| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * |
| * Portions of the attached software ("Contribution") are developed by |
| * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| * |
| * The Contribution is licensed pursuant to the OpenSSL open source |
| * license provided above. |
| * |
| * The ECDH and ECDSA speed test software is originally written by |
| * Sumit Gupta of Sun Microsystems Laboratories. |
| * |
| */ |
| |
| #undef SECONDS |
| #define SECONDS 3 |
| #define PRIME_SECONDS 10 |
| #define RSA_SECONDS 10 |
| #define DSA_SECONDS 10 |
| #define ECDSA_SECONDS 10 |
| #define ECDH_SECONDS 10 |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <math.h> |
| #include "apps.h" |
| #include <openssl/crypto.h> |
| #include <openssl/rand.h> |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/objects.h> |
| #include <openssl/async.h> |
| #if !defined(OPENSSL_SYS_MSDOS) |
| # include OPENSSL_UNISTD |
| #endif |
| |
| #if defined(_WIN32) |
| # include <windows.h> |
| #endif |
| |
| #include <openssl/bn.h> |
| #ifndef OPENSSL_NO_DES |
| # include <openssl/des.h> |
| #endif |
| #include <openssl/aes.h> |
| #ifndef OPENSSL_NO_CAMELLIA |
| # include <openssl/camellia.h> |
| #endif |
| #ifndef OPENSSL_NO_MD2 |
| # include <openssl/md2.h> |
| #endif |
| #ifndef OPENSSL_NO_MDC2 |
| # include <openssl/mdc2.h> |
| #endif |
| #ifndef OPENSSL_NO_MD4 |
| # include <openssl/md4.h> |
| #endif |
| #ifndef OPENSSL_NO_MD5 |
| # include <openssl/md5.h> |
| #endif |
| #include <openssl/hmac.h> |
| #include <openssl/sha.h> |
| #ifndef OPENSSL_NO_RMD160 |
| # include <openssl/ripemd.h> |
| #endif |
| #ifndef OPENSSL_NO_WHIRLPOOL |
| # include <openssl/whrlpool.h> |
| #endif |
| #ifndef OPENSSL_NO_RC4 |
| # include <openssl/rc4.h> |
| #endif |
| #ifndef OPENSSL_NO_RC5 |
| # include <openssl/rc5.h> |
| #endif |
| #ifndef OPENSSL_NO_RC2 |
| # include <openssl/rc2.h> |
| #endif |
| #ifndef OPENSSL_NO_IDEA |
| # include <openssl/idea.h> |
| #endif |
| #ifndef OPENSSL_NO_SEED |
| # include <openssl/seed.h> |
| #endif |
| #ifndef OPENSSL_NO_BF |
| # include <openssl/blowfish.h> |
| #endif |
| #ifndef OPENSSL_NO_CAST |
| # include <openssl/cast.h> |
| #endif |
| #ifndef OPENSSL_NO_RSA |
| # include <openssl/rsa.h> |
| # include "./testrsa.h" |
| #endif |
| #include <openssl/x509.h> |
| #ifndef OPENSSL_NO_DSA |
| # include <openssl/dsa.h> |
| # include "./testdsa.h" |
| #endif |
| #ifndef OPENSSL_NO_EC |
| # include <openssl/ec.h> |
| #endif |
| #include <openssl/modes.h> |
| |
| #ifndef HAVE_FORK |
| # if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) |
| # define HAVE_FORK 0 |
| # else |
| # define HAVE_FORK 1 |
| # endif |
| #endif |
| |
| #if HAVE_FORK |
| # undef NO_FORK |
| #else |
| # define NO_FORK |
| #endif |
| |
| #undef BUFSIZE |
| #define BUFSIZE (1024*16+1) |
| #define MAX_MISALIGNMENT 63 |
| |
| #define ALGOR_NUM 30 |
| #define SIZE_NUM 6 |
| #define PRIME_NUM 3 |
| #define RSA_NUM 7 |
| #define DSA_NUM 3 |
| |
| #define EC_NUM 17 |
| #define MAX_ECDH_SIZE 256 |
| #define MISALIGN 64 |
| |
| static volatile int run = 0; |
| |
| static int mr = 0; |
| static int usertime = 1; |
| |
| typedef struct loopargs_st { |
| ASYNC_JOB *inprogress_job; |
| ASYNC_WAIT_CTX *wait_ctx; |
| unsigned char *buf; |
| unsigned char *buf2; |
| unsigned char *buf_malloc; |
| unsigned char *buf2_malloc; |
| unsigned int *siglen; |
| #ifndef OPENSSL_NO_RSA |
| RSA *rsa_key[RSA_NUM]; |
| #endif |
| #ifndef OPENSSL_NO_DSA |
| DSA *dsa_key[DSA_NUM]; |
| #endif |
| #ifndef OPENSSL_NO_EC |
| EC_KEY *ecdsa[EC_NUM]; |
| EC_KEY *ecdh_a[EC_NUM]; |
| EC_KEY *ecdh_b[EC_NUM]; |
| unsigned char *secret_a; |
| unsigned char *secret_b; |
| #endif |
| EVP_CIPHER_CTX *ctx; |
| HMAC_CTX *hctx; |
| GCM128_CONTEXT *gcm_ctx; |
| } loopargs_t; |
| |
| #ifndef OPENSSL_NO_MD2 |
| static int EVP_Digest_MD2_loop(void *args); |
| #endif |
| |
| #ifndef OPENSSL_NO_MDC2 |
| static int EVP_Digest_MDC2_loop(void *args); |
| #endif |
| #ifndef OPENSSL_NO_MD4 |
| static int EVP_Digest_MD4_loop(void *args); |
| #endif |
| #ifndef OPENSSL_NO_MD5 |
| static int MD5_loop(void *args); |
| static int HMAC_loop(void *args); |
| #endif |
| static int SHA1_loop(void *args); |
| static int SHA256_loop(void *args); |
| static int SHA512_loop(void *args); |
| #ifndef OPENSSL_NO_WHIRLPOOL |
| static int WHIRLPOOL_loop(void *args); |
| #endif |
| #ifndef OPENSSL_NO_RMD160 |
| static int EVP_Digest_RMD160_loop(void *args); |
| #endif |
| #ifndef OPENSSL_NO_RC4 |
| static int RC4_loop(void *args); |
| #endif |
| #ifndef OPENSSL_NO_DES |
| static int DES_ncbc_encrypt_loop(void *args); |
| static int DES_ede3_cbc_encrypt_loop(void *args); |
| #endif |
| static int AES_cbc_128_encrypt_loop(void *args); |
| static int AES_cbc_192_encrypt_loop(void *args); |
| static int AES_ige_128_encrypt_loop(void *args); |
| static int AES_cbc_256_encrypt_loop(void *args); |
| static int AES_ige_192_encrypt_loop(void *args); |
| static int AES_ige_256_encrypt_loop(void *args); |
| static int CRYPTO_gcm128_aad_loop(void *args); |
| static int EVP_Update_loop(void *args); |
| static int EVP_Digest_loop(void *args); |
| #ifndef OPENSSL_NO_RSA |
| static int RSA_sign_loop(void *args); |
| static int RSA_verify_loop(void *args); |
| #endif |
| #ifndef OPENSSL_NO_DSA |
| static int DSA_sign_loop(void *args); |
| static int DSA_verify_loop(void *args); |
| #endif |
| #ifndef OPENSSL_NO_EC |
| static int ECDSA_sign_loop(void *args); |
| static int ECDSA_verify_loop(void *args); |
| static int ECDH_compute_key_loop(void *args); |
| #endif |
| static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_t *loopargs); |
| |
| static double Time_F(int s); |
| static void print_message(const char *s, long num, int length); |
| static void pkey_print_message(const char *str, const char *str2, |
| long num, int bits, int sec); |
| static void print_result(int alg, int run_no, int count, double time_used); |
| #ifndef NO_FORK |
| static int do_multi(int multi); |
| #endif |
| |
| static const char *names[ALGOR_NUM] = { |
| "md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4", |
| "des cbc", "des ede3", "idea cbc", "seed cbc", |
| "rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc", |
| "aes-128 cbc", "aes-192 cbc", "aes-256 cbc", |
| "camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc", |
| "evp", "sha256", "sha512", "whirlpool", |
| "aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash" |
| }; |
| |
| static double results[ALGOR_NUM][SIZE_NUM]; |
| static int lengths[SIZE_NUM] = { |
| 16, 64, 256, 1024, 8 * 1024, 16 * 1024 |
| }; |
| |
| #ifndef OPENSSL_NO_RSA |
| static double rsa_results[RSA_NUM][2]; |
| #endif |
| #ifndef OPENSSL_NO_DSA |
| static double dsa_results[DSA_NUM][2]; |
| #endif |
| #ifndef OPENSSL_NO_EC |
| static double ecdsa_results[EC_NUM][2]; |
| static double ecdh_results[EC_NUM][1]; |
| #endif |
| |
| #if !defined(OPENSSL_NO_DSA) || !defined(OPENSSL_NO_EC) |
| static const char rnd_seed[] = |
| "string to make the random number generator think it has entropy"; |
| #endif |
| |
| #ifdef SIGALRM |
| # if defined(__STDC__) || defined(sgi) || defined(_AIX) |
| # define SIGRETTYPE void |
| # else |
| # define SIGRETTYPE int |
| # endif |
| |
| static SIGRETTYPE sig_done(int sig); |
| static SIGRETTYPE sig_done(int sig) |
| { |
| signal(SIGALRM, sig_done); |
| run = 0; |
| } |
| #endif |
| |
| #define START 0 |
| #define STOP 1 |
| |
| #if defined(_WIN32) |
| |
| # if !defined(SIGALRM) |
| # define SIGALRM |
| # endif |
| static unsigned int lapse, schlock; |
| static void alarm_win32(unsigned int secs) |
| { |
| lapse = secs * 1000; |
| } |
| |
| # define alarm alarm_win32 |
| |
| static DWORD WINAPI sleepy(VOID * arg) |
| { |
| schlock = 1; |
| Sleep(lapse); |
| run = 0; |
| return 0; |
| } |
| |
| static double Time_F(int s) |
| { |
| double ret; |
| static HANDLE thr; |
| |
| if (s == START) { |
| schlock = 0; |
| thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL); |
| if (thr == NULL) { |
| DWORD err = GetLastError(); |
| BIO_printf(bio_err, "unable to CreateThread (%lu)", err); |
| ExitProcess(err); |
| } |
| while (!schlock) |
| Sleep(0); /* scheduler spinlock */ |
| ret = app_tminterval(s, usertime); |
| } else { |
| ret = app_tminterval(s, usertime); |
| if (run) |
| TerminateThread(thr, 0); |
| CloseHandle(thr); |
| } |
| |
| return ret; |
| } |
| #else |
| |
| static double Time_F(int s) |
| { |
| double ret = app_tminterval(s, usertime); |
| if (s == STOP) |
| alarm(0); |
| return ret; |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_EC |
| static const int KDF1_SHA1_len = 20; |
| static void *KDF1_SHA1(const void *in, size_t inlen, void *out, |
| size_t *outlen) |
| { |
| if (*outlen < SHA_DIGEST_LENGTH) |
| return NULL; |
| *outlen = SHA_DIGEST_LENGTH; |
| return SHA1(in, inlen, out); |
| } |
| #endif /* OPENSSL_NO_EC */ |
| |
| static void multiblock_speed(const EVP_CIPHER *evp_cipher); |
| |
| static int found(const char *name, const OPT_PAIR * pairs, int *result) |
| { |
| for (; pairs->name; pairs++) |
| if (strcmp(name, pairs->name) == 0) { |
| *result = pairs->retval; |
| return 1; |
| } |
| return 0; |
| } |
| |
| typedef enum OPTION_choice { |
| OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, |
| OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI, |
| OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS |
| } OPTION_CHOICE; |
| |
| OPTIONS speed_options[] = { |
| {OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"}, |
| {OPT_HELP_STR, 1, '-', "Valid options are:\n"}, |
| {"help", OPT_HELP, '-', "Display this summary"}, |
| {"evp", OPT_EVP, 's', "Use specified EVP cipher"}, |
| {"decrypt", OPT_DECRYPT, '-', |
| "Time decryption instead of encryption (only EVP)"}, |
| {"mr", OPT_MR, '-', "Produce machine readable output"}, |
| {"mb", OPT_MB, '-'}, |
| {"misalign", OPT_MISALIGN, 'n', "Amount to mis-align buffers"}, |
| {"elapsed", OPT_ELAPSED, '-', |
| "Measure time in real time instead of CPU user time"}, |
| #ifndef NO_FORK |
| {"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"}, |
| #endif |
| #ifndef OPENSSL_NO_ASYNC |
| {"async_jobs", OPT_ASYNCJOBS, 'p', "Enable async mode and start pnum jobs"}, |
| #endif |
| #ifndef OPENSSL_NO_ENGINE |
| {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, |
| #endif |
| {NULL}, |
| }; |
| |
| #define D_MD2 0 |
| #define D_MDC2 1 |
| #define D_MD4 2 |
| #define D_MD5 3 |
| #define D_HMAC 4 |
