |
| { |
| limb is_p, is_greater, sign; |
| static const limb two58 = ((limb) 1) << 58; |
| |
| felem_assign(out, in); |
| |
| out[0] += out[8] >> 57; |
| out[8] &= bottom57bits; |
| /* out[8] < 2^57 */ |
| out[1] += out[0] >> 58; |
| out[0] &= bottom58bits; |
| out[2] += out[1] >> 58; |
| out[1] &= bottom58bits; |
| out[3] += out[2] >> 58; |
| out[2] &= bottom58bits; |
| out[4] += out[3] >> 58; |
| out[3] &= bottom58bits; |
| out[5] += out[4] >> 58; |
| out[4] &= bottom58bits; |
| out[6] += out[5] >> 58; |
| out[5] &= bottom58bits; |
| out[7] += out[6] >> 58; |
| out[6] &= bottom58bits; |
| out[8] += out[7] >> 58; |
| out[7] &= bottom58bits; |
| /* out[8] < 2^57 + 4 */ |
| |
| /* |
| * If the value is greater than 2^521-1 then we have to subtract 2^521-1 |
| * out. See the comments in felem_is_zero regarding why we don't test for |
| * other multiples of the prime. |
| */ |
| |
| /* |
| * First, if |out| is equal to 2^521-1, we subtract it out to get zero. |
| */ |
| |
| is_p = out[0] ^ kPrime[0]; |
| is_p |= out[1] ^ kPrime[1]; |
| is_p |= out[2] ^ kPrime[2]; |
| is_p |= out[3] ^ kPrime[3]; |
| is_p |= out[4] ^ kPrime[4]; |
| is_p |= out[5] ^ kPrime[5]; |
| is_p |= out[6] ^ kPrime[6]; |
| is_p |= out[7] ^ kPrime[7]; |
| is_p |= out[8] ^ kPrime[8]; |
| |
| is_p--; |
| is_p &= is_p << 32; |
| is_p &= is_p << 16; |
| is_p &= is_p << 8; |
| is_p &= is_p << 4; |
| is_p &= is_p << 2; |
| is_p &= is_p << 1; |
| is_p = 0 - (is_p >> 63); |
| is_p = ~is_p; |
| |
| /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */ |
| |
| out[0] &= is_p; |
| out[1] &= is_p; |
| out[2] &= is_p; |
| out[3] &= is_p; |
| out[4] &= is_p; |
| out[5] &= is_p; |
| out[6] &= is_p; |
| out[7] &= is_p; |
| out[8] &= is_p; |
| |
| /* |
| * In order to test that |out| >= 2^521-1 we need only test if out[8] >> |
| * 57 is greater than zero as (2^521-1) + x >= 2^522 |
| */ |
| is_greater = out[8] >> 57; |
| is_greater |= is_greater << 32; |
| is_greater |= is_greater << 16; |
| is_greater |= is_greater << 8; |
| is_greater |= is_greater << 4; |
| is_greater |= is_greater << 2; |
| is_greater |= is_greater << 1; |
| is_greater = 0 - (is_greater >> 63); |
| |
| out[0] -= kPrime[0] & is_greater; |
| out[1] -= kPrime[1] & is_greater; |
| out[2] -= kPrime[2] & is_greater; |
| out[3] -= kPrime[3] & is_greater; |
| out[4] -= kPrime[4] & is_greater; |
| out[5] -= kPrime[5] & is_greater; |
| out[6] -= kPrime[6] & is_greater; |
| out[7] -= kPrime[7] & is_greater; |
| out[8] -= kPrime[8] & is_greater; |
| |
| /* Eliminate negative coefficients */ |
| sign = -(out[0] >> 63); |
| out[0] += (two58 & sign); |
| out[1] -= (1 & sign); |
| sign = -(out[1] >> 63); |
| out[1] += (two58 & sign); |
| out[2] -= (1 & sign); |
| sign = -(out[2] >> 63); |
| out[2] += (two58 & sign); |
| out[3] -= (1 & sign); |
| sign = -(out[3] >> 63); |
| out[3] += (two58 & sign); |
| out[4] -= (1 & sign); |
| sign = -(out[4] >> 63); |
| out[4] += (two58 & sign); |
| out[5] -= (1 & sign); |
| sign = -(out[0] >> 63); |
| out[5] += (two58 & sign); |
| out[6] -= (1 & sign); |
| sign = -(out[6] >> 63); |
| out[6] += (two58 & sign); |
| out[7] -= (1 & sign); |
| sign = -(out[7] >> 63); |
| out[7] += (two58 & sign); |
| out[8] -= (1 & sign); |
| sign = -(out[5] >> 63); |
| out[5] += (two58 & sign); |
| out[6] -= (1 & sign); |
| sign = -(out[6] >> 63); |
| out[6] += (two58 & sign); |
| out[7] -= (1 & sign); |
| sign = -(out[7] >> 63); |
| out[7] += (two58 & sign); |
| out[8] -= (1 & sign); |
| } |
| |
| /*- |
| * Group operations |
| * ---------------- |
| * |
| * Building on top of the field operations we have the operations on the |
| * elliptic curve group itself. Points on the curve are represented in Jacobian |
| * coordinates */ |
| |
| /*- |
| * point_double calculates 2*(x_in, y_in, z_in) |
| * |
| * The method is taken from: |
| * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b |
| * |
| * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. |
| * while x_out == y_in is not (maybe this works, but it's not tested). */ |
| static void |
| point_double(felem x_out, felem y_out, felem z_out, |
| const felem x_in, const felem y_in, const felem z_in) |
| { |
| largefelem tmp, tmp2; |
| felem delta, gamma, beta, alpha, ftmp, ftmp2; |
| |
| felem_assign(ftmp, x_in); |
| felem_assign(ftmp2, x_in); |
| |
| /* delta = z^2 */ |
| felem_square(tmp, z_in); |
| felem_reduce(delta, tmp); /* delta[i] < 2^59 + 2^14 */ |
| |
| /* gamma = y^2 */ |
| felem_square(tmp, y_in); |
| felem_reduce(gamma, tmp); /* gamma[i] < 2^59 + 2^14 */ |
| |
| /* beta = x*gamma */ |
| felem_mul(tmp, x_in, gamma); |
| felem_reduce(beta, tmp); /* beta[i] < 2^59 + 2^14 */ |
| |
| /* alpha = 3*(x-delta)*(x+delta) */ |
| felem_diff64(ftmp, delta); |
| /* ftmp[i] < 2^61 */ |
| felem_sum64(ftmp2, delta); |
| /* ftmp2[i] < 2^60 + 2^15 */ |
| felem_scalar64(ftmp2, 3); |
| /* ftmp2[i] < 3*2^60 + 3*2^15 */ |
| felem_mul(tmp, ftmp, ftmp2); |
| /*- |
| * tmp[i] < 17(3*2^121 + 3*2^76) |
| * = 61*2^121 + 61*2^76 |
| * < 64*2^121 + 64*2^76 |
| * = 2^127 + 2^82 |
| * < 2^128 |
| */ |
| felem_reduce(alpha, tmp); |
| |
| /* x' = alpha^2 - 8*beta */ |
| felem_square(tmp, alpha); |
| /* |
| * tmp[i] < 17*2^120 < 2^125 |
| */ |
| felem_assign(ftmp, beta); |
