| =pod |
| |
| =head1 NAME |
| |
| PEM, PEM_read_bio_PrivateKey, PEM_read_PrivateKey, PEM_write_bio_PrivateKey, PEM_write_PrivateKey, PEM_write_bio_PKCS8PrivateKey, PEM_write_PKCS8PrivateKey, PEM_write_bio_PKCS8PrivateKey_nid, PEM_write_PKCS8PrivateKey_nid, PEM_read_bio_PUBKEY, PEM_read_PUBKEY, PEM_write_bio_PUBKEY, PEM_write_PUBKEY, PEM_read_bio_RSAPrivateKey, PEM_read_RSAPrivateKey, PEM_write_bio_RSAPrivateKey, PEM_write_RSAPrivateKey, PEM_read_bio_RSAPublicKey, PEM_read_RSAPublicKey, PEM_write_bio_RSAPublicKey, PEM_write_RSAPublicKey, PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY, PEM_write_bio_RSA_PUBKEY, PEM_write_RSA_PUBKEY, PEM_read_bio_DSAPrivateKey, PEM_read_DSAPrivateKey, PEM_write_bio_DSAPrivateKey, PEM_write_DSAPrivateKey, PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY, PEM_write_bio_DSA_PUBKEY, PEM_write_DSA_PUBKEY, PEM_read_bio_DSAparams, PEM_read_DSAparams, PEM_write_bio_DSAparams, PEM_write_DSAparams, PEM_read_bio_DHparams, PEM_read_DHparams, PEM_write_bio_DHparams, PEM_write_DHparams, PEM_read_bio_X509, PEM_read_X509, PEM_write_bio_X509, PEM_write_X509, PEM_read_bio_X509_AUX, PEM_read_X509_AUX, PEM_write_bio_X509_AUX, PEM_write_X509_AUX, PEM_read_bio_X509_REQ, PEM_read_X509_REQ, PEM_write_bio_X509_REQ, PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW, PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL, PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7, PEM_write_bio_PKCS7, PEM_write_PKCS7, PEM_read_bio_NETSCAPE_CERT_SEQUENCE, PEM_read_NETSCAPE_CERT_SEQUENCE, PEM_write_bio_NETSCAPE_CERT_SEQUENCE, PEM_write_NETSCAPE_CERT_SEQUENCE - PEM routines |
| |
| =head1 SYNOPSIS |
| |
| #include <openssl/pem.h> |
| |
| EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x, |
| pem_password_cb *cb, void *u); |
| |
| EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x, |
| pem_password_cb *cb, void *u); |
| |
| int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, |
| unsigned char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| |
| int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, |
| unsigned char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| |
| int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, |
| char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| |
| int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, |
| char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| |
| int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid, |
| char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| |
| int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid, |
| char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| |
| EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x, |
| pem_password_cb *cb, void *u); |
| |
| EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x, |
| pem_password_cb *cb, void *u); |
| |
| int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x); |
| int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x); |
| |
| RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x, |
| pem_password_cb *cb, void *u); |
| |
| RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x, |
| pem_password_cb *cb, void *u); |
| |
| int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc, |
| unsigned char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| |
| int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc, |
| unsigned char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| |
| RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x, |
| pem_password_cb *cb, void *u); |
| |
| RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x, |
| pem_password_cb *cb, void *u); |
| |
| int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x); |
| |
| int PEM_write_RSAPublicKey(FILE *fp, RSA *x); |
| |
| RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x, |
| pem_password_cb *cb, void *u); |
| |
| RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x, |
| pem_password_cb *cb, void *u); |
| |
| int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x); |
| |
| int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x); |
| |
| DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x, |
| pem_password_cb *cb, void *u); |
| |
| DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x, |
| pem_password_cb *cb, void *u); |
| |
| int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc, |
| unsigned char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| |
| int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc, |
| unsigned char *kstr, int klen, |
| pem_password_cb *cb, void *u); |
| |
| DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x, |