| #define D_SHA1 5 |
| #define D_RMD160 6 |
| #define D_RC4 7 |
| #define D_CBC_DES 8 |
| #define D_EDE3_DES 9 |
| #define D_CBC_IDEA 10 |
| #define D_CBC_SEED 11 |
| #define D_CBC_RC2 12 |
| #define D_CBC_RC5 13 |
| #define D_CBC_BF 14 |
| #define D_CBC_CAST 15 |
| #define D_CBC_128_AES 16 |
| #define D_CBC_192_AES 17 |
| #define D_CBC_256_AES 18 |
| #define D_CBC_128_CML 19 |
| #define D_CBC_192_CML 20 |
| #define D_CBC_256_CML 21 |
| #define D_EVP 22 |
| #define D_SHA256 23 |
| #define D_SHA512 24 |
| #define D_WHIRLPOOL 25 |
| #define D_IGE_128_AES 26 |
| #define D_IGE_192_AES 27 |
| #define D_IGE_256_AES 28 |
| #define D_GHASH 29 |
| static OPT_PAIR doit_choices[] = { |
| #ifndef OPENSSL_NO_MD2 |
| {"md2", D_MD2}, |
| #endif |
| #ifndef OPENSSL_NO_MDC2 |
| {"mdc2", D_MDC2}, |
| #endif |
| #ifndef OPENSSL_NO_MD4 |
| {"md4", D_MD4}, |
| #endif |
| #ifndef OPENSSL_NO_MD5 |
| {"md5", D_MD5}, |
| #endif |
| #ifndef OPENSSL_NO_MD5 |
| {"hmac", D_HMAC}, |
| #endif |
| {"sha1", D_SHA1}, |
| {"sha256", D_SHA256}, |
| {"sha512", D_SHA512}, |
| #ifndef OPENSSL_NO_WHIRLPOOL |
| {"whirlpool", D_WHIRLPOOL}, |
| #endif |
| #ifndef OPENSSL_NO_RMD160 |
| {"ripemd", D_RMD160}, |
| {"rmd160", D_RMD160}, |
| {"ripemd160", D_RMD160}, |
| #endif |
| #ifndef OPENSSL_NO_RC4 |
| {"rc4", D_RC4}, |
| #endif |
| #ifndef OPENSSL_NO_DES |
| {"des-cbc", D_CBC_DES}, |
| {"des-ede3", D_EDE3_DES}, |
| #endif |
| {"aes-128-cbc", D_CBC_128_AES}, |
| {"aes-192-cbc", D_CBC_192_AES}, |
| {"aes-256-cbc", D_CBC_256_AES}, |
| {"aes-128-ige", D_IGE_128_AES}, |
| {"aes-192-ige", D_IGE_192_AES}, |
| {"aes-256-ige", D_IGE_256_AES}, |
| #ifndef OPENSSL_NO_RC2 |
| {"rc2-cbc", D_CBC_RC2}, |
| {"rc2", D_CBC_RC2}, |
| #endif |
| #ifndef OPENSSL_NO_RC5 |
| {"rc5-cbc", D_CBC_RC5}, |
| {"rc5", D_CBC_RC5}, |
| #endif |
| #ifndef OPENSSL_NO_IDEA |
| {"idea-cbc", D_CBC_IDEA}, |
| {"idea", D_CBC_IDEA}, |
| #endif |
| #ifndef OPENSSL_NO_SEED |
| {"seed-cbc", D_CBC_SEED}, |
| {"seed", D_CBC_SEED}, |
| #endif |
| #ifndef OPENSSL_NO_BF |
| {"bf-cbc", D_CBC_BF}, |
| {"blowfish", D_CBC_BF}, |
| {"bf", D_CBC_BF}, |
| #endif |
| #ifndef OPENSSL_NO_CAST |
| {"cast-cbc", D_CBC_CAST}, |
| {"cast", D_CBC_CAST}, |
| {"cast5", D_CBC_CAST}, |
| #endif |
| {"ghash", D_GHASH}, |
| {NULL} |
| }; |
| |
| #ifndef OPENSSL_NO_DSA |
| # define R_DSA_512 0 |
| # define R_DSA_1024 1 |
| # define R_DSA_2048 2 |
| static OPT_PAIR dsa_choices[] = { |
| {"dsa512", R_DSA_512}, |
| {"dsa1024", R_DSA_1024}, |
| {"dsa2048", R_DSA_2048}, |
| {NULL}, |
| }; |
| #endif |
| |
| #define R_RSA_512 0 |
| #define R_RSA_1024 1 |
| #define R_RSA_2048 2 |
| #define R_RSA_3072 3 |
| #define R_RSA_4096 4 |
| #define R_RSA_7680 5 |
| #define R_RSA_15360 6 |
| static OPT_PAIR rsa_choices[] = { |
| {"rsa512", R_RSA_512}, |
| {"rsa1024", R_RSA_1024}, |
| {"rsa2048", R_RSA_2048}, |
| {"rsa3072", R_RSA_3072}, |
| {"rsa4096", R_RSA_4096}, |
| {"rsa7680", R_RSA_7680}, |
| {"rsa15360", R_RSA_15360}, |
| {NULL} |
| }; |
| |
| #define R_EC_P160 0 |
| #define R_EC_P192 1 |
| #define R_EC_P224 2 |
| #define R_EC_P256 3 |
| #define R_EC_P384 4 |
| #define R_EC_P521 5 |
| #define R_EC_K163 6 |
| #define R_EC_K233 7 |
| #define R_EC_K283 8 |
| #define R_EC_K409 9 |
| #define R_EC_K571 10 |
| #define R_EC_B163 11 |
| #define R_EC_B233 12 |
| #define R_EC_B283 13 |
| #define R_EC_B409 14 |
| #define R_EC_B571 15 |
| #define R_EC_X25519 16 |
| #ifndef OPENSSL_NO_EC |
| static OPT_PAIR ecdsa_choices[] = { |
| {"ecdsap160", R_EC_P160}, |
| {"ecdsap192", R_EC_P192}, |
| {"ecdsap224", R_EC_P224}, |
| {"ecdsap256", R_EC_P256}, |
| {"ecdsap384", R_EC_P384}, |
| {"ecdsap521", R_EC_P521}, |
| {"ecdsak163", R_EC_K163}, |
| {"ecdsak233", R_EC_K233}, |
| {"ecdsak283", R_EC_K283}, |
| {"ecdsak409", R_EC_K409}, |
| {"ecdsak571", R_EC_K571}, |
| {"ecdsab163", R_EC_B163}, |
| {"ecdsab233", R_EC_B233}, |
| {"ecdsab283", R_EC_B283}, |
| {"ecdsab409", R_EC_B409}, |
| {"ecdsab571", R_EC_B571}, |
| {NULL} |
| }; |
| static OPT_PAIR ecdh_choices[] = { |
| {"ecdhp160", R_EC_P160}, |
| {"ecdhp192", R_EC_P192}, |
| {"ecdhp224", R_EC_P224}, |
| {"ecdhp256", R_EC_P256}, |
| {"ecdhp384", R_EC_P384}, |
| {"ecdhp521", R_EC_P521}, |
| {"ecdhk163", R_EC_K163}, |
| {"ecdhk233", R_EC_K233}, |
| {"ecdhk283", R_EC_K283}, |
| {"ecdhk409", R_EC_K409}, |
| {"ecdhk571", R_EC_K571}, |
| {"ecdhb163", R_EC_B163}, |
| {"ecdhb233", R_EC_B233}, |
| {"ecdhb283", R_EC_B283}, |
| {"ecdhb409", R_EC_B409}, |
| {"ecdhb571", R_EC_B571}, |
| {"ecdhx25519", R_EC_X25519}, |
| {NULL} |
| }; |
| #endif |
| |
| #ifndef SIGALRM |
| # define COND(d) (count < (d)) |
| # define COUNT(d) (d) |
| #else |
| # define COND(c) (run && count<0x7fffffff) |
| # define COUNT(d) (count) |
| #endif /* SIGALRM */ |
| |
| static int testnum; |
| static char *engine_id = NULL; |
| |
| |
| #ifndef OPENSSL_NO_MD2 |
| static int EVP_Digest_MD2_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| unsigned char md2[MD2_DIGEST_LENGTH]; |
| int count; |
| for (count = 0; COND(c[D_MD2][testnum]); count++) |
| EVP_Digest(buf, (unsigned long)lengths[testnum], &(md2[0]), NULL, |
| EVP_md2(), NULL); |
| return count; |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_MDC2 |
| static int EVP_Digest_MDC2_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| unsigned char mdc2[MDC2_DIGEST_LENGTH]; |
| int count; |
| for (count = 0; COND(c[D_MDC2][testnum]); count++) |
| EVP_Digest(buf, (unsigned long)lengths[testnum], &(mdc2[0]), NULL, |
| EVP_mdc2(), NULL); |
| return count; |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_MD4 |
| static int EVP_Digest_MD4_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| unsigned char md4[MD4_DIGEST_LENGTH]; |
| int count; |
| for (count = 0; COND(c[D_MD4][testnum]); count++) |
| EVP_Digest(&(buf[0]), (unsigned long)lengths[testnum], &(md4[0]), |
| NULL, EVP_md4(), NULL); |
| return count; |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_MD5 |
| static int MD5_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| unsigned char md5[MD5_DIGEST_LENGTH]; |
| int count; |
| for (count = 0; COND(c[D_MD5][testnum]); count++) |
| MD5(buf, lengths[testnum], md5); |
| return count; |
| } |
| |
| static int HMAC_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| HMAC_CTX *hctx = tempargs->hctx; |
| unsigned char hmac[MD5_DIGEST_LENGTH]; |
| int count; |
| for (count = 0; COND(c[D_HMAC][testnum]); count++) { |
| HMAC_Init_ex(hctx, NULL, 0, NULL, NULL); |
| HMAC_Update(hctx, buf, lengths[testnum]); |
| HMAC_Final(hctx, &(hmac[0]), NULL); |
| } |
| return count; |
| } |
| #endif |
| |
| static int SHA1_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| unsigned char sha[SHA_DIGEST_LENGTH]; |
| int count; |
| for (count = 0; COND(c[D_SHA1][testnum]); count++) |
| SHA1(buf, lengths[testnum], sha); |
| return count; |
| } |
| |
| static int SHA256_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| unsigned char sha256[SHA256_DIGEST_LENGTH]; |
| int count; |
| for (count = 0; COND(c[D_SHA256][testnum]); count++) |
| SHA256(buf, lengths[testnum], sha256); |
| return count; |
| } |
| |
| static int SHA512_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| unsigned char sha512[SHA512_DIGEST_LENGTH]; |
| int count; |
| for (count = 0; COND(c[D_SHA512][testnum]); count++) |
| SHA512(buf, lengths[testnum], sha512); |
| return count; |
| } |
| |
| #ifndef OPENSSL_NO_WHIRLPOOL |
| static int WHIRLPOOL_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH]; |
| int count; |
| for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++) |
| WHIRLPOOL(buf, lengths[testnum], whirlpool); |
| return count; |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_RMD160 |
| static int EVP_Digest_RMD160_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| unsigned char rmd160[RIPEMD160_DIGEST_LENGTH]; |
| int count; |
| for (count = 0; COND(c[D_RMD160][testnum]); count++) |
| EVP_Digest(buf, (unsigned long)lengths[testnum], &(rmd160[0]), NULL, |
| EVP_ripemd160(), NULL); |
| return count; |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_RC4 |
| static RC4_KEY rc4_ks; |
| static int RC4_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| int count; |
| for (count = 0; COND(c[D_RC4][testnum]); count++) |
| RC4(&rc4_ks, (unsigned int)lengths[testnum], buf, buf); |
| return count; |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_DES |
| static unsigned char DES_iv[8]; |
| static DES_key_schedule sch; |
| static DES_key_schedule sch2; |
| static DES_key_schedule sch3; |
| static int DES_ncbc_encrypt_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| int count; |
| for (count = 0; COND(c[D_CBC_DES][testnum]); count++) |
| DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch, |
| &DES_iv, DES_ENCRYPT); |
| return count; |
| } |
| |
| static int DES_ede3_cbc_encrypt_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| int count; |
| for (count = 0; COND(c[D_EDE3_DES][testnum]); count++) |
| DES_ede3_cbc_encrypt(buf, buf, lengths[testnum], |
| &sch, &sch2, &sch3, |
| &DES_iv, DES_ENCRYPT); |
| return count; |
| } |
| #endif |
| |
| #define MAX_BLOCK_SIZE 128 |
| |
| static unsigned char iv[2 * MAX_BLOCK_SIZE / 8]; |
| static AES_KEY aes_ks1, aes_ks2, aes_ks3; |
| static int AES_cbc_128_encrypt_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| int count; |
| for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++) |
| AES_cbc_encrypt(buf, buf, |
| (unsigned long)lengths[testnum], &aes_ks1, |
| iv, AES_ENCRYPT); |
| return count; |
| } |
| |
| static int AES_cbc_192_encrypt_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| int count; |
| for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++) |
| AES_cbc_encrypt(buf, buf, |
| (unsigned long)lengths[testnum], &aes_ks2, |
| iv, AES_ENCRYPT); |
| return count; |
| } |
| |
| static int AES_cbc_256_encrypt_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| int count; |
| for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++) |
| AES_cbc_encrypt(buf, buf, |
| (unsigned long)lengths[testnum], &aes_ks3, |
| iv, AES_ENCRYPT); |
| return count; |
| } |
| |
| static int AES_ige_128_encrypt_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| unsigned char *buf2 = tempargs->buf2; |
| int count; |
| for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++) |
| AES_ige_encrypt(buf, buf2, |
| (unsigned long)lengths[testnum], &aes_ks1, |
| iv, AES_ENCRYPT); |
| return count; |
| } |
| |