| felem_scalar64(ftmp, 8); |
| /* ftmp[i] < 2^62 + 2^17 */ |
| felem_diff_128_64(tmp, ftmp); |
| /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */ |
| felem_reduce(x_out, tmp); |
| |
| /* z' = (y + z)^2 - gamma - delta */ |
| felem_sum64(delta, gamma); |
| /* delta[i] < 2^60 + 2^15 */ |
| felem_assign(ftmp, y_in); |
| felem_sum64(ftmp, z_in); |
| /* ftmp[i] < 2^60 + 2^15 */ |
| felem_square(tmp, ftmp); |
| /* |
| * tmp[i] < 17(2^122) < 2^127 |
| */ |
| felem_diff_128_64(tmp, delta); |
| /* tmp[i] < 2^127 + 2^63 */ |
| felem_reduce(z_out, tmp); |
| |
| /* y' = alpha*(4*beta - x') - 8*gamma^2 */ |
| felem_scalar64(beta, 4); |
| /* beta[i] < 2^61 + 2^16 */ |
| felem_diff64(beta, x_out); |
| /* beta[i] < 2^61 + 2^60 + 2^16 */ |
| felem_mul(tmp, alpha, beta); |
| /*- |
| * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16)) |
| * = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30) |
| * = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30) |
| * < 2^128 |
| */ |
| felem_square(tmp2, gamma); |
| /*- |
| * tmp2[i] < 17*(2^59 + 2^14)^2 |
| * = 17*(2^118 + 2^74 + 2^28) |
| */ |
| felem_scalar128(tmp2, 8); |
| /*- |
| * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28) |
| * = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31 |
| * < 2^126 |
| */ |
| felem_diff128(tmp, tmp2); |
| /*- |
| * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30) |
| * = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 + |
| * 2^74 + 2^69 + 2^34 + 2^30 |
| * < 2^128 |
| */ |
| felem_reduce(y_out, tmp); |
| } |
| |
| /* copy_conditional copies in to out iff mask is all ones. */ |
| static void copy_conditional(felem out, const felem in, limb mask) |
| { |
| unsigned i; |
| for (i = 0; i < NLIMBS; ++i) { |
| const limb tmp = mask & (in[i] ^ out[i]); |
| out[i] ^= tmp; |
| } |
| } |
| |
| /*- |
| * point_add calculates (x1, y1, z1) + (x2, y2, z2) |
| * |
| * The method is taken from |
| * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, |
| * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). |
| * |
| * This function includes a branch for checking whether the two input points |
| * are equal (while not equal to the point at infinity). See comment below |
| * on constant-time. |
| */ |
| static void point_add(felem x3, felem y3, felem z3, |
| const felem x1, const felem y1, const felem z1, |
| const int mixed, const felem x2, const felem y2, |
| const felem z2) |
| { |
| felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; |
| largefelem tmp, tmp2; |
| limb x_equal, y_equal, z1_is_zero, z2_is_zero; |
| limb points_equal; |
| |
| z1_is_zero = felem_is_zero(z1); |
| z2_is_zero = felem_is_zero(z2); |
| |
| /* ftmp = z1z1 = z1**2 */ |
| felem_square(tmp, z1); |
| felem_reduce(ftmp, tmp); |
| |
| if (!mixed) { |
| /* ftmp2 = z2z2 = z2**2 */ |
| felem_square(tmp, z2); |
| felem_reduce(ftmp2, tmp); |
| |
| /* u1 = ftmp3 = x1*z2z2 */ |
| felem_mul(tmp, x1, ftmp2); |
| felem_reduce(ftmp3, tmp); |
| |
| /* ftmp5 = z1 + z2 */ |
| felem_assign(ftmp5, z1); |
| felem_sum64(ftmp5, z2); |
| /* ftmp5[i] < 2^61 */ |
| |
| /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */ |
| felem_square(tmp, ftmp5); |
| /* tmp[i] < 17*2^122 */ |
| felem_diff_128_64(tmp, ftmp); |
| /* tmp[i] < 17*2^122 + 2^63 */ |
| felem_diff_128_64(tmp, ftmp2); |
| /* tmp[i] < 17*2^122 + 2^64 */ |
| felem_reduce(ftmp5, tmp); |
| |
| /* ftmp2 = z2 * z2z2 */ |
| felem_mul(tmp, ftmp2, z2); |
| felem_reduce(ftmp2, tmp); |
| |
| /* s1 = ftmp6 = y1 * z2**3 */ |
| felem_mul(tmp, y1, ftmp2); |
| felem_reduce(ftmp6, tmp); |
| } else { |
| /* |
| * We'll assume z2 = 1 (special case z2 = 0 is handled later) |
| */ |
| |
| /* u1 = ftmp3 = x1*z2z2 */ |
| felem_assign(ftmp3, x1); |
| |
| /* ftmp5 = 2*z1z2 */ |
| felem_scalar(ftmp5, z1, 2); |
| |
| /* s1 = ftmp6 = y1 * z2**3 */ |
| felem_assign(ftmp6, y1); |
| } |
| |
| /* u2 = x2*z1z1 */ |
| felem_mul(tmp, x2, ftmp); |
| /* tmp[i] < 17*2^120 */ |
| |
| /* h = ftmp4 = u2 - u1 */ |
| felem_diff_128_64(tmp, ftmp3); |
| /* tmp[i] < 17*2^120 + 2^63 */ |
| felem_reduce(ftmp4, tmp); |
| |
| x_equal = felem_is_zero(ftmp4); |
| |
| /* z_out = ftmp5 * h */ |
| felem_mul(tmp, ftmp5, ftmp4); |
| felem_reduce(z_out, tmp); |
| |
| /* ftmp = z1 * z1z1 */ |
| felem_mul(tmp, ftmp, z1); |
| felem_reduce(ftmp, tmp); |
| |
| /* s2 = tmp = y2 * z1**3 */ |
| felem_mul(tmp, y2, ftmp); |
| /* tmp[i] < 17*2^120 */ |
| |
| /* r = ftmp5 = (s2 - s1)*2 */ |
| felem_diff_128_64(tmp, ftmp6); |
| /* tmp[i] < 17*2^120 + 2^63 */ |
| felem_reduce(ftmp5, tmp); |
| y_equal = felem_is_zero(ftmp5); |
| felem_scalar64(ftmp5, 2); |
| /* ftmp5[i] < 2^61 */ |
| |
| /* |
| * The formulae are incorrect if the points are equal, in affine coordinates |
| * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this |
| * happens. |
| * |
| * We use bitwise operations to avoid potential side-channels introduced by |
| * the short-circuiting behaviour of boolean operators. |
| * |
| * The special case of either point being the point at infinity (z1 and/or |
| * z2 are zero), is handled separately later on in this function, so we |
| * avoid jumping to point_double here in those special cases. |
| * |
| * Notice the comment below on the implications of this branching for timing |
