| /* | 
 |  * Copyright 2015-2017 The OpenSSL Project Authors. All Rights Reserved. | 
 |  * | 
 |  * Licensed under the OpenSSL license (the "License").  You may not use | 
 |  * this file except in compliance with the License.  You can obtain a copy | 
 |  * in the file LICENSE in the source distribution or at | 
 |  * https://www.openssl.org/source/license.html | 
 |  */ | 
 |  | 
 | #include <stdio.h> | 
 | #include <string.h> | 
 | #include <stdlib.h> | 
 | #include <ctype.h> | 
 | #include <openssl/evp.h> | 
 | #include <openssl/pem.h> | 
 | #include <openssl/err.h> | 
 | #include <openssl/x509v3.h> | 
 | #include <openssl/pkcs12.h> | 
 | #include <openssl/kdf.h> | 
 | #include "internal/numbers.h" | 
 | #include "testutil.h" | 
 |  | 
 | /* | 
 |  * Remove spaces from beginning and end of a string | 
 |  */ | 
 | static void remove_space(char **pval) | 
 | { | 
 |     unsigned char *p = (unsigned char *)*pval, *beginning; | 
 |  | 
 |     while (isspace(*p)) | 
 |         p++; | 
 |  | 
 |     *pval = (char *)(beginning = p); | 
 |  | 
 |     p = p + strlen(*pval) - 1; | 
 |  | 
 |     /* Remove trailing space */ | 
 |     while (p >= beginning && isspace(*p)) | 
 |         *p-- = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Given a line of the form: | 
 |  *      name = value # comment | 
 |  * extract name and value. NB: modifies |linebuf|. | 
 |  */ | 
 | static int parse_line(char **pkw, char **pval, char *linebuf) | 
 | { | 
 |     char *p = linebuf + strlen(linebuf) - 1; | 
 |  | 
 |     if (*p != '\n') { | 
 |         TEST_error("FATAL: missing EOL"); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     /* Look for # */ | 
 |     p = strchr(linebuf, '#'); | 
 |     if (p != NULL) | 
 |         *p = '\0'; | 
 |  | 
 |     /* Look for = sign */ | 
 |     if ((p = strchr(linebuf, '=')) == NULL) | 
 |         return 0; | 
 |     *p++ = '\0'; | 
 |  | 
 |     *pkw = linebuf; | 
 |     *pval = p; | 
 |     remove_space(pkw); | 
 |     remove_space(pval); | 
 |     return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Unescape some escape sequences in string literals. | 
 |  * Return the result in a newly allocated buffer. | 
 |  * Currently only supports '\n'. | 
 |  * If the input length is 0, returns a valid 1-byte buffer, but sets | 
 |  * the length to 0. | 
 |  */ | 
 | static unsigned char* unescape(const char *input, size_t input_len, | 
 |                                size_t *out_len) | 
 | { | 
 |     unsigned char *ret, *p; | 
 |     size_t i; | 
 |  | 
 |     if (input_len == 0) { | 
 |         *out_len = 0; | 
 |         return OPENSSL_zalloc(1); | 
 |     } | 
 |  | 
 |     /* Escaping is non-expanding; over-allocate original size for simplicity. */ | 
 |     ret = p = OPENSSL_malloc(input_len); | 
 |     if (ret == NULL) | 
 |         return NULL; | 
 |  | 
 |     for (i = 0; i < input_len; i++) { | 
 |         if (input[i] == '\\') { | 
 |             if (i == input_len - 1 || input[i+1] != 'n') | 
 |                 goto err; | 
 |             *p++ = '\n'; | 
 |             i++; | 
 |         } else { | 
 |             *p++ = input[i]; | 
 |         } | 
 |     } | 
 |  | 
 |     *out_len = p - ret; | 
 |     return ret; | 
 |  | 
 |  err: | 
 |     OPENSSL_free(ret); | 
 |     return NULL; | 
 | } | 
 |  | 
 | /* For a hex string "value" convert to a binary allocated buffer */ | 
 | static int test_bin(const char *value, unsigned char **buf, size_t *buflen) | 
 | { | 
 |     long len; | 
 |  | 
 |     *buflen = 0; | 
 |  | 
 |     /* Check for empty value */ | 