| static int AES_ige_192_encrypt_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| unsigned char *buf2 = tempargs->buf2; |
| int count; |
| for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++) |
| AES_ige_encrypt(buf, buf2, |
| (unsigned long)lengths[testnum], &aes_ks2, |
| iv, AES_ENCRYPT); |
| return count; |
| } |
| |
| static int AES_ige_256_encrypt_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| unsigned char *buf2 = tempargs->buf2; |
| int count; |
| for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++) |
| AES_ige_encrypt(buf, buf2, |
| (unsigned long)lengths[testnum], &aes_ks3, |
| iv, AES_ENCRYPT); |
| return count; |
| } |
| |
| static int CRYPTO_gcm128_aad_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx; |
| int count; |
| for (count = 0; COND(c[D_GHASH][testnum]); count++) |
| CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]); |
| return count; |
| } |
| |
| static int decrypt = 0; |
| static int EVP_Update_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| EVP_CIPHER_CTX *ctx = tempargs->ctx; |
| int outl, count; |
| if (decrypt) |
| for (count = 0; |
| COND(save_count * 4 * lengths[0] / lengths[testnum]); |
| count++) |
| EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); |
| else |
| for (count = 0; |
| COND(save_count * 4 * lengths[0] / lengths[testnum]); |
| count++) |
| EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); |
| if (decrypt) |
| EVP_DecryptFinal_ex(ctx, buf, &outl); |
| else |
| EVP_EncryptFinal_ex(ctx, buf, &outl); |
| return count; |
| } |
| |
| static const EVP_MD *evp_md = NULL; |
| static int EVP_Digest_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| unsigned char md[EVP_MAX_MD_SIZE]; |
| int count; |
| for (count = 0; |
| COND(save_count * 4 * lengths[0] / lengths[testnum]); count++) |
| EVP_Digest(buf, lengths[testnum], &(md[0]), NULL, evp_md, NULL); |
| |
| return count; |
| } |
| |
| #ifndef OPENSSL_NO_RSA |
| static long rsa_c[RSA_NUM][2]; |
| |
| static int RSA_sign_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| unsigned char *buf2 = tempargs->buf2; |
| unsigned int *rsa_num = tempargs->siglen; |
| RSA **rsa_key = tempargs->rsa_key; |
| int ret, count; |
| for (count = 0; COND(rsa_c[testnum][0]); count++) { |
| ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]); |
| if (ret == 0) { |
| BIO_printf(bio_err, "RSA sign failure\n"); |
| ERR_print_errors(bio_err); |
| count = -1; |
| break; |
| } |
| } |
| return count; |
| } |
| |
| static int RSA_verify_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| unsigned char *buf2 = tempargs->buf2; |
| unsigned int rsa_num = *(tempargs->siglen); |
| RSA **rsa_key = tempargs->rsa_key; |
| int ret, count; |
| for (count = 0; COND(rsa_c[testnum][1]); count++) { |
| ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]); |
| if (ret <= 0) { |
| BIO_printf(bio_err, "RSA verify failure\n"); |
| ERR_print_errors(bio_err); |
| count = -1; |
| break; |
| } |
| } |
| return count; |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_DSA |
| static long dsa_c[DSA_NUM][2]; |
| static int DSA_sign_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| unsigned char *buf2 = tempargs->buf2; |
| DSA **dsa_key = tempargs->dsa_key; |
| unsigned int *siglen = tempargs->siglen; |
| int ret, count; |
| for (count = 0; COND(dsa_c[testnum][0]); count++) { |
| ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]); |
| if (ret == 0) { |
| BIO_printf(bio_err, "DSA sign failure\n"); |
| ERR_print_errors(bio_err); |
| count = -1; |
| break; |
| } |
| } |
| return count; |
| } |
| |
| static int DSA_verify_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| unsigned char *buf2 = tempargs->buf2; |
| DSA **dsa_key = tempargs->dsa_key; |
| unsigned int siglen = *(tempargs->siglen); |
| int ret, count; |
| for (count = 0; COND(dsa_c[testnum][1]); count++) { |
| ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]); |
| if (ret <= 0) { |
| BIO_printf(bio_err, "DSA verify failure\n"); |
| ERR_print_errors(bio_err); |
| count = -1; |
| break; |
| } |
| } |
| return count; |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_EC |
| static long ecdsa_c[EC_NUM][2]; |
| static int ECDSA_sign_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| EC_KEY **ecdsa = tempargs->ecdsa; |
| unsigned char *ecdsasig = tempargs->buf2; |
| unsigned int *ecdsasiglen = tempargs->siglen; |
| int ret, count; |
| for (count = 0; COND(ecdsa_c[testnum][0]); count++) { |
| ret = ECDSA_sign(0, buf, 20, |
| ecdsasig, ecdsasiglen, ecdsa[testnum]); |
| if (ret == 0) { |
| BIO_printf(bio_err, "ECDSA sign failure\n"); |
| ERR_print_errors(bio_err); |
| count = -1; |
| break; |
| } |
| } |
| return count; |
| } |
| |
| static int ECDSA_verify_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| unsigned char *buf = tempargs->buf; |
| EC_KEY **ecdsa = tempargs->ecdsa; |
| unsigned char *ecdsasig = tempargs->buf2; |
| unsigned int ecdsasiglen = *(tempargs->siglen); |
| int ret, count; |
| for (count = 0; COND(ecdsa_c[testnum][1]); count++) { |
| ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, |
| ecdsa[testnum]); |
| if (ret != 1) { |
| BIO_printf(bio_err, "ECDSA verify failure\n"); |
| ERR_print_errors(bio_err); |
| count = -1; |
| break; |
| } |
| } |
| return count; |
| } |
| |
| static int outlen; |
| static void *(*kdf) (const void *in, size_t inlen, void *out, |
| size_t *xoutlen); |
| |
| static int ECDH_compute_key_loop(void *args) |
| { |
| loopargs_t *tempargs = (loopargs_t *)args; |
| EC_KEY **ecdh_a = tempargs->ecdh_a; |
| EC_KEY **ecdh_b = tempargs->ecdh_b; |
| unsigned char *secret_a = tempargs->secret_a; |
| int count; |
| for (count = 0; COND(ecdh_c[testnum][0]); count++) { |
| ECDH_compute_key(secret_a, outlen, |
| EC_KEY_get0_public_key(ecdh_b[testnum]), |
| ecdh_a[testnum], kdf); |
| } |
| return count; |
| } |
| #endif |
| |
| |
| static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_t *loopargs) |
| { |
| int job_op_count = 0; |
| int total_op_count = 0; |
| int num_inprogress = 0; |
| int error = 0; |
| int i = 0; |
| OSSL_ASYNC_FD job_fd = 0; |
| size_t num_job_fds = 0; |
| |
| run = 1; |
| |
| if (async_jobs == 0) { |
| return loop_function((void *)loopargs); |
| } |
| |
| |
| for (i = 0; i < async_jobs && !error; i++) { |
| switch (ASYNC_start_job(&(loopargs[i].inprogress_job), loopargs[i].wait_ctx, |
| &job_op_count, loop_function, |
| (void *)(loopargs + i), sizeof(loopargs_t))) { |
| case ASYNC_PAUSE: |
| ++num_inprogress; |
| break; |
| case ASYNC_FINISH: |
| if (job_op_count == -1) { |
| error = 1; |
| } else { |
| total_op_count += job_op_count; |
| } |
| break; |
| case ASYNC_NO_JOBS: |
| case ASYNC_ERR: |
| BIO_printf(bio_err, "Failure in the job\n"); |
| ERR_print_errors(bio_err); |
| error = 1; |
| break; |
| } |
| } |
| |
| while (num_inprogress > 0) { |
| #if defined(OPENSSL_SYS_WINDOWS) |
| DWORD avail = 0; |
| #elif defined(OPENSSL_SYS_UNIX) |
| int select_result = 0; |
| OSSL_ASYNC_FD max_fd = 0; |
| fd_set waitfdset; |
| |
| FD_ZERO(&waitfdset); |
| |
| for (i = 0; i < async_jobs && num_inprogress > 0; i++) { |
| if (loopargs[i].inprogress_job == NULL) |
| continue; |
| |
| if (!ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, NULL, &num_job_fds) |
| || num_job_fds > 1) { |
| BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); |
| ERR_print_errors(bio_err); |
| error = 1; |
| break; |
| } |
| ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds); |
| FD_SET(job_fd, &waitfdset); |
| if (job_fd > max_fd) |
| max_fd = job_fd; |
| } |
| |
| if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) { |
| BIO_printf(bio_err, |
| "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). " |
| "Decrease the value of async_jobs\n", |
| max_fd, FD_SETSIZE); |
| ERR_print_errors(bio_err); |
| error = 1; |
| break; |
| } |
| |
| select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL); |
| if (select_result == -1 && errno == EINTR) |
| continue; |
| |
| if (select_result == -1) { |
| BIO_printf(bio_err, "Failure in the select\n"); |
| ERR_print_errors(bio_err); |
| error = 1; |
| break; |
| } |
| |
| if (select_result == 0) |
| continue; |
| #endif |
| |
| for (i = 0; i < async_jobs; i++) { |
| if (loopargs[i].inprogress_job == NULL) |
| continue; |
| |
| if (!ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, NULL, &num_job_fds) |
| || num_job_fds > 1) { |
| BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); |
| ERR_print_errors(bio_err); |
| error = 1; |
| break; |
| } |
| ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds); |
| |
| #if defined(OPENSSL_SYS_UNIX) |
| if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset)) |
| continue; |
| #elif defined(OPENSSL_SYS_WINDOWS) |
| if (num_job_fds == 1 && |
| !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL) && avail > 0) |
| continue; |
| #endif |
| |
| switch (ASYNC_start_job(&(loopargs[i].inprogress_job), loopargs[i].wait_ctx, |
| &job_op_count, loop_function, (void *)(loopargs + i), |
| sizeof(loopargs_t))) { |
| case ASYNC_PAUSE: |
| break; |
| case ASYNC_FINISH: |
| if (job_op_count == -1) { |
| error = 1; |
| } else { |
| total_op_count += job_op_count; |
| } |
| --num_inprogress; |
| loopargs[i].inprogress_job = NULL; |
| break; |
| case ASYNC_NO_JOBS: |
| case ASYNC_ERR: |
| --num_inprogress; |
| loopargs[i].inprogress_job = NULL; |
| BIO_printf(bio_err, "Failure in the job\n"); |
| ERR_print_errors(bio_err); |
| error = 1; |
| break; |
| } |
| } |
| } |
| |
| return error ? -1 : total_op_count; |
| } |
| |
| int speed_main(int argc, char **argv) |
| { |
| loopargs_t *loopargs = NULL; |
| int loopargs_len = 0; |
| char *prog; |
| const EVP_CIPHER *evp_cipher = NULL; |
| double d = 0.0; |
| OPTION_CHOICE o; |
| int multiblock = 0, doit[ALGOR_NUM], pr_header = 0; |
| #ifndef OPENSSL_NO_DSA |
| int dsa_doit[DSA_NUM]; |
| #endif |
| int rsa_doit[RSA_NUM]; |
| int ret = 1, i, k, misalign = 0; |
| long c[ALGOR_NUM][SIZE_NUM], count = 0, save_count = 0; |
| #ifndef NO_FORK |
| int multi = 0; |
| #endif |
| int async_jobs = 0; |
| /* What follows are the buffers and key material. */ |
| #if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) |
| long rsa_count = 1; |
| #endif |
| #ifndef OPENSSL_NO_RC5 |
| RC5_32_KEY rc5_ks; |
| #endif |
| #ifndef OPENSSL_NO_RC2 |
| RC2_KEY rc2_ks; |
| #endif |
| #ifndef OPENSSL_NO_IDEA |
| IDEA_KEY_SCHEDULE idea_ks; |
| #endif |
| #ifndef OPENSSL_NO_SEED |
| SEED_KEY_SCHEDULE seed_ks; |