| * leaks and why it is considered practically irrelevant. |
| */ |
| points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)); |
| |
| if (points_equal) { |
| /* |
| * This is obviously not constant-time but it will almost-never happen |
| * for ECDH / ECDSA. The case where it can happen is during scalar-mult |
| * where the intermediate value gets very close to the group order. |
| * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits |
| * for the scalar, it's possible for the intermediate value to be a small |
| * negative multiple of the base point, and for the final signed digit |
| * to be the same value. We believe that this only occurs for the scalar |
| * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff |
| * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb |
| * 71e913863f7, in that case the penultimate intermediate is -9G and |
| * the final digit is also -9G. Since this only happens for a single |
| * scalar, the timing leak is irrelevant. (Any attacker who wanted to |
| * check whether a secret scalar was that exact value, can already do |
| * so.) |
| */ |
| point_double(x3, y3, z3, x1, y1, z1); |
| return; |
| } |
| |
| /* I = ftmp = (2h)**2 */ |
| felem_assign(ftmp, ftmp4); |
| felem_scalar64(ftmp, 2); |
| /* ftmp[i] < 2^61 */ |
| felem_square(tmp, ftmp); |
| /* tmp[i] < 17*2^122 */ |
| felem_reduce(ftmp, tmp); |
| |
| /* J = ftmp2 = h * I */ |
| felem_mul(tmp, ftmp4, ftmp); |
| felem_reduce(ftmp2, tmp); |
| |
| /* V = ftmp4 = U1 * I */ |
| felem_mul(tmp, ftmp3, ftmp); |
| felem_reduce(ftmp4, tmp); |
| |
| /* x_out = r**2 - J - 2V */ |
| felem_square(tmp, ftmp5); |
| /* tmp[i] < 17*2^122 */ |
| felem_diff_128_64(tmp, ftmp2); |
| /* tmp[i] < 17*2^122 + 2^63 */ |
| felem_assign(ftmp3, ftmp4); |
| felem_scalar64(ftmp4, 2); |
| /* ftmp4[i] < 2^61 */ |
| felem_diff_128_64(tmp, ftmp4); |
| /* tmp[i] < 17*2^122 + 2^64 */ |
| felem_reduce(x_out, tmp); |
| |
| /* y_out = r(V-x_out) - 2 * s1 * J */ |
| felem_diff64(ftmp3, x_out); |
| /* |
| * ftmp3[i] < 2^60 + 2^60 = 2^61 |
| */ |
| felem_mul(tmp, ftmp5, ftmp3); |
| /* tmp[i] < 17*2^122 */ |
| felem_mul(tmp2, ftmp6, ftmp2); |
| /* tmp2[i] < 17*2^120 */ |
| felem_scalar128(tmp2, 2); |
| /* tmp2[i] < 17*2^121 */ |
| felem_diff128(tmp, tmp2); |
| /*- |
| * tmp[i] < 2^127 - 2^69 + 17*2^122 |
| * = 2^126 - 2^122 - 2^6 - 2^2 - 1 |
| * < 2^127 |
| */ |
| felem_reduce(y_out, tmp); |
| |
| copy_conditional(x_out, x2, z1_is_zero); |
| copy_conditional(x_out, x1, z2_is_zero); |
| copy_conditional(y_out, y2, z1_is_zero); |
| copy_conditional(y_out, y1, z2_is_zero); |
| copy_conditional(z_out, z2, z1_is_zero); |
| copy_conditional(z_out, z1, z2_is_zero); |
| felem_assign(x3, x_out); |
| felem_assign(y3, y_out); |
| felem_assign(z3, z_out); |
| } |
| |
| /*- |
| * Base point pre computation |
| * -------------------------- |
| * |
| * Two different sorts of precomputed tables are used in the following code. |
| * Each contain various points on the curve, where each point is three field |
| * elements (x, y, z). |
| * |
| * For the base point table, z is usually 1 (0 for the point at infinity). |
| * This table has 16 elements: |
| * index | bits | point |
| * ------+---------+------------------------------ |
| * 0 | 0 0 0 0 | 0G |
| * 1 | 0 0 0 1 | 1G |
| * 2 | 0 0 1 0 | 2^130G |
| * 3 | 0 0 1 1 | (2^130 + 1)G |
| * 4 | 0 1 0 0 | 2^260G |
| * 5 | 0 1 0 1 | (2^260 + 1)G |
| * 6 | 0 1 1 0 | (2^260 + 2^130)G |
| * 7 | 0 1 1 1 | (2^260 + 2^130 + 1)G |
| * 8 | 1 0 0 0 | 2^390G |
| * 9 | 1 0 0 1 | (2^390 + 1)G |
| * 10 | 1 0 1 0 | (2^390 + 2^130)G |
| * 11 | 1 0 1 1 | (2^390 + 2^130 + 1)G |
| * 12 | 1 1 0 0 | (2^390 + 2^260)G |
| * 13 | 1 1 0 1 | (2^390 + 2^260 + 1)G |
| * 14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G |
| * 15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G |
| * |
| * The reason for this is so that we can clock bits into four different |
| * locations when doing simple scalar multiplies against the base point. |
| * |
| * Tables for other points have table[i] = iG for i in 0 .. 16. */ |
| |
| /* gmul is the table of precomputed base points */ |
| static const felem gmul[16][3] = { |
| {{0, 0, 0, 0, 0, 0, 0, 0, 0}, |
| {0, 0, 0, 0, 0, 0, 0, 0, 0}, |
| {0, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| {{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334, |
| 0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8, |
| 0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404}, |
| {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353, |
| 0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45, |
| 0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b}, |
| {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| {{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad, |
| 0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e, |
| 0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5}, |
| {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58, |
| 0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c, |
| 0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7}, |
| {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| {{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873, |
| 0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c, |