 |     if (!*value) { | 
 |         /* | 
 |          * Don't return NULL for zero length buffer. | 
 |          * This is needed for some tests with empty keys: HMAC_Init_ex() expects | 
 |          * a non-NULL key buffer even if the key length is 0, in order to detect | 
 |          * key reset. | 
 |          */ | 
 |         *buf = OPENSSL_malloc(1); | 
 |         if (!*buf) | 
 |             return 0; | 
 |         **buf = 0; | 
 |         *buflen = 0; | 
 |         return 1; | 
 |     } | 
 |  | 
 |     /* Check for NULL literal */ | 
 |     if (strcmp(value, "NULL") == 0) { | 
 |         *buf = NULL; | 
 |         *buflen = 0; | 
 |         return 1; | 
 |     } | 
 |  | 
 |     /* Check for string literal */ | 
 |     if (value[0] == '"') { | 
 |         size_t vlen; | 
 |         value++; | 
 |         vlen = strlen(value); | 
 |         if (value[vlen - 1] != '"') | 
 |             return 0; | 
 |         vlen--; | 
 |         *buf = unescape(value, vlen, buflen); | 
 |         if (*buf == NULL) | 
 |             return 0; | 
 |         return 1; | 
 |     } | 
 |  | 
 |     /* Otherwise assume as hex literal and convert it to binary buffer */ | 
 |     if (!TEST_ptr(*buf = OPENSSL_hexstr2buf(value, &len))) { | 
 |         TEST_info("Cannot convert %s", value); | 
 |         ERR_print_errors(bio_err); | 
 |         return -1; | 
 |     } | 
 |     /* Size of input buffer means we'll never overflow */ | 
 |     *buflen = len; | 
 |     return 1; | 
 | } | 
 | #ifndef OPENSSL_NO_SCRYPT | 
 | /* Currently only used by scrypt tests */ | 
 | /* Parse unsigned decimal 64 bit integer value */ | 
 | static int test_uint64(const char *value, uint64_t *pr) | 
 | { | 
 |     const char *p = value; | 
 |  | 
 |     if (!TEST_true(*p)) { | 
 |         TEST_info("Invalid empty integer value"); | 
 |         return -1; | 
 |     } | 
 |     *pr = 0; | 
 |     while (*p) { | 
 |         if (*pr > UINT64_MAX / 10) { | 
 |             TEST_error("Integer overflow in string %s", value); | 
 |             return -1; | 
 |         } | 
 |         *pr *= 10; | 
 |         if (!TEST_true(isdigit(*p))) { | 
 |             TEST_error("Invalid character in string %s", value); | 
 |             return -1; | 
 |         } | 
 |         *pr += *p - '0'; | 
 |         p++; | 
 |     } | 
 |     return 1; | 
 | } | 
 | #endif | 
 |  | 
 | typedef struct evp_test_method_st EVP_TEST_METHOD; | 
 |  | 
 | /* Structure holding test information */ | 
 | typedef struct evp_test_st { | 
 |     /* file being read */ | 
 |     BIO *in; | 
 |     /* temp memory BIO for reading in keys */ | 
 |     BIO *key; | 
 |     /* method for this test */ | 
 |     const EVP_TEST_METHOD *meth; | 
 |     /* current line being processed */ | 
 |     unsigned int line; | 
 |     /* start line of current test */ | 
 |     unsigned int start_line; | 
 |     /* Error string for test */ | 
 |     const char *err, *aux_err; | 
 |     /* Expected error value of test */ | 
 |     char *expected_err; | 
 |     /* Expected error function string */ | 
 |     char *func; | 
 |     /* Expected error reason string */ | 
 |     char *reason; | 
 |     /* Number of tests */ | 
 |     int ntests; | 
 |     /* Error count */ | 
 |     int errors; | 
 |     /* Number of tests skipped */ | 
 |     int nskip; | 
 |     /* If output mismatch expected and got value */ | 
 |     unsigned char *out_received; | 
 |     size_t out_received_len; | 
 |     unsigned char *out_expected; | 
 |     size_t out_expected_len; | 
 |     /* test specific data */ | 