| #endif |
| #ifndef OPENSSL_NO_BF |
| BF_KEY bf_ks; |
| #endif |
| #ifndef OPENSSL_NO_CAST |
| CAST_KEY cast_ks; |
| #endif |
| static const unsigned char key16[16] = { |
| 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 |
| }; |
| static const unsigned char key24[24] = { |
| 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
| 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 |
| }; |
| static const unsigned char key32[32] = { |
| 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
| 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, |
| 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 |
| }; |
| #ifndef OPENSSL_NO_CAMELLIA |
| static const unsigned char ckey24[24] = { |
| 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
| 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 |
| }; |
| static const unsigned char ckey32[32] = { |
| 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
| 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, |
| 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 |
| }; |
| CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3; |
| #endif |
| #ifndef OPENSSL_NO_DES |
| static DES_cblock key = { |
| 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0 |
| }; |
| static DES_cblock key2 = { |
| 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 |
| }; |
| static DES_cblock key3 = { |
| 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 |
| }; |
| #endif |
| #ifndef OPENSSL_NO_RSA |
| static unsigned int rsa_bits[RSA_NUM] = { |
| 512, 1024, 2048, 3072, 4096, 7680, 15360 |
| }; |
| static unsigned char *rsa_data[RSA_NUM] = { |
| test512, test1024, test2048, test3072, test4096, test7680, test15360 |
| }; |
| static int rsa_data_length[RSA_NUM] = { |
| sizeof(test512), sizeof(test1024), |
| sizeof(test2048), sizeof(test3072), |
| sizeof(test4096), sizeof(test7680), |
| sizeof(test15360) |
| }; |
| #endif |
| #ifndef OPENSSL_NO_DSA |
| static unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 }; |
| #endif |
| #ifndef OPENSSL_NO_EC |
| /* |
| * We only test over the following curves as they are representative, To |
| * add tests over more curves, simply add the curve NID and curve name to |
| * the following arrays and increase the EC_NUM value accordingly. |
| */ |
| static unsigned int test_curves[EC_NUM] = { |
| /* Prime Curves */ |
| NID_secp160r1, NID_X9_62_prime192v1, NID_secp224r1, |
| NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1, |
| /* Binary Curves */ |
| NID_sect163k1, NID_sect233k1, NID_sect283k1, |
| NID_sect409k1, NID_sect571k1, NID_sect163r2, |
| NID_sect233r1, NID_sect283r1, NID_sect409r1, |
| NID_sect571r1, |
| /* Other */ |
| NID_X25519 |
| }; |
| static const char *test_curves_names[EC_NUM] = { |
| /* Prime Curves */ |
| "secp160r1", "nistp192", "nistp224", |
| "nistp256", "nistp384", "nistp521", |
| /* Binary Curves */ |
| "nistk163", "nistk233", "nistk283", |
| "nistk409", "nistk571", "nistb163", |
| "nistb233", "nistb283", "nistb409", |
| "nistb571", |
| /* Other */ |
| "X25519" |
| }; |
| static int test_curves_bits[EC_NUM] = { |
| 160, 192, 224, |
| 256, 384, 521, |
| 163, 233, 283, |
| 409, 571, 163, |
| 233, 283, 409, |
| 571, 253 /* X25519 */ |
| }; |
| #endif |
| #ifndef OPENSSL_NO_EC |
| int ecdsa_doit[EC_NUM]; |
| int secret_size_a, secret_size_b; |
| int ecdh_checks = 1; |
| int secret_idx = 0; |
| long ecdh_c[EC_NUM][2]; |
| int ecdh_doit[EC_NUM]; |
| #endif |
| |
| memset(results, 0, sizeof(results)); |
| |
| memset(c, 0, sizeof(c)); |
| #ifndef OPENSSL_NO_DES |
| memset(DES_iv, 0, sizeof(DES_iv)); |
| #endif |
| memset(iv, 0, sizeof(iv)); |
| |
| for (i = 0; i < ALGOR_NUM; i++) |
| doit[i] = 0; |
| for (i = 0; i < RSA_NUM; i++) |
| rsa_doit[i] = 0; |
| #ifndef OPENSSL_NO_DSA |
| for (i = 0; i < DSA_NUM; i++) |
| dsa_doit[i] = 0; |
| #endif |
| #ifndef OPENSSL_NO_EC |
| for (i = 0; i < EC_NUM; i++) |
| ecdsa_doit[i] = 0; |
| for (i = 0; i < EC_NUM; i++) |
| ecdh_doit[i] = 0; |
| #endif |
| |
| misalign = 0; |
| |
| prog = opt_init(argc, argv, speed_options); |
| while ((o = opt_next()) != OPT_EOF) { |
| switch (o) { |
| case OPT_EOF: |
| case OPT_ERR: |
| opterr: |
| BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); |
| goto end; |
| case OPT_HELP: |
| opt_help(speed_options); |
| ret = 0; |
| goto end; |
| case OPT_ELAPSED: |
| usertime = 0; |
| break; |
| case OPT_EVP: |
| evp_cipher = EVP_get_cipherbyname(opt_arg()); |
| if (evp_cipher == NULL) |
| evp_md = EVP_get_digestbyname(opt_arg()); |
| if (evp_cipher == NULL && evp_md == NULL) { |
| BIO_printf(bio_err, |
| "%s: %s an unknown cipher or digest\n", |
| prog, opt_arg()); |
| goto end; |
| } |
| doit[D_EVP] = 1; |
| break; |
| case OPT_DECRYPT: |
| decrypt = 1; |
| break; |
| case OPT_ENGINE: |
| /* |
| * In a forked execution, an engine might need to be |
| * initialised by each child process, not by the parent. |
| * So store the name here and run setup_engine() later on. |
| */ |
| engine_id = opt_arg(); |
| break; |
| case OPT_MULTI: |
| #ifndef NO_FORK |
| multi = atoi(opt_arg()); |
| #endif |
| break; |
| case OPT_ASYNCJOBS: |
| #ifndef OPENSSL_NO_ASYNC |
| async_jobs = atoi(opt_arg()); |
| if (!ASYNC_is_capable()) { |
| BIO_printf(bio_err, |
| "%s: async_jobs specified but async not supported\n", |
| prog); |
| goto opterr; |
| } |
| #endif |
| break; |
| case OPT_MISALIGN: |
| if (!opt_int(opt_arg(), &misalign)) |
| goto end; |
| if (misalign > MISALIGN) { |
| BIO_printf(bio_err, |
| "%s: Maximum offset is %d\n", prog, MISALIGN); |
| goto opterr; |
| } |
| break; |
| case OPT_MR: |
| mr = 1; |
| break; |
| case OPT_MB: |
| multiblock = 1; |
| break; |
| } |
| } |
| argc = opt_num_rest(); |
| argv = opt_rest(); |
| |
| /* Remaining arguments are algorithms. */ |
| for ( ; *argv; argv++) { |
| if (found(*argv, doit_choices, &i)) { |
| doit[i] = 1; |
| continue; |
| } |
| #ifndef OPENSSL_NO_DES |
| if (strcmp(*argv, "des") == 0) { |
| doit[D_CBC_DES] = doit[D_EDE3_DES] = 1; |
| continue; |
| } |
| #endif |
| if (strcmp(*argv, "sha") == 0) { |
| doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1; |
| continue; |
| } |
| #ifndef OPENSSL_NO_RSA |
| # ifndef RSA_NULL |
| if (strcmp(*argv, "openssl") == 0) { |
| RSA_set_default_method(RSA_PKCS1_OpenSSL()); |
| continue; |
| } |
| # endif |
| if (strcmp(*argv, "rsa") == 0) { |
| rsa_doit[R_RSA_512] = rsa_doit[R_RSA_1024] = |
| rsa_doit[R_RSA_2048] = rsa_doit[R_RSA_3072] = |
| rsa_doit[R_RSA_4096] = rsa_doit[R_RSA_7680] = |
| rsa_doit[R_RSA_15360] = 1; |
| continue; |
| } |
| if (found(*argv, rsa_choices, &i)) { |
| rsa_doit[i] = 1; |
| continue; |
| } |
| #endif |
| #ifndef OPENSSL_NO_DSA |
| if (strcmp(*argv, "dsa") == 0) { |
| dsa_doit[R_DSA_512] = dsa_doit[R_DSA_1024] = |
| dsa_doit[R_DSA_2048] = 1; |
| continue; |
| } |
| if (found(*argv, dsa_choices, &i)) { |
| dsa_doit[i] = 2; |
| continue; |
| } |
| #endif |
| if (strcmp(*argv, "aes") == 0) { |
| doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = |
| doit[D_CBC_256_AES] = 1; |
| continue; |
| } |
| #ifndef OPENSSL_NO_CAMELLIA |
| if (strcmp(*argv, "camellia") == 0) { |
| doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = |
| doit[D_CBC_256_CML] = 1; |
| continue; |
| } |
| #endif |
| #ifndef OPENSSL_NO_EC |
| if (strcmp(*argv, "ecdsa") == 0) { |
| for (i = 0; i < EC_NUM; i++) |
| ecdsa_doit[i] = 1; |
| continue; |
| } |
| if (found(*argv, ecdsa_choices, &i)) { |
| ecdsa_doit[i] = 2; |
| continue; |
| } |
| if (strcmp(*argv, "ecdh") == 0) { |
| for (i = 0; i < EC_NUM; i++) |
| ecdh_doit[i] = 1; |
| continue; |
| } |
| if (found(*argv, ecdh_choices, &i)) { |
| ecdh_doit[i] = 2; |
| continue; |
| } |
| #endif |
| BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, *argv); |
| goto end; |
| } |
| |
| /* Initialize the job pool if async mode is enabled */ |
| if (async_jobs > 0) { |
| if (!ASYNC_init_thread(async_jobs, async_jobs)) { |
| BIO_printf(bio_err, "Error creating the ASYNC job pool\n"); |
| goto end; |
| } |
| } |
| |
| loopargs_len = (async_jobs == 0 ? 1 : async_jobs); |
| loopargs = app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs"); |
| memset(loopargs, 0, loopargs_len * sizeof(loopargs_t)); |
| |
| for (i = 0; i < loopargs_len; i++) { |
| if (async_jobs > 0) { |
| loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new(); |
| if (loopargs[i].wait_ctx == NULL) { |
| BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n"); |
| goto end; |
| } |
| } |
| |
| loopargs[i].buf_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer"); |
| loopargs[i].buf2_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer"); |
| /* Align the start of buffers on a 64 byte boundary */ |
| loopargs[i].buf = loopargs[i].buf_malloc + misalign; |
| loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign; |
| loopargs[i].siglen = app_malloc(sizeof(unsigned int), "signature length"); |
| #ifndef OPENSSL_NO_EC |
| loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a"); |
| loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b"); |
| #endif |
| } |
| |
| #ifndef NO_FORK |
| if (multi && do_multi(multi)) |
| goto show_res; |
| #endif |
| |
| /* Initialize the engine after the fork */ |
| (void)setup_engine(engine_id, 0); |
| |
| /* No parameters; turn on everything. */ |
| if ((argc == 0) && !doit[D_EVP]) { |
| for (i = 0; i < ALGOR_NUM; i++) |
| if (i != D_EVP) |
| doit[i] = 1; |
| for (i = 0; i < RSA_NUM; i++) |
| rsa_doit[i] = 1; |
| #ifndef OPENSSL_NO_DSA |
| for (i = 0; i < DSA_NUM; i++) |
| dsa_doit[i] = 1; |
| #endif |
| #ifndef OPENSSL_NO_EC |
| for (i = 0; i < EC_NUM; i++) |
| ecdsa_doit[i] = 1; |
| for (i = 0; i < EC_NUM; i++) |
| ecdh_doit[i] = 1; |
| #endif |
| } |
| for (i = 0; i < ALGOR_NUM; i++) |
| if (doit[i]) |
| pr_header++; |
| |
| if (usertime == 0 && !mr) |
| BIO_printf(bio_err, |
| "You have chosen to measure elapsed time " |
| "instead of user CPU time.\n"); |
| |
| #ifndef OPENSSL_NO_RSA |
| for (i = 0; i < loopargs_len; i++) { |
| for (k = 0; k < RSA_NUM; k++) { |
| const unsigned char *p; |
| |
| p = rsa_data[k]; |
| loopargs[i].rsa_key[k] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]); |
| if (loopargs[i].rsa_key[k] == NULL) { |
| BIO_printf(bio_err, "internal error loading RSA key number %d\n", |
| k); |
| goto end; |
| } |
| } |
| } |
| #endif |
| #ifndef OPENSSL_NO_DSA |
| for (i = 0; i < loopargs_len; i++) { |
| loopargs[i].dsa_key[0] = get_dsa512(); |
| loopargs[i].dsa_key[1] = get_dsa1024(); |