| 0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9}, |
| {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52, |
| 0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e, |
| 0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe}, |
| {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| {{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2, |
| 0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561, |
| 0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065}, |
| {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a, |
| 0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e, |
| 0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524}, |
| {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| {{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6, |
| 0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51, |
| 0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe}, |
| {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d, |
| 0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c, |
| 0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7}, |
| {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| {{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27, |
| 0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f, |
| 0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256}, |
| {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa, |
| 0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2, |
| 0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd}, |
| {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| {{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890, |
| 0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74, |
| 0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23}, |
| {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516, |
| 0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1, |
| 0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e}, |
| {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| {{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce, |
| 0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7, |
| 0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5}, |
| {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318, |
| 0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83, |
| 0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242}, |
| {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| {{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae, |
| 0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef, |
| 0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203}, |
| {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447, |
| 0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283, |
| 0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f}, |
| {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| {{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5, |
| 0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c, |
| 0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a}, |
| {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df, |
| 0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645, |
| 0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a}, |
| {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| {{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292, |
| 0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422, |
| 0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b}, |
| {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30, |
| 0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb, |
| 0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f}, |
| {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| {{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767, |
| 0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3, |
| 0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf}, |
| {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2, |
| 0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692, |
| 0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d}, |
| {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| {{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3, |
| 0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade, |
| 0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684}, |
| {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8, |
| 0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a, |
| 0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81}, |
| {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| {{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608, |
| 0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610, |
| 0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d}, |
| {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006, |
| 0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86, |
| 0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42}, |
| {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| {{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c, |
| 0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9, |
| 0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f}, |