 |     void *data; | 
 |     /* Current test should be skipped */ | 
 |     int skip; | 
 | } EVP_TEST; | 
 |  | 
 | /* | 
 |  * Linked list of named keys. | 
 |  */ | 
 | typedef struct key_list_st { | 
 |     char *name; | 
 |     EVP_PKEY *key; | 
 |     struct key_list_st *next; | 
 | } KEY_LIST; | 
 |  | 
 | /* List of public and private keys */ | 
 | static KEY_LIST *private_keys; | 
 | static KEY_LIST *public_keys; | 
 |  | 
 | /* | 
 |  * Test method structure | 
 |  */ | 
 | struct evp_test_method_st { | 
 |     /* Name of test as it appears in file */ | 
 |     const char *name; | 
 |     /* Initialise test for "alg" */ | 
 |     int (*init) (EVP_TEST * t, const char *alg); | 
 |     /* Clean up method */ | 
 |     void (*cleanup) (EVP_TEST * t); | 
 |     /* Test specific name value pair processing */ | 
 |     int (*parse) (EVP_TEST * t, const char *name, const char *value); | 
 |     /* Run the test itself */ | 
 |     int (*run_test) (EVP_TEST * t); | 
 | }; | 
 |  | 
 | static const EVP_TEST_METHOD digest_test_method, cipher_test_method; | 
 | static const EVP_TEST_METHOD mac_test_method; | 
 | static const EVP_TEST_METHOD psign_test_method, pverify_test_method; | 
 | static const EVP_TEST_METHOD pdecrypt_test_method; | 
 | static const EVP_TEST_METHOD pverify_recover_test_method; | 
 | static const EVP_TEST_METHOD pderive_test_method; | 
 | static const EVP_TEST_METHOD pbe_test_method; | 
 | static const EVP_TEST_METHOD encode_test_method; | 
 | static const EVP_TEST_METHOD kdf_test_method; | 
 | static const EVP_TEST_METHOD keypair_test_method; | 
 |  | 
 | static const EVP_TEST_METHOD *evp_test_list[] = { | 
 |     &digest_test_method, | 
 |     &cipher_test_method, | 
 |     &mac_test_method, | 
 |     &psign_test_method, | 
 |     &pverify_test_method, | 
 |     &pdecrypt_test_method, | 
 |     &pverify_recover_test_method, | 
 |     &pderive_test_method, | 
 |     &pbe_test_method, | 
 |     &encode_test_method, | 
 |     &kdf_test_method, | 
 |     &keypair_test_method, | 
 |     NULL | 
 | }; | 
 |  | 
 | static const EVP_TEST_METHOD *evp_find_test(const char *name) | 
 | { | 
 |     const EVP_TEST_METHOD **tt; | 
 |  | 
 |     for (tt = evp_test_list; *tt; tt++) { | 
 |         if (strcmp(name, (*tt)->name) == 0) | 
 |             return *tt; | 
 |     } | 
 |     return NULL; | 
 | } | 
 |  | 
 | static void hex_print(const char *name, const unsigned char *buf, size_t len) | 
 | { | 
 |     size_t i; | 
 |  | 
 |     fprintf(stderr, "%s ", name); | 
 |     for (i = 0; i < len; i++) | 
 |         fprintf(stderr, "%02X", buf[i]); | 
 |     fputs("\n", stderr); | 
 | } | 
 |  | 
 | static void clear_test(EVP_TEST *t) | 
 | { | 
 |     OPENSSL_free(t->expected_err); | 
 |     t->expected_err = NULL; | 
 |     OPENSSL_free(t->func); | 
 |     t->func = NULL; | 
 |     OPENSSL_free(t->reason); | 
 |     t->reason = NULL; | 
 |     OPENSSL_free(t->out_expected); | 
 |     t->out_expected = NULL; | 
 |     t->out_expected_len = 0; | 
 |     OPENSSL_free(t->out_received); | 
 |     t->out_received = NULL; | 
 |     t->out_received_len = 0; | 
 |     /* Literals. */ | 
 |     t->err = NULL; | 
 | } | 
 |  | 
 | static void print_expected(EVP_TEST *t) | 
 | { | 
 |     if (t->out_expected == NULL && t->out_received == NULL) | 
 |         return; | 
 |     hex_print("Expected:", t->out_expected, t->out_expected_len); | 
 |     hex_print("Got:     ", t->out_received, t->out_received_len); | 
 |     clear_test(t); | 
 | } | 
 |  | 
 | /* | 
 |  * Check for errors in the test structure; return 1 if okay, else 0. | 