| loopargs[i].dsa_key[2] = get_dsa2048(); |
| } |
| #endif |
| #ifndef OPENSSL_NO_DES |
| DES_set_key_unchecked(&key, &sch); |
| DES_set_key_unchecked(&key2, &sch2); |
| DES_set_key_unchecked(&key3, &sch3); |
| #endif |
| AES_set_encrypt_key(key16, 128, &aes_ks1); |
| AES_set_encrypt_key(key24, 192, &aes_ks2); |
| AES_set_encrypt_key(key32, 256, &aes_ks3); |
| #ifndef OPENSSL_NO_CAMELLIA |
| Camellia_set_key(key16, 128, &camellia_ks1); |
| Camellia_set_key(ckey24, 192, &camellia_ks2); |
| Camellia_set_key(ckey32, 256, &camellia_ks3); |
| #endif |
| #ifndef OPENSSL_NO_IDEA |
| idea_set_encrypt_key(key16, &idea_ks); |
| #endif |
| #ifndef OPENSSL_NO_SEED |
| SEED_set_key(key16, &seed_ks); |
| #endif |
| #ifndef OPENSSL_NO_RC4 |
| RC4_set_key(&rc4_ks, 16, key16); |
| #endif |
| #ifndef OPENSSL_NO_RC2 |
| RC2_set_key(&rc2_ks, 16, key16, 128); |
| #endif |
| #ifndef OPENSSL_NO_RC5 |
| RC5_32_set_key(&rc5_ks, 16, key16, 12); |
| #endif |
| #ifndef OPENSSL_NO_BF |
| BF_set_key(&bf_ks, 16, key16); |
| #endif |
| #ifndef OPENSSL_NO_CAST |
| CAST_set_key(&cast_ks, 16, key16); |
| #endif |
| #ifndef OPENSSL_NO_RSA |
| memset(rsa_c, 0, sizeof(rsa_c)); |
| #endif |
| #ifndef SIGALRM |
| # ifndef OPENSSL_NO_DES |
| BIO_printf(bio_err, "First we calculate the approximate speed ...\n"); |
| count = 10; |
| do { |
| long it; |
| count *= 2; |
| Time_F(START); |
| for (it = count; it; it--) |
| DES_ecb_encrypt((DES_cblock *)loopargs[0].buf, |
| (DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT); |
| d = Time_F(STOP); |
| } while (d < 3); |
| save_count = count; |
| c[D_MD2][0] = count / 10; |
| c[D_MDC2][0] = count / 10; |
| c[D_MD4][0] = count; |
| c[D_MD5][0] = count; |
| c[D_HMAC][0] = count; |
| c[D_SHA1][0] = count; |
| c[D_RMD160][0] = count; |
| c[D_RC4][0] = count * 5; |
| c[D_CBC_DES][0] = count; |
| c[D_EDE3_DES][0] = count / 3; |
| c[D_CBC_IDEA][0] = count; |
| c[D_CBC_SEED][0] = count; |
| c[D_CBC_RC2][0] = count; |
| c[D_CBC_RC5][0] = count; |
| c[D_CBC_BF][0] = count; |
| c[D_CBC_CAST][0] = count; |
| c[D_CBC_128_AES][0] = count; |
| c[D_CBC_192_AES][0] = count; |
| c[D_CBC_256_AES][0] = count; |
| c[D_CBC_128_CML][0] = count; |
| c[D_CBC_192_CML][0] = count; |
| c[D_CBC_256_CML][0] = count; |
| c[D_SHA256][0] = count; |
| c[D_SHA512][0] = count; |
| c[D_WHIRLPOOL][0] = count; |
| c[D_IGE_128_AES][0] = count; |
| c[D_IGE_192_AES][0] = count; |
| c[D_IGE_256_AES][0] = count; |
| c[D_GHASH][0] = count; |
| |
| for (i = 1; i < SIZE_NUM; i++) { |
| long l0, l1; |
| |
| l0 = (long)lengths[0]; |
| l1 = (long)lengths[i]; |
| |
| c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1; |
| c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1; |
| c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1; |
| c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1; |
| c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1; |
| c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1; |
| c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1; |
| c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1; |
| c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1; |
| c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1; |
| c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1; |
| |
| l0 = (long)lengths[i - 1]; |
| |
| c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1; |
| c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1; |
| c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1; |
| c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1; |
| c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1; |
| c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1; |
| c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1; |
| c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1; |
| c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1; |
| c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1; |
| c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1; |
| c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1; |
| c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1; |
| c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1; |
| c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1; |
| c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1; |
| c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1; |
| c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1; |
| } |
| |
| # ifndef OPENSSL_NO_RSA |
| rsa_c[R_RSA_512][0] = count / 2000; |
| rsa_c[R_RSA_512][1] = count / 400; |
| for (i = 1; i < RSA_NUM; i++) { |
| rsa_c[i][0] = rsa_c[i - 1][0] / 8; |
| rsa_c[i][1] = rsa_c[i - 1][1] / 4; |
| if ((rsa_doit[i] <= 1) && (rsa_c[i][0] == 0)) |
| rsa_doit[i] = 0; |
| else { |
| if (rsa_c[i][0] == 0) { |
| rsa_c[i][0] = 1; |
| rsa_c[i][1] = 20; |
| } |
| } |
| } |
| # endif |
| |
| # ifndef OPENSSL_NO_DSA |
| dsa_c[R_DSA_512][0] = count / 1000; |
| dsa_c[R_DSA_512][1] = count / 1000 / 2; |
| for (i = 1; i < DSA_NUM; i++) { |
| dsa_c[i][0] = dsa_c[i - 1][0] / 4; |
| dsa_c[i][1] = dsa_c[i - 1][1] / 4; |
| if ((dsa_doit[i] <= 1) && (dsa_c[i][0] == 0)) |
| dsa_doit[i] = 0; |
| else { |
| if (dsa_c[i] == 0) { |
| dsa_c[i][0] = 1; |
| dsa_c[i][1] = 1; |
| } |
| } |
| } |
| # endif |
| |
| # ifndef OPENSSL_NO_EC |
| ecdsa_c[R_EC_P160][0] = count / 1000; |
| ecdsa_c[R_EC_P160][1] = count / 1000 / 2; |
| for (i = R_EC_P192; i <= R_EC_P521; i++) { |
| ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; |
| ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; |
| if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0)) |
| ecdsa_doit[i] = 0; |
| else { |
| if (ecdsa_c[i] == 0) { |
| ecdsa_c[i][0] = 1; |
| ecdsa_c[i][1] = 1; |
| } |
| } |
| } |
| ecdsa_c[R_EC_K163][0] = count / 1000; |
| ecdsa_c[R_EC_K163][1] = count / 1000 / 2; |
| for (i = R_EC_K233; i <= R_EC_K571; i++) { |
| ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; |
| ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; |
| if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0)) |
| ecdsa_doit[i] = 0; |
| else { |
| if (ecdsa_c[i] == 0) { |
| ecdsa_c[i][0] = 1; |
| ecdsa_c[i][1] = 1; |
| } |
| } |
| } |
| ecdsa_c[R_EC_B163][0] = count / 1000; |
| ecdsa_c[R_EC_B163][1] = count / 1000 / 2; |
| for (i = R_EC_B233; i <= R_EC_B571; i++) { |
| ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; |
| ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; |
| if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0)) |
| ecdsa_doit[i] = 0; |
| else { |
| if (ecdsa_c[i] == 0) { |
| ecdsa_c[i][0] = 1; |
| ecdsa_c[i][1] = 1; |
| } |
| } |
| } |
| |
| ecdh_c[R_EC_P160][0] = count / 1000; |
| ecdh_c[R_EC_P160][1] = count / 1000; |
| for (i = R_EC_P192; i <= R_EC_P521; i++) { |
| ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; |
| ecdh_c[i][1] = ecdh_c[i - 1][1] / 2; |
| if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0)) |
| ecdh_doit[i] = 0; |
| else { |
| if (ecdh_c[i] == 0) { |
| ecdh_c[i][0] = 1; |
| ecdh_c[i][1] = 1; |
| } |
| } |
| } |
| ecdh_c[R_EC_K163][0] = count / 1000; |
| ecdh_c[R_EC_K163][1] = count / 1000; |
| for (i = R_EC_K233; i <= R_EC_K571; i++) { |
| ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; |
| ecdh_c[i][1] = ecdh_c[i - 1][1] / 2; |
| if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0)) |
| ecdh_doit[i] = 0; |
| else { |
| if (ecdh_c[i] == 0) { |
| ecdh_c[i][0] = 1; |
| ecdh_c[i][1] = 1; |
| } |
| } |
| } |
| ecdh_c[R_EC_B163][0] = count / 1000; |
| ecdh_c[R_EC_B163][1] = count / 1000; |
| for (i = R_EC_B233; i <= R_EC_B571; i++) { |
| ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; |
| ecdh_c[i][1] = ecdh_c[i - 1][1] / 2; |
| if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0)) |
| ecdh_doit[i] = 0; |
| else { |
| if (ecdh_c[i] == 0) { |
| ecdh_c[i][0] = 1; |
| ecdh_c[i][1] = 1; |
| } |
| } |
| } |
| # endif |
| |
| # else |
| /* not worth fixing */ |
| # error "You cannot disable DES on systems without SIGALRM." |
| # endif /* OPENSSL_NO_DES */ |
| #else |
| # ifndef _WIN32 |
| signal(SIGALRM, sig_done); |
| # endif |
| #endif /* SIGALRM */ |
| |
| #ifndef OPENSSL_NO_MD2 |
| if (doit[D_MD2]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_MD2, testnum, count, d); |
| } |
| } |
| #endif |
| #ifndef OPENSSL_NO_MDC2 |
| if (doit[D_MDC2]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_MDC2, testnum, count, d); |
| } |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_MD4 |
| if (doit[D_MD4]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_MD4, testnum, count, d); |
| } |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_MD5 |
| if (doit[D_MD5]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, MD5_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_MD5, testnum, count, d); |
| } |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_MD5 |
| if (doit[D_HMAC]) { |
| for (i = 0; i < loopargs_len; i++) { |
| loopargs[i].hctx = HMAC_CTX_new(); |
| if (loopargs[i].hctx == NULL) { |
| BIO_printf(bio_err, "HMAC malloc failure, exiting..."); |
| exit(1); |
| } |
| |
| HMAC_Init_ex(loopargs[i].hctx, (unsigned char *)"This is a key...", |
| 16, EVP_md5(), NULL); |
| } |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, HMAC_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_HMAC, testnum, count, d); |
| } |
| for (i = 0; i < loopargs_len; i++) { |
| HMAC_CTX_free(loopargs[i].hctx); |
| } |
| } |
| #endif |
| if (doit[D_SHA1]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, SHA1_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_SHA1, testnum, count, d); |
| } |
| } |
| if (doit[D_SHA256]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_SHA256], c[D_SHA256][testnum], lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, SHA256_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_SHA256, testnum, count, d); |
| } |
| } |
| if (doit[D_SHA512]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_SHA512], c[D_SHA512][testnum], lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, SHA512_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_SHA512, testnum, count, d); |
| } |
| } |
| |
| #ifndef OPENSSL_NO_WHIRLPOOL |
| if (doit[D_WHIRLPOOL]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum], lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_WHIRLPOOL, testnum, count, d); |
| } |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_RMD160 |
| if (doit[D_RMD160]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_RMD160], c[D_RMD160][testnum], lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_RMD160, testnum, count, d); |