| {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7, |
| 0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c, |
| 0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055}, |
| {1, 0, 0, 0, 0, 0, 0, 0, 0}} |
| }; |
| |
| /* |
| * select_point selects the |idx|th point from a precomputation table and |
| * copies it to out. |
| */ |
| /* pre_comp below is of the size provided in |size| */ |
| static void select_point(const limb idx, unsigned int size, |
| const felem pre_comp[][3], felem out[3]) |
| { |
| unsigned i, j; |
| limb *outlimbs = &out[0][0]; |
| |
| memset(out, 0, sizeof(*out) * 3); |
| |
| for (i = 0; i < size; i++) { |
| const limb *inlimbs = &pre_comp[i][0][0]; |
| limb mask = i ^ idx; |
| mask |= mask >> 4; |
| mask |= mask >> 2; |
| mask |= mask >> 1; |
| mask &= 1; |
| mask--; |
| for (j = 0; j < NLIMBS * 3; j++) |
| outlimbs[j] |= inlimbs[j] & mask; |
| } |
| } |
| |
| /* get_bit returns the |i|th bit in |in| */ |
| static char get_bit(const felem_bytearray in, int i) |
| { |
| if (i < 0) |
| return 0; |
| return (in[i >> 3] >> (i & 7)) & 1; |
| } |
| |
| /* |
| * Interleaved point multiplication using precomputed point multiples: The |
| * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars |
| * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the |
| * generator, using certain (large) precomputed multiples in g_pre_comp. |
| * Output point (X, Y, Z) is stored in x_out, y_out, z_out |
| */ |
| static void batch_mul(felem x_out, felem y_out, felem z_out, |
| const felem_bytearray scalars[], |
| const unsigned num_points, const u8 *g_scalar, |
| const int mixed, const felem pre_comp[][17][3], |
| const felem g_pre_comp[16][3]) |
| { |
| int i, skip; |
| unsigned num, gen_mul = (g_scalar != NULL); |
| felem nq[3], tmp[4]; |
| limb bits; |
| u8 sign, digit; |
| |
| /* set nq to the point at infinity */ |
| memset(nq, 0, sizeof(nq)); |
| |
| /* |
| * Loop over all scalars msb-to-lsb, interleaving additions of multiples |
| * of the generator (last quarter of rounds) and additions of other |
| * points multiples (every 5th round). |
| */ |
| skip = 1; /* save two point operations in the first |
| * round */ |
| for (i = (num_points ? 520 : 130); i >= 0; --i) { |
| /* double */ |
| if (!skip) |
| point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); |
| |
| /* add multiples of the generator */ |
| if (gen_mul && (i <= 130)) { |
| bits = get_bit(g_scalar, i + 390) << 3; |
| if (i < 130) { |
| bits |= get_bit(g_scalar, i + 260) << 2; |
| bits |= get_bit(g_scalar, i + 130) << 1; |
| bits |= get_bit(g_scalar, i); |
| } |
| /* select the point to add, in constant time */ |
| select_point(bits, 16, g_pre_comp, tmp); |
| if (!skip) { |
| /* The 1 argument below is for "mixed" */ |
| point_add(nq[0], nq[1], nq[2], |
| nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); |
| } else { |
| memcpy(nq, tmp, 3 * sizeof(felem)); |
| skip = 0; |
| } |
| } |
| |
| /* do other additions every 5 doublings */ |
| if (num_points && (i % 5 == 0)) { |
| /* loop over all scalars */ |
| for (num = 0; num < num_points; ++num) { |
| bits = get_bit(scalars[num], i + 4) << 5; |
| bits |= get_bit(scalars[num], i + 3) << 4; |
| bits |= get_bit(scalars[num], i + 2) << 3; |
| bits |= get_bit(scalars[num], i + 1) << 2; |
| bits |= get_bit(scalars[num], i) << 1; |
| bits |= get_bit(scalars[num], i - 1); |
| ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); |
| |
| /* |
| * select the point to add or subtract, in constant time |
| */ |
| select_point(digit, 17, pre_comp[num], tmp); |
| felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative |
| * point */ |
| copy_conditional(tmp[1], tmp[3], (-(limb) sign)); |
| |
| if (!skip) { |
| point_add(nq[0], nq[1], nq[2], |
| nq[0], nq[1], nq[2], |
| mixed, tmp[0], tmp[1], tmp[2]); |
| } else { |
| memcpy(nq, tmp, 3 * sizeof(felem)); |
| skip = 0; |
| } |
| } |
| } |
| } |
| felem_assign(x_out, nq[0]); |
| felem_assign(y_out, nq[1]); |
| felem_assign(z_out, nq[2]); |
| } |
| |
| /* Precomputation for the group generator. */ |
| struct nistp521_pre_comp_st { |
| felem g_pre_comp[16][3]; |
| CRYPTO_REF_COUNT references; |
| CRYPTO_RWLOCK *lock; |
| }; |
| |
| const EC_METHOD *EC_GFp_nistp521_method(void) |
| { |
| static const EC_METHOD ret = { |
| EC_FLAGS_DEFAULT_OCT, |
| NID_X9_62_prime_field, |
| ossl_ec_GFp_nistp521_group_init, |
| ossl_ec_GFp_simple_group_finish, |
| ossl_ec_GFp_simple_group_clear_finish, |
| ossl_ec_GFp_nist_group_copy, |
| ossl_ec_GFp_nistp521_group_set_curve, |
| ossl_ec_GFp_simple_group_get_curve, |
| ossl_ec_GFp_simple_group_get_degree, |
| ossl_ec_group_simple_order_bits, |
| ossl_ec_GFp_simple_group_check_discriminant, |
| ossl_ec_GFp_simple_point_init, |
| ossl_ec_GFp_simple_point_finish, |
| ossl_ec_GFp_simple_point_clear_finish, |
| ossl_ec_GFp_simple_point_copy, |
| ossl_ec_GFp_simple_point_set_to_infinity, |
| ossl_ec_GFp_simple_point_set_affine_coordinates, |
| ossl_ec_GFp_nistp521_point_get_affine_coordinates, |
| 0 /* point_set_compressed_coordinates */ , |
| 0 /* point2oct */ , |
| 0 /* oct2point */ , |
| ossl_ec_GFp_simple_add, |
| ossl_ec_GFp_simple_dbl, |
| ossl_ec_GFp_simple_invert, |
| ossl_ec_GFp_simple_is_at_infinity, |
| ossl_ec_GFp_simple_is_on_curve, |