 |  */ | 
 | static int check_test_error(EVP_TEST *t) | 
 | { | 
 |     unsigned long err; | 
 |     const char *func; | 
 |     const char *reason; | 
 |  | 
 |     if (t->err == NULL && t->expected_err == NULL) | 
 |         return 1; | 
 |     if (t->err != NULL && t->expected_err == NULL) { | 
 |         if (t->aux_err != NULL) { | 
 |             TEST_info("Test line %d(%s): unexpected error %s", | 
 |                       t->start_line, t->aux_err, t->err); | 
 |         } else { | 
 |             TEST_info("Test line %d: unexpected error %s", | 
 |                       t->start_line, t->err); | 
 |         } | 
 |         print_expected(t); | 
 |         return 0; | 
 |     } | 
 |     if (t->err == NULL && t->expected_err != NULL) { | 
 |         TEST_info("Test line %d: succeeded expecting %s", | 
 |                   t->start_line, t->expected_err); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     if (strcmp(t->err, t->expected_err) != 0) { | 
 |         TEST_info("Test line %d: expecting %s got %s", | 
 |                   t->start_line, t->expected_err, t->err); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     if (t->func == NULL && t->reason == NULL) | 
 |         return 1; | 
 |  | 
 |     if (t->func == NULL || t->reason == NULL) { | 
 |         TEST_info("Test line %d: missing function or reason code", | 
 |                   t->start_line); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     err = ERR_peek_error(); | 
 |     if (err == 0) { | 
 |         TEST_info("Test line %d, expected error \"%s:%s\" not set", | 
 |                   t->start_line, t->func, t->reason); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     func = ERR_func_error_string(err); | 
 |     reason = ERR_reason_error_string(err); | 
 |     if (func == NULL && reason == NULL) { | 
 |         TEST_info("Test line %d: expected error \"%s:%s\"," | 
 |                   " no strings available.  Skipping...\n", | 
 |                   t->start_line, t->func, t->reason); | 
 |         return 1; | 
 |     } | 
 |  | 
 |     if (strcmp(func, t->func) == 0 && strcmp(reason, t->reason) == 0) | 
 |         return 1; | 
 |  | 
 |     TEST_info("Test line %d: expected error \"%s:%s\", got \"%s:%s\"", | 
 |               t->start_line, t->func, t->reason, func, reason); | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Setup a new test, run any existing test. Log a message and return 0 | 
 |  * on error. | 
 |  */ | 
 | static int run_and_get_next(EVP_TEST *t, const EVP_TEST_METHOD *tmeth) | 
 | { | 
 |     /* If we already have a test set up run it */ | 
 |     if (t->meth) { | 
 |         t->ntests++; | 
 |         if (t->skip) { | 
 |             /*TEST_info("Line %d skipped %s test", t->start_line, t->meth->name); | 
 |              */ | 
 |             t->nskip++; | 
 |         } else { | 
 |             /* run the test */ | 
 |             if (t->err == NULL && t->meth->run_test(t) != 1) { | 
 |                 TEST_info("Line %d error %s", t->start_line, t->meth->name); | 
 |                 return 0; | 
 |             } | 
 |             if (!check_test_error(t)) { | 
 |                 test_openssl_errors(); | 
 |                 t->errors++; | 
 |             } | 
 |         } | 
 |         /* clean it up */ | 
 |         ERR_clear_error(); | 
 |         if (t->data != NULL) { | 
 |             t->meth->cleanup(t); | 
 |             OPENSSL_free(t->data); | 
 |             t->data = NULL; | 
 |         } | 
 |         clear_test(t); | 
 |     } | 