| } |
| } |
| #endif |
| #ifndef OPENSSL_NO_RC4 |
| if (doit[D_RC4]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, RC4_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_RC4, testnum, count, d); |
| } |
| } |
| #endif |
| #ifndef OPENSSL_NO_DES |
| if (doit[D_CBC_DES]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_CBC_DES], c[D_CBC_DES][testnum], lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_CBC_DES, testnum, count, d); |
| } |
| } |
| |
| if (doit[D_EDE3_DES]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum], lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_EDE3_DES, testnum, count, d); |
| } |
| } |
| #endif |
| |
| if (doit[D_CBC_128_AES]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum], |
| lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_CBC_128_AES, testnum, count, d); |
| } |
| } |
| if (doit[D_CBC_192_AES]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum], |
| lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_CBC_192_AES, testnum, count, d); |
| } |
| } |
| if (doit[D_CBC_256_AES]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum], |
| lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_CBC_256_AES, testnum, count, d); |
| } |
| } |
| |
| if (doit[D_IGE_128_AES]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum], |
| lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_IGE_128_AES, testnum, count, d); |
| } |
| } |
| if (doit[D_IGE_192_AES]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum], |
| lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_IGE_192_AES, testnum, count, d); |
| } |
| } |
| if (doit[D_IGE_256_AES]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum], |
| lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_IGE_256_AES, testnum, count, d); |
| } |
| } |
| if (doit[D_GHASH]) { |
| for (i = 0; i < loopargs_len; i++) { |
| loopargs[i].gcm_ctx = CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt); |
| CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx, (unsigned char *)"0123456789ab", 12); |
| } |
| |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_GHASH], c[D_GHASH][testnum], lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs); |
| d = Time_F(STOP); |
| print_result(D_GHASH, testnum, count, d); |
| } |
| for (i = 0; i < loopargs_len; i++) |
| CRYPTO_gcm128_release(loopargs[i].gcm_ctx); |
| } |
| |
| #ifndef OPENSSL_NO_CAMELLIA |
| if (doit[D_CBC_128_CML]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum], |
| lengths[testnum]); |
| if (async_jobs > 0) { |
| BIO_printf(bio_err, "Async mode is not supported, exiting..."); |
| exit(1); |
| } |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_128_CML][testnum]); count++) |
| Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, |
| (unsigned long)lengths[testnum], &camellia_ks1, |
| iv, CAMELLIA_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_128_CML, testnum, count, d); |
| } |
| } |
| if (doit[D_CBC_192_CML]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum], |
| lengths[testnum]); |
| if (async_jobs > 0) { |
| BIO_printf(bio_err, "Async mode is not supported, exiting..."); |
| exit(1); |
| } |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_192_CML][testnum]); count++) |
| Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, |
| (unsigned long)lengths[testnum], &camellia_ks2, |
| iv, CAMELLIA_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_192_CML, testnum, count, d); |
| } |
| } |
| if (doit[D_CBC_256_CML]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum], |
| lengths[testnum]); |
| if (async_jobs > 0) { |
| BIO_printf(bio_err, "Async mode is not supported, exiting..."); |
| exit(1); |
| } |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_256_CML][testnum]); count++) |
| Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, |
| (unsigned long)lengths[testnum], &camellia_ks3, |
| iv, CAMELLIA_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_256_CML, testnum, count, d); |
| } |
| } |
| #endif |
| #ifndef OPENSSL_NO_IDEA |
| if (doit[D_CBC_IDEA]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum], lengths[testnum]); |
| if (async_jobs > 0) { |
| BIO_printf(bio_err, "Async mode is not supported, exiting..."); |
| exit(1); |
| } |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_IDEA][testnum]); count++) |
| idea_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, |
| (unsigned long)lengths[testnum], &idea_ks, |
| iv, IDEA_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_IDEA, testnum, count, d); |
| } |
| } |
| #endif |
| #ifndef OPENSSL_NO_SEED |
| if (doit[D_CBC_SEED]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum], lengths[testnum]); |
| if (async_jobs > 0) { |
| BIO_printf(bio_err, "Async mode is not supported, exiting..."); |
| exit(1); |
| } |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_SEED][testnum]); count++) |
| SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, |
| (unsigned long)lengths[testnum], &seed_ks, iv, 1); |
| d = Time_F(STOP); |
| print_result(D_CBC_SEED, testnum, count, d); |
| } |
| } |
| #endif |
| #ifndef OPENSSL_NO_RC2 |
| if (doit[D_CBC_RC2]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum], lengths[testnum]); |
| if (async_jobs > 0) { |
| BIO_printf(bio_err, "Async mode is not supported, exiting..."); |
| exit(1); |
| } |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_RC2][testnum]); count++) |
| RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, |
| (unsigned long)lengths[testnum], &rc2_ks, |
| iv, RC2_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_RC2, testnum, count, d); |
| } |
| } |
| #endif |
| #ifndef OPENSSL_NO_RC5 |
| if (doit[D_CBC_RC5]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum], lengths[testnum]); |
| if (async_jobs > 0) { |
| BIO_printf(bio_err, "Async mode is not supported, exiting..."); |
| exit(1); |
| } |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_RC5][testnum]); count++) |
| RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, |
| (unsigned long)lengths[testnum], &rc5_ks, |
| iv, RC5_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_RC5, testnum, count, d); |
| } |
| } |
| #endif |
| #ifndef OPENSSL_NO_BF |
| if (doit[D_CBC_BF]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_CBC_BF], c[D_CBC_BF][testnum], lengths[testnum]); |
| if (async_jobs > 0) { |
| BIO_printf(bio_err, "Async mode is not supported, exiting..."); |
| exit(1); |
| } |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_BF][testnum]); count++) |
| BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, |
| (unsigned long)lengths[testnum], &bf_ks, |
| iv, BF_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_BF, testnum, count, d); |
| } |
| } |
| #endif |
| #ifndef OPENSSL_NO_CAST |
| if (doit[D_CBC_CAST]) { |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum], lengths[testnum]); |
| if (async_jobs > 0) { |
| BIO_printf(bio_err, "Async mode is not supported, exiting..."); |
| exit(1); |
| } |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_CAST][testnum]); count++) |
| CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, |
| (unsigned long)lengths[testnum], &cast_ks, |
| iv, CAST_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_CAST, testnum, count, d); |
| } |
| } |
| #endif |
| |
| if (doit[D_EVP]) { |
| #ifdef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK |
| if (multiblock && evp_cipher) { |
| if (! |
| (EVP_CIPHER_flags(evp_cipher) & |
| EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) { |
| BIO_printf(bio_err, "%s is not multi-block capable\n", |
| OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher))); |
| goto end; |
| } |
| if (async_jobs > 0) { |
| BIO_printf(bio_err, "Async mode is not supported, exiting..."); |
| exit(1); |
| } |
| multiblock_speed(evp_cipher); |
| ret = 0; |
| goto end; |
| } |
| #endif |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| if (evp_cipher) { |
| |
| names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)); |
| /* |
| * -O3 -fschedule-insns messes up an optimization here! |
| * names[D_EVP] somehow becomes NULL |
| */ |
| print_message(names[D_EVP], save_count, lengths[testnum]); |
| |
| for (k = 0; k < loopargs_len; k++) { |
| loopargs[k].ctx = EVP_CIPHER_CTX_new(); |
| if (decrypt) |
| EVP_DecryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv); |
| else |
| EVP_EncryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv); |
| EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0); |
| } |
| |
| Time_F(START); |
| count = run_benchmark(async_jobs, EVP_Update_loop, loopargs); |
| d = Time_F(STOP); |
| for (k = 0; k < loopargs_len; k++) { |
| EVP_CIPHER_CTX_free(loopargs[k].ctx); |
| } |
| } |
| if (evp_md) { |
| names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md)); |
| print_message(names[D_EVP], save_count, lengths[testnum]); |
| Time_F(START); |
| count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs); |
| d = Time_F(STOP); |
| } |
| print_result(D_EVP, testnum, count, d); |
| } |
| } |
| |
| for (i = 0; i < loopargs_len; i++) |
| RAND_bytes(loopargs[i].buf, 36); |
| |
| #ifndef OPENSSL_NO_RSA |
| for (testnum = 0; testnum < RSA_NUM; testnum++) { |
| int st = 0; |
| if (!rsa_doit[testnum]) |
| continue; |
| for (i = 0; i < loopargs_len; i++) { |
| st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, |
| loopargs[i].siglen, loopargs[i].rsa_key[testnum]); |
| if (st == 0) |
| break; |
| } |
| if (st == 0) { |
| BIO_printf(bio_err, |
| "RSA sign failure. No RSA sign will be done.\n"); |
| ERR_print_errors(bio_err); |
| rsa_count = 1; |
| } else { |
| pkey_print_message("private", "rsa", |
| rsa_c[testnum][0], rsa_bits[testnum], RSA_SECONDS); |
| /* RSA_blinding_on(rsa_key[testnum],NULL); */ |
| Time_F(START); |
| count = run_benchmark(async_jobs, RSA_sign_loop, loopargs); |
| d = Time_F(STOP); |
| BIO_printf(bio_err, |
| mr ? "+R1:%ld:%d:%.2f\n" |
| : "%ld %d bit private RSA's in %.2fs\n", |
| count, rsa_bits[testnum], d); |
| rsa_results[testnum][0] = d / (double)count; |
| rsa_count = count; |
| } |
| |
| for (i = 0; i < loopargs_len; i++) { |
| st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, |
| *(loopargs[i].siglen), loopargs[i].rsa_key[testnum]); |
| if (st <= 0) |
| break; |
| } |
| if (st <= 0) { |
| BIO_printf(bio_err, |
| "RSA verify failure. No RSA verify will be done.\n"); |