| ossl_ec_GFp_simple_cmp, |
| ossl_ec_GFp_simple_make_affine, |
| ossl_ec_GFp_simple_points_make_affine, |
| ossl_ec_GFp_nistp521_points_mul, |
| ossl_ec_GFp_nistp521_precompute_mult, |
| ossl_ec_GFp_nistp521_have_precompute_mult, |
| ossl_ec_GFp_nist_field_mul, |
| ossl_ec_GFp_nist_field_sqr, |
| 0 /* field_div */ , |
| ossl_ec_GFp_simple_field_inv, |
| 0 /* field_encode */ , |
| 0 /* field_decode */ , |
| 0, /* field_set_to_one */ |
| ossl_ec_key_simple_priv2oct, |
| ossl_ec_key_simple_oct2priv, |
| 0, /* set private */ |
| ossl_ec_key_simple_generate_key, |
| ossl_ec_key_simple_check_key, |
| ossl_ec_key_simple_generate_public_key, |
| 0, /* keycopy */ |
| 0, /* keyfinish */ |
| ossl_ecdh_simple_compute_key, |
| ossl_ecdsa_simple_sign_setup, |
| ossl_ecdsa_simple_sign_sig, |
| ossl_ecdsa_simple_verify_sig, |
| 0, /* field_inverse_mod_ord */ |
| 0, /* blind_coordinates */ |
| 0, /* ladder_pre */ |
| 0, /* ladder_step */ |
| 0 /* ladder_post */ |
| }; |
| |
| return &ret; |
| } |
| |
| /******************************************************************************/ |
| /* |
| * FUNCTIONS TO MANAGE PRECOMPUTATION |
| */ |
| |
| static NISTP521_PRE_COMP *nistp521_pre_comp_new(void) |
| { |
| NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret)); |
| |
| if (ret == NULL) { |
| ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); |
| return ret; |
| } |
| |
| ret->references = 1; |
| |
| ret->lock = CRYPTO_THREAD_lock_new(); |
| if (ret->lock == NULL) { |
| ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); |
| OPENSSL_free(ret); |
| return NULL; |
| } |
| return ret; |
| } |
| |
| NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p) |
| { |
| int i; |
| if (p != NULL) |
| CRYPTO_UP_REF(&p->references, &i, p->lock); |
| return p; |
| } |
| |
| void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p) |
| { |
| int i; |
| |
| if (p == NULL) |
| return; |
| |
| CRYPTO_DOWN_REF(&p->references, &i, p->lock); |
| REF_PRINT_COUNT("EC_nistp521", x); |
| if (i > 0) |
| return; |
| REF_ASSERT_ISNT(i < 0); |
| |
| CRYPTO_THREAD_lock_free(p->lock); |
| OPENSSL_free(p); |
| } |
| |
| /******************************************************************************/ |
| /* |
| * OPENSSL EC_METHOD FUNCTIONS |
| */ |
| |
| int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group) |
| { |
| int ret; |
| ret = ossl_ec_GFp_simple_group_init(group); |
| group->a_is_minus3 = 1; |
| return ret; |
| } |
| |
| int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p, |
| const BIGNUM *a, const BIGNUM *b, |
| BN_CTX *ctx) |
| { |
| int ret = 0; |
| BIGNUM *curve_p, *curve_a, *curve_b; |
| #ifndef FIPS_MODULE |
| BN_CTX *new_ctx = NULL; |
| |
| if (ctx == NULL) |
| ctx = new_ctx = BN_CTX_new(); |
| #endif |
| if (ctx == NULL) |
| return 0; |
| |
| BN_CTX_start(ctx); |
| curve_p = BN_CTX_get(ctx); |
| curve_a = BN_CTX_get(ctx); |
| curve_b = BN_CTX_get(ctx); |
| if (curve_b == NULL) |
| goto err; |
| BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p); |
| BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a); |
| BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b); |
| if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) { |
| ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS); |
| goto err; |
| } |
| group->field_mod_func = BN_nist_mod_521; |
| ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx); |
| err: |
| BN_CTX_end(ctx); |
| #ifndef FIPS_MODULE |
| BN_CTX_free(new_ctx); |
| #endif |
| return ret; |
| } |
| |
| /* |
| * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') = |
| * (X/Z^2, Y/Z^3) |
| */ |
| int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group, |
| const EC_POINT *point, |
| BIGNUM *x, BIGNUM *y, |
| BN_CTX *ctx) |
| { |
| felem z1, z2, x_in, y_in, x_out, y_out; |
| largefelem tmp; |
| |
| if (EC_POINT_is_at_infinity(group, point)) { |
| ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY); |
| return 0; |
| } |
| if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || |
| (!BN_to_felem(z1, point->Z))) |
| return 0; |
| felem_inv(z2, z1); |
| felem_square(tmp, z2); |
| felem_reduce(z1, tmp); |
| felem_mul(tmp, x_in, z1); |
| felem_reduce(x_in, tmp); |
| felem_contract(x_out, x_in); |
| if (x != NULL) { |
| if (!felem_to_BN(x, x_out)) { |
| ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
| return 0; |
| } |
| } |
| felem_mul(tmp, z1, z2); |
| felem_reduce(z1, tmp); |
| felem_mul(tmp, y_in, z1); |
| felem_reduce(y_in, tmp); |
| felem_contract(y_out, y_in); |
| if (y != NULL) { |
| if (!felem_to_BN(y, y_out)) { |
| ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| /* points below is of size |num|, and tmp_felems is of size |num+1/ */ |
| static void make_points_affine(size_t num, felem points[][3], |
| felem tmp_felems[]) |
| { |
| /* |
| * Runs in constant time, unless an input is the point at infinity (which |
| * normally shouldn't happen). |
| */ |
| ossl_ec_GFp_nistp_points_make_affine_internal(num, |
| points, |
| sizeof(felem), |
| tmp_felems, |
| (void (*)(void *))felem_one, |
| felem_is_zero_int, |
| (void (*)(void *, const void *)) |
| felem_assign, |
| (void (*)(void *, const void *)) |
| felem_square_reduce, (void (*) |
| (void *, |
| const void |