 |     t->meth = tmeth; | 
 |     return 1; | 
 | } | 
 |  | 
 | static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst) | 
 | { | 
 |     for (; lst; lst = lst->next) { | 
 |         if (strcmp(lst->name, name) == 0) { | 
 |             if (ppk) | 
 |                 *ppk = lst->key; | 
 |             return 1; | 
 |         } | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static void free_key_list(KEY_LIST *lst) | 
 | { | 
 |     while (lst != NULL) { | 
 |         KEY_LIST *ltmp; | 
 |  | 
 |         EVP_PKEY_free(lst->key); | 
 |         OPENSSL_free(lst->name); | 
 |         ltmp = lst->next; | 
 |         OPENSSL_free(lst); | 
 |         lst = ltmp; | 
 |     } | 
 | } | 
 |  | 
 | static int check_unsupported() | 
 | { | 
 |     long err = ERR_peek_error(); | 
 |  | 
 |     if (ERR_GET_LIB(err) == ERR_LIB_EVP | 
 |             && ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM) { | 
 |         ERR_clear_error(); | 
 |         return 1; | 
 |     } | 
 | #ifndef OPENSSL_NO_EC | 
 |     /* | 
 |      * If EC support is enabled we should catch also EC_R_UNKNOWN_GROUP as an | 
 |      * hint to an unsupported algorithm/curve (e.g. if binary EC support is | 
 |      * disabled). | 
 |      */ | 
 |     if (ERR_GET_LIB(err) == ERR_LIB_EC | 
 |         && ERR_GET_REASON(err) == EC_R_UNKNOWN_GROUP) { | 
 |         ERR_clear_error(); | 
 |         return 1; | 
 |     } | 
 | #endif /* OPENSSL_NO_EC */ | 
 |     return 0; | 
 | } | 
 |  | 
 |  | 
 | static int read_key(EVP_TEST *t) | 
 | { | 
 |     char tmpbuf[80]; | 
 |  | 
 |     if (t->key == NULL) { | 
 |         if (!TEST_ptr(t->key = BIO_new(BIO_s_mem()))) | 
 |             return 0; | 
 |     } else if (!TEST_int_gt(BIO_reset(t->key), 0)) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     /* Read to PEM end line and place content in memory BIO */ | 
 |     while (BIO_gets(t->in, tmpbuf, sizeof(tmpbuf))) { | 
 |         t->line++; | 
 |         if (!TEST_int_gt(BIO_puts(t->key, tmpbuf), 0)) | 
 |             return 0; | 
 |         if (strncmp(tmpbuf, "-----END", 8) == 0) | 
 |             return 1; | 
 |     } | 
 |     TEST_error("Can't find key end"); | 
 |     return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Parse a line into the current test |t|.  Return 0 on error. | 
 |  */ | 
 | static int parse_test_line(EVP_TEST *t, char *buf) | 
 | { | 
 |     char *keyword = NULL, *value = NULL; | 
 |     int add_key = 0; | 
 |     KEY_LIST **lst = NULL, *key = NULL; | 
 |     EVP_PKEY *pk = NULL; | 
 |     const EVP_TEST_METHOD *tmeth = NULL; | 
 |  | 
 |     if (!parse_line(&keyword, &value, buf)) | 
 |         return 1; | 
 |     if (strcmp(keyword, "PrivateKey") == 0) { | 
 |         if (!read_key(t)) | 
 |             return 0; | 
 |         pk = PEM_read_bio_PrivateKey(t->key, NULL, 0, NULL); | 
 |         if (pk == NULL && !check_unsupported()) { | 
 |             TEST_info("Error reading private key %s", value); | 
 |             ERR_print_errors_fp(stderr); | 
 |             return 0; | 
 |         } | 
 |         lst = &private_keys; | 
 |         add_key = 1; | 
 |     } | 
 |     if (strcmp(keyword, "PublicKey") == 0) { | 
 |         if (!read_key(t)) | 
 |             return 0; | 
 |         pk = PEM_read_bio_PUBKEY(t->key, NULL, 0, NULL); | 
 |         if (pk == NULL && !check_unsupported()) { | 
 |             TEST_info("Error reading public key %s", value); | 
 |             ERR_print_errors_fp(stderr); | 
 |             return 0; | 
 |         } | 
 |         lst = &public_keys; | 
 |         add_key = 1; | 