| pem_password_cb *cb, void *u); |
| |
| DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x, |
| pem_password_cb *cb, void *u); |
| |
| int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x); |
| |
| int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x); |
| |
| DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u); |
| |
| DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u); |
| |
| int PEM_write_bio_DSAparams(BIO *bp, DSA *x); |
| |
| int PEM_write_DSAparams(FILE *fp, DSA *x); |
| |
| DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u); |
| |
| DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u); |
| |
| int PEM_write_bio_DHparams(BIO *bp, DH *x); |
| |
| int PEM_write_DHparams(FILE *fp, DH *x); |
| |
| X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u); |
| |
| X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u); |
| |
| int PEM_write_bio_X509(BIO *bp, X509 *x); |
| |
| int PEM_write_X509(FILE *fp, X509 *x); |
| |
| X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u); |
| |
| X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u); |
| |
| int PEM_write_bio_X509_AUX(BIO *bp, X509 *x); |
| |
| int PEM_write_X509_AUX(FILE *fp, X509 *x); |
| |
| X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x, |
| pem_password_cb *cb, void *u); |
| |
| X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x, |
| pem_password_cb *cb, void *u); |
| |
| int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x); |
| |
| int PEM_write_X509_REQ(FILE *fp, X509_REQ *x); |
| |
| int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x); |
| |
| int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x); |
| |
| X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x, |
| pem_password_cb *cb, void *u); |
| X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x, |
| pem_password_cb *cb, void *u); |
| int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x); |
| int PEM_write_X509_CRL(FILE *fp, X509_CRL *x); |
| |
| PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u); |
| |
| PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u); |
| |
| int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x); |
| |
| int PEM_write_PKCS7(FILE *fp, PKCS7 *x); |
| |
| NETSCAPE_CERT_SEQUENCE *PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, |
| NETSCAPE_CERT_SEQUENCE **x, |
| pem_password_cb *cb, void *u); |
| |
| NETSCAPE_CERT_SEQUENCE *PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp, |
| NETSCAPE_CERT_SEQUENCE **x, |
| pem_password_cb *cb, void *u); |
| |
| int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE *x); |
| |
| int PEM_write_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE *x); |
| |
| =head1 DESCRIPTION |
| |
| The PEM functions read or write structures in PEM format. In |
| this sense PEM format is simply base64 encoded data surrounded |
| by header lines. |
| |
| For more details about the meaning of arguments see the |
| B<PEM FUNCTION ARGUMENTS> section. |
| |
| Each operation has four functions associated with it. For |
| clarity the term "B<foobar> functions" will be used to collectively |
| refer to the PEM_read_bio_foobar(), PEM_read_foobar(), |
| PEM_write_bio_foobar() and PEM_write_foobar() functions. |
| |
| The B<PrivateKey> functions read or write a private key in |
| PEM format using an EVP_PKEY structure. The write routines use |
| "traditional" private key format and can handle both RSA and DSA |
| private keys. The read functions can additionally transparently |
| handle PKCS#8 format encrypted and unencrypted keys too. |
| |
| PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() |
| write a private key in an EVP_PKEY structure in PKCS#8 |
| EncryptedPrivateKeyInfo format using PKCS#5 v2.0 password based encryption |
| algorithms. The B<cipher> argument specifies the encryption algorithm to |
| use: unlike all other PEM routines the encryption is applied at the |
| PKCS#8 level and not in the PEM headers. If B<cipher> is NULL then no |
| encryption is used and a PKCS#8 PrivateKeyInfo structure is used instead. |
| |
| PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid() |
| also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however |
| it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm |
| to use is specified in the B<nid> parameter and should be the NID of the |
| corresponding OBJECT IDENTIFIER (see NOTES section). |
| |
| The B<PUBKEY> functions process a public key using an EVP_PKEY |
| structure. The public key is encoded as a SubjectPublicKeyInfo |
| structure. |
| |
| The B<RSAPrivateKey> functions process an RSA private key using an |