| *, |
| const void |
| *)) |
| felem_mul_reduce, |
| (void (*)(void *, const void *)) |
| felem_inv, |
| (void (*)(void *, const void *)) |
| felem_contract); |
| } |
| |
| /* |
| * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL |
| * values Result is stored in r (r can equal one of the inputs). |
| */ |
| int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r, |
| const BIGNUM *scalar, size_t num, |
| const EC_POINT *points[], |
| const BIGNUM *scalars[], BN_CTX *ctx) |
| { |
| int ret = 0; |
| int j; |
| int mixed = 0; |
| BIGNUM *x, *y, *z, *tmp_scalar; |
| felem_bytearray g_secret; |
| felem_bytearray *secrets = NULL; |
| felem (*pre_comp)[17][3] = NULL; |
| felem *tmp_felems = NULL; |
| unsigned i; |
| int num_bytes; |
| int have_pre_comp = 0; |
| size_t num_points = num; |
| felem x_in, y_in, z_in, x_out, y_out, z_out; |
| NISTP521_PRE_COMP *pre = NULL; |
| felem(*g_pre_comp)[3] = NULL; |
| EC_POINT *generator = NULL; |
| const EC_POINT *p = NULL; |
| const BIGNUM *p_scalar = NULL; |
| |
| BN_CTX_start(ctx); |
| x = BN_CTX_get(ctx); |
| y = BN_CTX_get(ctx); |
| z = BN_CTX_get(ctx); |
| tmp_scalar = BN_CTX_get(ctx); |
| if (tmp_scalar == NULL) |
| goto err; |
| |
| if (scalar != NULL) { |
| pre = group->pre_comp.nistp521; |
| if (pre) |
| /* we have precomputation, try to use it */ |
| g_pre_comp = &pre->g_pre_comp[0]; |
| else |
| /* try to use the standard precomputation */ |
| g_pre_comp = (felem(*)[3]) gmul; |
| generator = EC_POINT_new(group); |
| if (generator == NULL) |
| goto err; |
| /* get the generator from precomputation */ |
| if (!felem_to_BN(x, g_pre_comp[1][0]) || |
| !felem_to_BN(y, g_pre_comp[1][1]) || |
| !felem_to_BN(z, g_pre_comp[1][2])) { |
| ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
| goto err; |
| } |
| if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, |
| generator, |
| x, y, z, ctx)) |
| goto err; |
| if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) |
| /* precomputation matches generator */ |
| have_pre_comp = 1; |
| else |
| /* |
| * we don't have valid precomputation: treat the generator as a |
| * random point |
| */ |
| num_points++; |
| } |
| |
| if (num_points > 0) { |
| if (num_points >= 2) { |
| /* |
| * unless we precompute multiples for just one point, converting |
| * those into affine form is time well spent |
| */ |
| mixed = 1; |
| } |
| secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points); |
| pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points); |
| if (mixed) |
| tmp_felems = |
| OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1)); |
| if ((secrets == NULL) || (pre_comp == NULL) |
| || (mixed && (tmp_felems == NULL))) { |
| ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| /* |
| * we treat NULL scalars as 0, and NULL points as points at infinity, |
| * i.e., they contribute nothing to the linear combination |
| */ |
| for (i = 0; i < num_points; ++i) { |
| if (i == num) { |
| /* |
| * we didn't have a valid precomputation, so we pick the |
| * generator |
| */ |
| p = EC_GROUP_get0_generator(group); |
| p_scalar = scalar; |
| } else { |
| /* the i^th point */ |
| p = points[i]; |
| p_scalar = scalars[i]; |
| } |
| if ((p_scalar != NULL) && (p != NULL)) { |
| /* reduce scalar to 0 <= scalar < 2^521 */ |
| if ((BN_num_bits(p_scalar) > 521) |
| || (BN_is_negative(p_scalar))) { |
| /* |
| * this is an unusual input, and we don't guarantee |
| * constant-timeness |
| */ |
| if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) { |
| ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
| goto err; |
| } |
| num_bytes = BN_bn2lebinpad(tmp_scalar, |
| secrets[i], sizeof(secrets[i])); |
| } else { |
| num_bytes = BN_bn2lebinpad(p_scalar, |
| secrets[i], sizeof(secrets[i])); |
| } |
| if (num_bytes < 0) { |
| ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
| goto err; |
| } |
| /* precompute multiples */ |
| if ((!BN_to_felem(x_out, p->X)) || |
| (!BN_to_felem(y_out, p->Y)) || |
| (!BN_to_felem(z_out, p->Z))) |
| goto err; |
| memcpy(pre_comp[i][1][0], x_out, sizeof(felem)); |
| memcpy(pre_comp[i][1][1], y_out, sizeof(felem)); |
| memcpy(pre_comp[i][1][2], z_out, sizeof(felem)); |
| for (j = 2; j <= 16; ++j) { |
| if (j & 1) { |
| point_add(pre_comp[i][j][0], pre_comp[i][j][1], |
| pre_comp[i][j][2], pre_comp[i][1][0], |
| pre_comp[i][1][1], pre_comp[i][1][2], 0, |
| pre_comp[i][j - 1][0], |
| pre_comp[i][j - 1][1], |
| pre_comp[i][j - 1][2]); |
| } else { |
| point_double(pre_comp[i][j][0], pre_comp[i][j][1], |
| pre_comp[i][j][2], pre_comp[i][j / 2][0], |
| pre_comp[i][j / 2][1], |
| pre_comp[i][j / 2][2]); |
| } |
| } |
| } |
| } |
| if (mixed) |
| make_points_affine(num_points * 17, pre_comp[0], tmp_felems); |
| } |
| |
| /* the scalar for the generator */ |
| if ((scalar != NULL) && (have_pre_comp)) { |
| memset(g_secret, 0, sizeof(g_secret)); |
| /* reduce scalar to 0 <= scalar < 2^521 */ |
| if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) { |
| /* |
| * this is an unusual input, and we don't guarantee |
| * constant-timeness |
| */ |
| if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { |
| ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
| goto err; |
| } |
| num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret)); |