| ERR_print_errors(bio_err); |
| rsa_doit[testnum] = 0; |
| } else { |
| pkey_print_message("public", "rsa", |
| rsa_c[testnum][1], rsa_bits[testnum], RSA_SECONDS); |
| Time_F(START); |
| count = run_benchmark(async_jobs, RSA_verify_loop, loopargs); |
| d = Time_F(STOP); |
| BIO_printf(bio_err, |
| mr ? "+R2:%ld:%d:%.2f\n" |
| : "%ld %d bit public RSA's in %.2fs\n", |
| count, rsa_bits[testnum], d); |
| rsa_results[testnum][1] = d / (double)count; |
| } |
| |
| if (rsa_count <= 1) { |
| /* if longer than 10s, don't do any more */ |
| for (testnum++; testnum < RSA_NUM; testnum++) |
| rsa_doit[testnum] = 0; |
| } |
| } |
| #endif |
| |
| for (i = 0; i < loopargs_len; i++) |
| RAND_bytes(loopargs[i].buf, 36); |
| |
| #ifndef OPENSSL_NO_DSA |
| if (RAND_status() != 1) { |
| RAND_seed(rnd_seed, sizeof rnd_seed); |
| } |
| for (testnum = 0; testnum < DSA_NUM; testnum++) { |
| int st = 0; |
| if (!dsa_doit[testnum]) |
| continue; |
| |
| /* DSA_generate_key(dsa_key[testnum]); */ |
| /* DSA_sign_setup(dsa_key[testnum],NULL); */ |
| for (i = 0; i < loopargs_len; i++) { |
| st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, |
| loopargs[i].siglen, loopargs[i].dsa_key[testnum]); |
| if (st == 0) |
| break; |
| } |
| if (st == 0) { |
| BIO_printf(bio_err, |
| "DSA sign failure. No DSA sign will be done.\n"); |
| ERR_print_errors(bio_err); |
| rsa_count = 1; |
| } else { |
| pkey_print_message("sign", "dsa", |
| dsa_c[testnum][0], dsa_bits[testnum], DSA_SECONDS); |
| Time_F(START); |
| count = run_benchmark(async_jobs, DSA_sign_loop, loopargs); |
| d = Time_F(STOP); |
| BIO_printf(bio_err, |
| mr ? "+R3:%ld:%d:%.2f\n" |
| : "%ld %d bit DSA signs in %.2fs\n", |
| count, dsa_bits[testnum], d); |
| dsa_results[testnum][0] = d / (double)count; |
| rsa_count = count; |
| } |
| |
| for (i = 0; i < loopargs_len; i++) { |
| st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, |
| *(loopargs[i].siglen), loopargs[i].dsa_key[testnum]); |
| if (st <= 0) |
| break; |
| } |
| if (st <= 0) { |
| BIO_printf(bio_err, |
| "DSA verify failure. No DSA verify will be done.\n"); |
| ERR_print_errors(bio_err); |
| dsa_doit[testnum] = 0; |
| } else { |
| pkey_print_message("verify", "dsa", |
| dsa_c[testnum][1], dsa_bits[testnum], DSA_SECONDS); |
| Time_F(START); |
| count = run_benchmark(async_jobs, DSA_verify_loop, loopargs); |
| d = Time_F(STOP); |
| BIO_printf(bio_err, |
| mr ? "+R4:%ld:%d:%.2f\n" |
| : "%ld %d bit DSA verify in %.2fs\n", |
| count, dsa_bits[testnum], d); |
| dsa_results[testnum][1] = d / (double)count; |
| } |
| |
| if (rsa_count <= 1) { |
| /* if longer than 10s, don't do any more */ |
| for (testnum++; testnum < DSA_NUM; testnum++) |
| dsa_doit[testnum] = 0; |
| } |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_EC |
| if (RAND_status() != 1) { |
| RAND_seed(rnd_seed, sizeof rnd_seed); |
| } |
| for (testnum = 0; testnum < EC_NUM; testnum++) { |
| int st = 1; |
| |
| if (!ecdsa_doit[testnum]) |
| continue; /* Ignore Curve */ |
| for (i = 0; i < loopargs_len; i++) { |
| loopargs[i].ecdsa[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]); |
| if (loopargs[i].ecdsa[testnum] == NULL) { |
| st = 0; |
| break; |
| } |
| } |
| if (st == 0) { |
| BIO_printf(bio_err, "ECDSA failure.\n"); |
| ERR_print_errors(bio_err); |
| rsa_count = 1; |
| } else { |
| for (i = 0; i < loopargs_len; i++) { |
| EC_KEY_precompute_mult(loopargs[i].ecdsa[testnum], NULL); |
| /* Perform ECDSA signature test */ |
| EC_KEY_generate_key(loopargs[i].ecdsa[testnum]); |
| st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, |
| loopargs[i].siglen, loopargs[i].ecdsa[testnum]); |
| if (st == 0) |
| break; |
| } |
| if (st == 0) { |
| BIO_printf(bio_err, |
| "ECDSA sign failure. No ECDSA sign will be done.\n"); |
| ERR_print_errors(bio_err); |
| rsa_count = 1; |
| } else { |
| pkey_print_message("sign", "ecdsa", |
| ecdsa_c[testnum][0], |
| test_curves_bits[testnum], ECDSA_SECONDS); |
| Time_F(START); |
| count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs); |
| d = Time_F(STOP); |
| |
| BIO_printf(bio_err, |
| mr ? "+R5:%ld:%d:%.2f\n" : |
| "%ld %d bit ECDSA signs in %.2fs \n", |
| count, test_curves_bits[testnum], d); |
| ecdsa_results[testnum][0] = d / (double)count; |
| rsa_count = count; |
| } |
| |
| /* Perform ECDSA verification test */ |
| for (i = 0; i < loopargs_len; i++) { |
| st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, |
| *(loopargs[i].siglen), loopargs[i].ecdsa[testnum]); |
| if (st != 1) |
| break; |
| } |
| if (st != 1) { |
| BIO_printf(bio_err, |
| "ECDSA verify failure. No ECDSA verify will be done.\n"); |
| ERR_print_errors(bio_err); |
| ecdsa_doit[testnum] = 0; |
| } else { |
| pkey_print_message("verify", "ecdsa", |
| ecdsa_c[testnum][1], |
| test_curves_bits[testnum], ECDSA_SECONDS); |
| Time_F(START); |
| count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs); |
| d = Time_F(STOP); |
| BIO_printf(bio_err, |
| mr ? "+R6:%ld:%d:%.2f\n" |
| : "%ld %d bit ECDSA verify in %.2fs\n", |
| count, test_curves_bits[testnum], d); |
| ecdsa_results[testnum][1] = d / (double)count; |
| } |
| |
| if (rsa_count <= 1) { |
| /* if longer than 10s, don't do any more */ |
| for (testnum++; testnum < EC_NUM; testnum++) |
| ecdsa_doit[testnum] = 0; |
| } |
| } |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_EC |
| if (RAND_status() != 1) { |
| RAND_seed(rnd_seed, sizeof rnd_seed); |
| } |
| for (testnum = 0; testnum < EC_NUM; testnum++) { |
| if (!ecdh_doit[testnum]) |
| continue; |
| for (i = 0; i < loopargs_len; i++) { |
| loopargs[i].ecdh_a[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]); |
| loopargs[i].ecdh_b[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]); |
| if (loopargs[i].ecdh_a[testnum] == NULL || |
| loopargs[i].ecdh_b[testnum] == NULL) { |
| ecdh_checks = 0; |
| break; |
| } |
| } |
| if (ecdh_checks == 0) { |
| BIO_printf(bio_err, "ECDH failure.\n"); |
| ERR_print_errors(bio_err); |
| rsa_count = 1; |
| } else { |
| for (i = 0; i < loopargs_len; i++) { |
| /* generate two ECDH key pairs */ |
| if (!EC_KEY_generate_key(loopargs[i].ecdh_a[testnum]) || |
| !EC_KEY_generate_key(loopargs[i].ecdh_b[testnum])) { |
| BIO_printf(bio_err, "ECDH key generation failure.\n"); |
| ERR_print_errors(bio_err); |
| ecdh_checks = 0; |
| rsa_count = 1; |
| } else { |
| /* |
| * If field size is not more than 24 octets, then use SHA-1 |
| * hash of result; otherwise, use result (see section 4.8 of |
| * draft-ietf-tls-ecc-03.txt). |
| */ |
| int field_size; |
| field_size = |
| EC_GROUP_get_degree(EC_KEY_get0_group(loopargs[i].ecdh_a[testnum])); |
| if (field_size <= 24 * 8) { |
| outlen = KDF1_SHA1_len; |
| kdf = KDF1_SHA1; |
| } else { |
| outlen = (field_size + 7) / 8; |
| kdf = NULL; |
| } |
| secret_size_a = |
| ECDH_compute_key(loopargs[i].secret_a, outlen, |
| EC_KEY_get0_public_key(loopargs[i].ecdh_b[testnum]), |
| loopargs[i].ecdh_a[testnum], kdf); |
| secret_size_b = |
| ECDH_compute_key(loopargs[i].secret_b, outlen, |
| EC_KEY_get0_public_key(loopargs[i].ecdh_a[testnum]), |
| loopargs[i].ecdh_b[testnum], kdf); |
| if (secret_size_a != secret_size_b) |
| ecdh_checks = 0; |
| else |
| ecdh_checks = 1; |
| |
| for (secret_idx = 0; (secret_idx < secret_size_a) |
| && (ecdh_checks == 1); secret_idx++) { |
| if (loopargs[i].secret_a[secret_idx] != loopargs[i].secret_b[secret_idx]) |
| ecdh_checks = 0; |
| } |
| |
| if (ecdh_checks == 0) { |
| BIO_printf(bio_err, "ECDH computations don't match.\n"); |
| ERR_print_errors(bio_err); |
| rsa_count = 1; |
| break; |
| } |
| } |
| if (ecdh_checks != 0) { |
| pkey_print_message("", "ecdh", |
| ecdh_c[testnum][0], |
| test_curves_bits[testnum], ECDH_SECONDS); |
| Time_F(START); |
| count = run_benchmark(async_jobs, ECDH_compute_key_loop, loopargs); |
| d = Time_F(STOP); |
| BIO_printf(bio_err, |
| mr ? "+R7:%ld:%d:%.2f\n" : |
| "%ld %d-bit ECDH ops in %.2fs\n", count, |
| test_curves_bits[testnum], d); |
| ecdh_results[testnum][0] = d / (double)count; |
| rsa_count = count; |
| } |
| } |
| } |
| |
| if (rsa_count <= 1) { |
| /* if longer than 10s, don't do any more */ |
| for (testnum++; testnum < EC_NUM; testnum++) |
| ecdh_doit[testnum] = 0; |
| } |
| } |
| #endif |
| #ifndef NO_FORK |
| show_res: |
| #endif |
| if (!mr) { |
| printf("%s\n", OpenSSL_version(OPENSSL_VERSION)); |
| printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON)); |
| printf("options:"); |
| printf("%s ", BN_options()); |
| #ifndef OPENSSL_NO_MD2 |
| printf("%s ", MD2_options()); |
| #endif |
| #ifndef OPENSSL_NO_RC4 |
| printf("%s ", RC4_options()); |
| #endif |
| #ifndef OPENSSL_NO_DES |
| printf("%s ", DES_options()); |
| #endif |
| printf("%s ", AES_options()); |
| #ifndef OPENSSL_NO_IDEA |
| printf("%s ", idea_options()); |
| #endif |
| #ifndef OPENSSL_NO_BF |
| printf("%s ", BF_options()); |
| #endif |
| printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS)); |
| } |
| |
| if (pr_header) { |
| if (mr) |
| printf("+H"); |
| else { |
| printf |
| ("The 'numbers' are in 1000s of bytes per second processed.\n"); |
| printf("type "); |
| } |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) |
| printf(mr ? ":%d" : "%7d bytes", lengths[testnum]); |
| printf("\n"); |
| } |
| |
| for (k = 0; k < ALGOR_NUM; k++) { |
| if (!doit[k]) |
| continue; |
| if (mr) |
| printf("+F:%d:%s", k, names[k]); |
| else |
| printf("%-13s", names[k]); |
| for (testnum = 0; testnum < SIZE_NUM; testnum++) { |
| if (results[k][testnum] > 10000 && !mr) |
| printf(" %11.2fk", results[k][testnum] / 1e3); |
| else |
| printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]); |
| } |
| printf("\n"); |
| } |
| #ifndef OPENSSL_NO_RSA |
| testnum = 1; |
| for (k = 0; k < RSA_NUM; k++) { |
| if (!rsa_doit[k]) |
| continue; |
| if (testnum && !mr) { |
| printf("%18ssign verify sign/s verify/s\n", " "); |
| testnum = 0; |
| } |
| if (mr) |
| printf("+F2:%u:%u:%f:%f\n", |
| k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]); |
| else |
| printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", |
| rsa_bits[k], rsa_results[k][0], rsa_results[k][1], |
| 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1]); |
| } |
| #endif |
| #ifndef OPENSSL_NO_DSA |
| testnum = 1; |
| for (k = 0; k < DSA_NUM; k++) { |
| if (!dsa_doit[k]) |
| continue; |
| if (testnum && !mr) { |
| printf("%18ssign verify sign/s verify/s\n", " "); |
| testnum = 0; |
| } |
| if (mr) |
| printf("+F3:%u:%u:%f:%f\n", |