| RSA structure. It handles the same formats as the B<PrivateKey> |
| functions but an error occurs if the private key is not RSA. |
| |
| The B<RSAPublicKey> functions process an RSA public key using an |
| RSA structure. The public key is encoded using a PKCS#1 RSAPublicKey |
| structure. |
| |
| The B<RSA_PUBKEY> functions also process an RSA public key using |
| an RSA structure. However the public key is encoded using a |
| SubjectPublicKeyInfo structure and an error occurs if the public |
| key is not RSA. |
| |
| The B<DSAPrivateKey> functions process a DSA private key using a |
| DSA structure. It handles the same formats as the B<PrivateKey> |
| functions but an error occurs if the private key is not DSA. |
| |
| The B<DSA_PUBKEY> functions process a DSA public key using |
| a DSA structure. The public key is encoded using a |
| SubjectPublicKeyInfo structure and an error occurs if the public |
| key is not DSA. |
| |
| The B<DSAparams> functions process DSA parameters using a DSA |
| structure. The parameters are encoded using a foobar structure. |
| |
| The B<DHparams> functions process DH parameters using a DH |
| structure. The parameters are encoded using a PKCS#3 DHparameter |
| structure. |
| |
| The B<X509> functions process an X509 certificate using an X509 |
| structure. They will also process a trusted X509 certificate but |
| any trust settings are discarded. |
| |
| The B<X509_AUX> functions process a trusted X509 certificate using |
| an X509 structure. |
| |
| The B<X509_REQ> and B<X509_REQ_NEW> functions process a PKCS#10 |
| certificate request using an X509_REQ structure. The B<X509_REQ> |
| write functions use B<CERTIFICATE REQUEST> in the header whereas |
| the B<X509_REQ_NEW> functions use B<NEW CERTIFICATE REQUEST> |
| (as required by some CAs). The B<X509_REQ> read functions will |
| handle either form so there are no B<X509_REQ_NEW> read functions. |
| |
| The B<X509_CRL> functions process an X509 CRL using an X509_CRL |
| structure. |
| |
| The B<PKCS7> functions process a PKCS#7 ContentInfo using a PKCS7 |
| structure. |
| |
| The B<NETSCAPE_CERT_SEQUENCE> functions process a Netscape Certificate |
| Sequence using a NETSCAPE_CERT_SEQUENCE structure. |
| |
| =head1 PEM FUNCTION ARGUMENTS |
| |
| The PEM functions have many common arguments. |
| |
| The B<bp> BIO parameter (if present) specifies the BIO to read from |
| or write to. |
| |
| The B<fp> FILE parameter (if present) specifies the FILE pointer to |
| read from or write to. |
| |
| The PEM read functions all take an argument B<TYPE **x> and return |
| a B<TYPE *> pointer. Where B<TYPE> is whatever structure the function |
| uses. If B<x> is NULL then the parameter is ignored. If B<x> is not |
| NULL but B<*x> is NULL then the structure returned will be written |
| to B<*x>. If neither B<x> nor B<*x> is NULL then an attempt is made |
| to reuse the structure at B<*x> (but see BUGS and EXAMPLES sections). |
| Irrespective of the value of B<x> a pointer to the structure is always |
| returned (or NULL if an error occurred). |
| |
| The PEM functions which write private keys take an B<enc> parameter |
| which specifies the encryption algorithm to use, encryption is done |
| at the PEM level. If this parameter is set to NULL then the private |
| key is written in unencrypted form. |
| |
| The B<cb> argument is the callback to use when querying for the pass |
| phrase used for encrypted PEM structures (normally only private keys). |
| |
| For the PEM write routines if the B<kstr> parameter is not NULL then |
| B<klen> bytes at B<kstr> are used as the passphrase and B<cb> is |
| ignored. |
| |
| If the B<cb> parameters is set to NULL and the B<u> parameter is not |
| NULL then the B<u> parameter is interpreted as a null terminated string |
| to use as the passphrase. If both B<cb> and B<u> are NULL then the |
| default callback routine is used which will typically prompt for the |
| passphrase on the current terminal with echoing turned off. |
| |
| The default passphrase callback is sometimes inappropriate (for example |
| in a GUI application) so an alternative can be supplied. The callback |
| routine has the following form: |
| |
| int cb(char *buf, int size, int rwflag, void *u); |
| |
| B<buf> is the buffer to write the passphrase to. B<size> is the maximum |
| length of the passphrase (i.e. the size of buf). B<rwflag> is a flag |
| which is set to 0 when reading and 1 when writing. A typical routine |
| will ask the user to verify the passphrase (for example by prompting |
| for it twice) if B<rwflag> is 1. The B<u> parameter has the same |