| } else { |
| num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret)); |
| } |
| /* do the multiplication with generator precomputation */ |
| batch_mul(x_out, y_out, z_out, |
| (const felem_bytearray(*))secrets, num_points, |
| g_secret, |
| mixed, (const felem(*)[17][3])pre_comp, |
| (const felem(*)[3])g_pre_comp); |
| } else { |
| /* do the multiplication without generator precomputation */ |
| batch_mul(x_out, y_out, z_out, |
| (const felem_bytearray(*))secrets, num_points, |
| NULL, mixed, (const felem(*)[17][3])pre_comp, NULL); |
| } |
| /* reduce the output to its unique minimal representation */ |
| felem_contract(x_in, x_out); |
| felem_contract(y_in, y_out); |
| felem_contract(z_in, z_out); |
| if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || |
| (!felem_to_BN(z, z_in))) { |
| ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
| goto err; |
| } |
| ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z, |
| ctx); |
| |
| err: |
| BN_CTX_end(ctx); |
| EC_POINT_free(generator); |
| OPENSSL_free(secrets); |
| OPENSSL_free(pre_comp); |
| OPENSSL_free(tmp_felems); |
| return ret; |
| } |
| |
| int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx) |
| { |
| int ret = 0; |
| NISTP521_PRE_COMP *pre = NULL; |
| int i, j; |
| BIGNUM *x, *y; |
| EC_POINT *generator = NULL; |
| felem tmp_felems[16]; |
| #ifndef FIPS_MODULE |
| BN_CTX *new_ctx = NULL; |
| #endif |
| |
| /* throw away old precomputation */ |
| EC_pre_comp_free(group); |
| |
| #ifndef FIPS_MODULE |
| if (ctx == NULL) |
| ctx = new_ctx = BN_CTX_new(); |
| #endif |
| if (ctx == NULL) |
| return 0; |
| |
| BN_CTX_start(ctx); |
| x = BN_CTX_get(ctx); |
| y = BN_CTX_get(ctx); |
| if (y == NULL) |
| goto err; |
| /* get the generator */ |
| if (group->generator == NULL) |
| goto err; |
| generator = EC_POINT_new(group); |
| if (generator == NULL) |
| goto err; |
| BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x); |
| BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y); |
| if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx)) |
| goto err; |
| if ((pre = nistp521_pre_comp_new()) == NULL) |
| goto err; |
| /* |
| * if the generator is the standard one, use built-in precomputation |
| */ |
| if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { |
| memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); |
| goto done; |
| } |
| if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) || |
| (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) || |
| (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z))) |
| goto err; |
| /* compute 2^130*G, 2^260*G, 2^390*G */ |
| for (i = 1; i <= 4; i <<= 1) { |
| point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], |
| pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0], |
| pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]); |
| for (j = 0; j < 129; ++j) { |
| point_double(pre->g_pre_comp[2 * i][0], |
| pre->g_pre_comp[2 * i][1], |
| pre->g_pre_comp[2 * i][2], |
| pre->g_pre_comp[2 * i][0], |
| pre->g_pre_comp[2 * i][1], |
| pre->g_pre_comp[2 * i][2]); |
| } |
| } |
| /* g_pre_comp[0] is the point at infinity */ |
| memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0])); |
| /* the remaining multiples */ |
| /* 2^130*G + 2^260*G */ |
| point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1], |
| pre->g_pre_comp[6][2], pre->g_pre_comp[4][0], |
| pre->g_pre_comp[4][1], pre->g_pre_comp[4][2], |
| 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], |
| pre->g_pre_comp[2][2]); |
| /* 2^130*G + 2^390*G */ |
| point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1], |
| pre->g_pre_comp[10][2], pre->g_pre_comp[8][0], |
| pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], |
| 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], |
| pre->g_pre_comp[2][2]); |
| /* 2^260*G + 2^390*G */ |
| point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], |
| pre->g_pre_comp[12][2], pre->g_pre_comp[8][0], |
| pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], |
| 0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], |
| pre->g_pre_comp[4][2]); |
| /* 2^130*G + 2^260*G + 2^390*G */ |
| point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1], |
| pre->g_pre_comp[14][2], pre->g_pre_comp[12][0], |
| pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], |
| 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], |
| pre->g_pre_comp[2][2]); |
| for (i = 1; i < 8; ++i) { |
| /* odd multiples: add G */ |
| point_add(pre->g_pre_comp[2 * i + 1][0], |
| pre->g_pre_comp[2 * i + 1][1], |
| pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0], |
| pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0, |
| pre->g_pre_comp[1][0], pre->g_pre_comp[1][1], |
| pre->g_pre_comp[1][2]); |
| } |
| make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems); |
| |
| done: |
| SETPRECOMP(group, nistp521, pre); |
| ret = 1; |
| pre = NULL; |
| err: |
| BN_CTX_end(ctx); |
| EC_POINT_free(generator); |
| #ifndef FIPS_MODULE |
| BN_CTX_free(new_ctx); |
| #endif |
| EC_nistp521_pre_comp_free(pre); |
| return ret; |
| } |
| |
| int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group) |
| { |
| return HAVEPRECOMP(group, nistp521); |
| } |