| k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]); |
| else |
| printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", |
| dsa_bits[k], dsa_results[k][0], dsa_results[k][1], |
| 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1]); |
| } |
| #endif |
| #ifndef OPENSSL_NO_EC |
| testnum = 1; |
| for (k = 0; k < EC_NUM; k++) { |
| if (!ecdsa_doit[k]) |
| continue; |
| if (testnum && !mr) { |
| printf("%30ssign verify sign/s verify/s\n", " "); |
| testnum = 0; |
| } |
| |
| if (mr) |
| printf("+F4:%u:%u:%f:%f\n", |
| k, test_curves_bits[k], |
| ecdsa_results[k][0], ecdsa_results[k][1]); |
| else |
| printf("%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n", |
| test_curves_bits[k], |
| test_curves_names[k], |
| ecdsa_results[k][0], ecdsa_results[k][1], |
| 1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1]); |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_EC |
| testnum = 1; |
| for (k = 0; k < EC_NUM; k++) { |
| if (!ecdh_doit[k]) |
| continue; |
| if (testnum && !mr) { |
| printf("%30sop op/s\n", " "); |
| testnum = 0; |
| } |
| if (mr) |
| printf("+F5:%u:%u:%f:%f\n", |
| k, test_curves_bits[k], |
| ecdh_results[k][0], 1.0 / ecdh_results[k][0]); |
| |
| else |
| printf("%4u bit ecdh (%s) %8.4fs %8.1f\n", |
| test_curves_bits[k], |
| test_curves_names[k], |
| ecdh_results[k][0], 1.0 / ecdh_results[k][0]); |
| } |
| #endif |
| |
| ret = 0; |
| |
| end: |
| ERR_print_errors(bio_err); |
| for (i = 0; i < loopargs_len; i++) { |
| OPENSSL_free(loopargs[i].buf_malloc); |
| OPENSSL_free(loopargs[i].buf2_malloc); |
| OPENSSL_free(loopargs[i].siglen); |
| } |
| #ifndef OPENSSL_NO_RSA |
| for (i = 0; i < loopargs_len; i++) { |
| for (k = 0; k < RSA_NUM; k++) |
| RSA_free(loopargs[i].rsa_key[k]); |
| } |
| #endif |
| #ifndef OPENSSL_NO_DSA |
| for (i = 0; i < loopargs_len; i++) { |
| for (k = 0; k < DSA_NUM; k++) |
| DSA_free(loopargs[i].dsa_key[k]); |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_EC |
| for (i = 0; i < loopargs_len; i++) { |
| for (k = 0; k < EC_NUM; k++) { |
| EC_KEY_free(loopargs[i].ecdsa[k]); |
| EC_KEY_free(loopargs[i].ecdh_a[k]); |
| EC_KEY_free(loopargs[i].ecdh_b[k]); |
| } |
| OPENSSL_free(loopargs[i].secret_a); |
| OPENSSL_free(loopargs[i].secret_b); |
| } |
| #endif |
| if (async_jobs > 0) { |
| for (i = 0; i < loopargs_len; i++) |
| ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx); |
| |
| ASYNC_cleanup_thread(); |
| } |
| OPENSSL_free(loopargs); |
| return (ret); |
| } |
| |
| static void print_message(const char *s, long num, int length) |
| { |
| #ifdef SIGALRM |
| BIO_printf(bio_err, |
| mr ? "+DT:%s:%d:%d\n" |
| : "Doing %s for %ds on %d size blocks: ", s, SECONDS, length); |
| (void)BIO_flush(bio_err); |
| alarm(SECONDS); |
| #else |
| BIO_printf(bio_err, |
| mr ? "+DN:%s:%ld:%d\n" |
| : "Doing %s %ld times on %d size blocks: ", s, num, length); |
| (void)BIO_flush(bio_err); |
| #endif |
| } |
| |
| static void pkey_print_message(const char *str, const char *str2, long num, |
| int bits, int tm) |
| { |
| #ifdef SIGALRM |
| BIO_printf(bio_err, |
| mr ? "+DTP:%d:%s:%s:%d\n" |
| : "Doing %d bit %s %s's for %ds: ", bits, str, str2, tm); |
| (void)BIO_flush(bio_err); |
| alarm(tm); |
| #else |
| BIO_printf(bio_err, |
| mr ? "+DNP:%ld:%d:%s:%s\n" |
| : "Doing %ld %d bit %s %s's: ", num, bits, str, str2); |
| (void)BIO_flush(bio_err); |
| #endif |
| } |
| |
| static void print_result(int alg, int run_no, int count, double time_used) |
| { |
| BIO_printf(bio_err, |
| mr ? "+R:%d:%s:%f\n" |
| : "%d %s's in %.2fs\n", count, names[alg], time_used); |
| results[alg][run_no] = ((double)count) / time_used * lengths[run_no]; |
| } |
| |
| #ifndef NO_FORK |
| static char *sstrsep(char **string, const char *delim) |
| { |
| char isdelim[256]; |
| char *token = *string; |
| |
| if (**string == 0) |
| return NULL; |
| |
| memset(isdelim, 0, sizeof isdelim); |
| isdelim[0] = 1; |
| |
| while (*delim) { |
| isdelim[(unsigned char)(*delim)] = 1; |
| delim++; |
| } |
| |
| while (!isdelim[(unsigned char)(**string)]) { |
| (*string)++; |
| } |
| |
| if (**string) { |
| **string = 0; |
| (*string)++; |
| } |
| |
| return token; |
| } |
| |
| static int do_multi(int multi) |
| { |
| int n; |
| int fd[2]; |
| int *fds; |
| static char sep[] = ":"; |
| |
| fds = malloc(sizeof(*fds) * multi); |
| for (n = 0; n < multi; ++n) { |
| if (pipe(fd) == -1) { |
| BIO_printf(bio_err, "pipe failure\n"); |
| exit(1); |
| } |
| fflush(stdout); |
| (void)BIO_flush(bio_err); |
| if (fork()) { |
| close(fd[1]); |
| fds[n] = fd[0]; |
| } else { |
| close(fd[0]); |
| close(1); |
| if (dup(fd[1]) == -1) { |
| BIO_printf(bio_err, "dup failed\n"); |
| exit(1); |
| } |
| close(fd[1]); |
| mr = 1; |
| usertime = 0; |
| free(fds); |
| return 0; |
| } |
| printf("Forked child %d\n", n); |
| } |
| |
| /* for now, assume the pipe is long enough to take all the output */ |
| for (n = 0; n < multi; ++n) { |
| FILE *f; |
| char buf[1024]; |
| char *p; |
| |
| f = fdopen(fds[n], "r"); |
| while (fgets(buf, sizeof buf, f)) { |
| p = strchr(buf, '\n'); |
| if (p) |
| *p = '\0'; |
| if (buf[0] != '+') { |
| BIO_printf(bio_err, "Don't understand line '%s' from child %d\n", |
| buf, n); |
| continue; |
| } |
| printf("Got: %s from %d\n", buf, n); |
| if (strncmp(buf, "+F:", 3) == 0) { |
| int alg; |
| int j; |
| |
| p = buf + 3; |
| alg = atoi(sstrsep(&p, sep)); |
| sstrsep(&p, sep); |
| for (j = 0; j < SIZE_NUM; ++j) |
| results[alg][j] += atof(sstrsep(&p, sep)); |
| } else if (strncmp(buf, "+F2:", 4) == 0) { |
| int k; |
| double d; |
| |
| p = buf + 4; |
| k = atoi(sstrsep(&p, sep)); |
| sstrsep(&p, sep); |
| |
| d = atof(sstrsep(&p, sep)); |
| if (n) |
| rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d); |
| else |
| rsa_results[k][0] = d; |
| |
| d = atof(sstrsep(&p, sep)); |
| if (n) |
| rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d); |
| else |
| rsa_results[k][1] = d; |
| } |
| # ifndef OPENSSL_NO_DSA |
| else if (strncmp(buf, "+F3:", 4) == 0) { |
| int k; |
| double d; |
| |
| p = buf + 4; |
| k = atoi(sstrsep(&p, sep)); |
| sstrsep(&p, sep); |
| |
| d = atof(sstrsep(&p, sep)); |
| if (n) |
| dsa_results[k][0] = 1 / (1 / dsa_results[k][0] + 1 / d); |
| else |
| dsa_results[k][0] = d; |
| |
| d = atof(sstrsep(&p, sep)); |
| if (n) |
| dsa_results[k][1] = 1 / (1 / dsa_results[k][1] + 1 / d); |
| else |
| dsa_results[k][1] = d; |
| } |
| # endif |
| # ifndef OPENSSL_NO_EC |
| else if (strncmp(buf, "+F4:", 4) == 0) { |
| int k; |
| double d; |
| |
| p = buf + 4; |
| k = atoi(sstrsep(&p, sep)); |
| sstrsep(&p, sep); |
| |
| d = atof(sstrsep(&p, sep)); |
| if (n) |
| ecdsa_results[k][0] = |
| 1 / (1 / ecdsa_results[k][0] + 1 / d); |
| else |
| ecdsa_results[k][0] = d; |
| |
| d = atof(sstrsep(&p, sep)); |
| if (n) |
| ecdsa_results[k][1] = |
| 1 / (1 / ecdsa_results[k][1] + 1 / d); |
| else |
| ecdsa_results[k][1] = d; |
| } |
| # endif |
| |
| # ifndef OPENSSL_NO_EC |
| else if (strncmp(buf, "+F5:", 4) == 0) { |
| int k; |
| double d; |
| |
| p = buf + 4; |
| k = atoi(sstrsep(&p, sep)); |
| sstrsep(&p, sep); |
| |
| d = atof(sstrsep(&p, sep)); |
| if (n) |
| ecdh_results[k][0] = 1 / (1 / ecdh_results[k][0] + 1 / d); |
| else |
| ecdh_results[k][0] = d; |
| |
| } |
| # endif |
| |
| else if (strncmp(buf, "+H:", 3) == 0) { |
| ; |
| } else |
| BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, n); |
| } |
| |
| fclose(f); |
| } |
| free(fds); |
| return 1; |
| } |
| #endif |
| |
| static void multiblock_speed(const EVP_CIPHER *evp_cipher) |
| { |
| static int mblengths[] = |
| { 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 }; |
| int j, count, num = OSSL_NELEM(mblengths); |
| const char *alg_name; |
| unsigned char *inp, *out, no_key[32], no_iv[16]; |
| EVP_CIPHER_CTX *ctx; |
| double d = 0.0; |
| |
| inp = app_malloc(mblengths[num - 1], "multiblock input buffer"); |
| out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer"); |
| ctx = EVP_CIPHER_CTX_new(); |
| EVP_EncryptInit_ex(ctx, evp_cipher, NULL, no_key, no_iv); |
| EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), |
| no_key); |
| alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)); |
| |
| for (j = 0; j < num; j++) { |
| print_message(alg_name, 0, mblengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; run && count < 0x7fffffff; count++) { |
| unsigned char aad[EVP_AEAD_TLS1_AAD_LEN]; |
| EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param; |
| size_t len = mblengths[j]; |
| int packlen; |
| |
| memset(aad, 0, 8); /* avoid uninitialized values */ |
| aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */ |
| aad[9] = 3; /* version */ |
| aad[10] = 2; |
| aad[11] = 0; /* length */ |
| aad[12] = 0; |
| mb_param.out = NULL; |
| mb_param.inp = aad; |
| mb_param.len = len; |
| mb_param.interleave = 8; |
| |
| packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD, |
| sizeof(mb_param), &mb_param); |
| |
| if (packlen > 0) { |
| mb_param.out = out; |
| mb_param.inp = inp; |
| mb_param.len = len; |
| EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT, |
| sizeof(mb_param), &mb_param); |
| } else { |
| int pad; |
| |
| RAND_bytes(out, 16); |
| len += 16; |
| aad[11] = len >> 8; |
| aad[12] = len; |
| pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD, |
| EVP_AEAD_TLS1_AAD_LEN, aad); |
| EVP_Cipher(ctx, out, inp, len + pad); |
| } |
| } |
| d = Time_F(STOP); |
| BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n" |
| : "%d %s's in %.2fs\n", count, "evp", d); |
| results[D_EVP][j] = ((double)count) / d * mblengths[j]; |
| } |
| |
| if (mr) { |
| fprintf(stdout, "+H"); |
| for (j = 0; j < num; j++) |
| fprintf(stdout, ":%d", mblengths[j]); |
| fprintf(stdout, "\n"); |
| fprintf(stdout, "+F:%d:%s", D_EVP, alg_name); |
| for (j = 0; j < num; j++) |
| fprintf(stdout, ":%.2f", results[D_EVP][j]); |
| fprintf(stdout, "\n"); |
| } else { |
| fprintf(stdout, |
| "The 'numbers' are in 1000s of bytes per second processed.\n"); |
| fprintf(stdout, "type "); |
| for (j = 0; j < num; j++) |
| fprintf(stdout, "%7d bytes", mblengths[j]); |
| fprintf(stdout, "\n"); |
| fprintf(stdout, "%-24s", alg_name); |
| |
| for (j = 0; j < num; j++) { |
| if (results[D_EVP][j] > 10000) |
| fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3); |
| else |
| fprintf(stdout, " %11.2f ", results[D_EVP][j]); |
| } |
| fprintf(stdout, "\n"); |
| } |
| |
| OPENSSL_free(inp); |
| OPENSSL_free(out); |
| EVP_CIPHER_CTX_free(ctx); |
| } |