| value as the B<u> parameter passed to the PEM routine. It allows |
| arbitrary data to be passed to the callback by the application |
| (for example a window handle in a GUI application). The callback |
| B<must> return the number of characters in the passphrase or 0 if |
| an error occurred. |
| |
| =head1 EXAMPLES |
| |
| Although the PEM routines take several arguments in almost all applications |
| most of them are set to 0 or NULL. |
| |
| Read a certificate in PEM format from a BIO: |
| |
| X509 *x; |
| x = PEM_read_bio_X509(bp, NULL, 0, NULL); |
| if (x == NULL) |
| { |
| /* Error */ |
| } |
| |
| Alternative method: |
| |
| X509 *x = NULL; |
| if (!PEM_read_bio_X509(bp, &x, 0, NULL)) |
| { |
| /* Error */ |
| } |
| |
| Write a certificate to a BIO: |
| |
| if (!PEM_write_bio_X509(bp, x)) |
| { |
| /* Error */ |
| } |
| |
| Write an unencrypted private key to a FILE pointer: |
| |
| if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL)) |
| { |
| /* Error */ |
| } |
| |
| Write a private key (using traditional format) to a BIO using |
| triple DES encryption, the pass phrase is prompted for: |
| |
| if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL)) |
| { |
| /* Error */ |
| } |
| |
| Write a private key (using PKCS#8 format) to a BIO using triple |
| DES encryption, using the pass phrase "hello": |
| |
| if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello")) |
| { |
| /* Error */ |
| } |
| |
| Read a private key from a BIO using the pass phrase "hello": |
| |
| key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello"); |
| if (key == NULL) |
| { |
| /* Error */ |
| } |
| |
| Read a private key from a BIO using a pass phrase callback: |
| |
| key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key"); |
| if (key == NULL) |
| { |
| /* Error */ |
| } |
| |
| Skeleton pass phrase callback: |
| |
| int pass_cb(char *buf, int size, int rwflag, void *u); |
| { |
| int len; |
| char *tmp; |
| /* We'd probably do something else if 'rwflag' is 1 */ |
| printf("Enter pass phrase for \"%s\"\n", u); |
| |
| /* get pass phrase, length 'len' into 'tmp' */ |
| tmp = "hello"; |
| len = strlen(tmp); |
| |
| if (len <= 0) return 0; |
| /* if too long, truncate */ |
| if (len > size) len = size; |
| memcpy(buf, tmp, len); |
| return len; |
| } |
| |
| =head1 NOTES |
| |
| The old B<PrivateKey> write routines are retained for compatibility. |
| New applications should write private keys using the |
| PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines |
| because they are more secure (they use an iteration count of 2048 whereas |
| the traditional routines use a count of 1) unless compatibility with older |
| versions of OpenSSL is important. |
| |
| The B<PrivateKey> read routines can be used in all applications because |
| they handle all formats transparently. |
| |
| A frequent cause of problems is attempting to use the PEM routines like |
| this: |
| |
| X509 *x; |
| PEM_read_bio_X509(bp, &x, 0, NULL); |
| |
| this is a bug because an attempt will be made to reuse the data at B<x> |
| which is an uninitialised pointer. |
| |
| =head1 PEM ENCRYPTION FORMAT |
| |
| This old B<PrivateKey> routines use a non standard technique for encryption. |
| |
| The private key (or other data) takes the following form: |
| |
| -----BEGIN RSA PRIVATE KEY----- |
| Proc-Type: 4,ENCRYPTED |
| DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89 |
| |
| ...base64 encoded data... |
| -----END RSA PRIVATE KEY----- |
| |
| The line beginning DEK-Info contains two comma separated pieces of information: |
| the encryption algorithm name as used by EVP_get_cipherbyname() and an 8 |
| byte B<salt> encoded as a set of hexadecimal digits. |
| |
| After this is the base64 encoded encrypted data. |
| |
| The encryption key is determined using EVP_BytesToKey(), using B<salt> and an |
| iteration count of 1. The IV used is the value of B<salt> and *not* the IV |
| returned by EVP_BytesToKey(). |
| |
| =head1 BUGS |
| |
| The PEM read routines in some versions of OpenSSL will not correctly reuse |
| an existing structure. Therefore the following: |
| |
| PEM_read_bio_X509(bp, &x, 0, NULL); |
| |
| where B<x> already contains a valid certificate, may not work, whereas: |
| |
| X509_free(x); |
| x = PEM_read_bio_X509(bp, NULL, 0, NULL); |
| |
| is guaranteed to work. |
| |
| =head1 RETURN CODES |
| |
| The read routines return either a pointer to the structure read or NULL |
| if an error occurred. |
| |
| The write routines return 1 for success or 0 for failure. |
| |
| =head1 SEE ALSO |
| |
| L<EVP_get_cipherbyname(3)|EVP_get_cipherbyname>, L<EVP_BytesToKey(3)|EVP_BytesToKey(3)> |