 |     } | 
 |     /* If we have a key add to list */ | 
 |     if (add_key) { | 
 |         if (find_key(NULL, value, *lst)) { | 
 |             TEST_info("Duplicate key %s", value); | 
 |             return 0; | 
 |         } | 
 |         if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key))) | 
 |                 || !TEST_ptr(key->name = OPENSSL_strdup(value))) | 
 |             return 0; | 
 |         key->key = pk; | 
 |         key->next = *lst; | 
 |         *lst = key; | 
 |         return 1; | 
 |     } | 
 |  | 
 |     /* See if keyword corresponds to a test start */ | 
 |     if ((tmeth = evp_find_test(keyword)) != NULL) { | 
 |         if (!run_and_get_next(t, tmeth)) | 
 |             return 0; | 
 |         t->start_line = t->line; | 
 |         t->skip = 0; | 
 |         if (!tmeth->init(t, value)) { | 
 |             TEST_info("Unknown %s: %s", keyword, value); | 
 |             return 0; | 
 |         } | 
 |         return 1; | 
 |     } | 
 |     if (t->skip) | 
 |         return 1; | 
 |     if (strcmp(keyword, "Result") == 0) { | 
 |         if (t->expected_err) { | 
 |             TEST_info("Line %d: multiple result lines", t->line); | 
 |             return 0; | 
 |         } | 
 |         if (!TEST_ptr(t->expected_err = OPENSSL_strdup(value))) | 
 |             return 0; | 
 |     } else if (strcmp(keyword, "Function") == 0) { | 
 |         if (t->func != NULL) { | 
 |             TEST_info("Line %d: multiple function lines\n", t->line); | 
 |             return 0; | 
 |         } | 
 |         if (!TEST_ptr(t->func = OPENSSL_strdup(value))) | 
 |             return 0; | 
 |     } else if (strcmp(keyword, "Reason") == 0) { | 
 |         if (t->reason != NULL) { | 
 |             TEST_info("Line %d: multiple reason lines", t->line); | 
 |             return 0; | 
 |         } | 
 |         if (!TEST_ptr(t->reason = OPENSSL_strdup(value))) | 
 |             return 0; | 
 |     } else { | 
 |         /* Must be test specific line: try to parse it */ | 
 |         int rv = t->meth == NULL ? 0 : t->meth->parse(t, keyword, value); | 
 |  | 
 |         if (rv == 0) { | 
 |             TEST_info("Line %d: unknown keyword %s", t->line, keyword); | 
 |             return 0; | 
 |         } | 
 |         if (rv < 0) { | 
 |             TEST_info("Line %d: error processing keyword %s\n", | 
 |                       t->line, keyword); | 
 |             return 0; | 
 |         } | 
 |     } | 
 |     return 1; | 
 | } | 
 |  | 
 | /* Message digest tests */ | 
 |  | 
 | typedef struct digest_data_st { | 
 |     /* Digest this test is for */ | 
 |     const EVP_MD *digest; | 
 |     /* Input to digest */ | 
 |     unsigned char *input; | 
 |     size_t input_len; | 
 |     /* Repeat count for input */ | 
 |     size_t nrpt; | 
 |     /* Expected output */ | 
 |     unsigned char *output; | 
 |     size_t output_len; | 
 | } DIGEST_DATA; | 
 |  | 
 | static int digest_test_init(EVP_TEST *t, const char *alg) | 
 | { | 
 |     const EVP_MD *digest; | 
 |     DIGEST_DATA *mdat; | 
 |  | 
 |     digest = EVP_get_digestbyname(alg); | 
 |     if (!digest) { | 
 |         /* If alg has an OID assume disabled algorithm */ | 
 |         if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) { | 
 |             t->skip = 1; | 
 |             return 1; | 
 |         } | 
 |         return 0; | 
 |     } | 
 |     mdat = OPENSSL_zalloc(sizeof(*mdat)); | 
 |     mdat->digest = digest; | 
 |     mdat->nrpt = 1; | 
 |     t->data = mdat; | 
 |     return 1; | 
 | } | 
 |  | 
 | static void digest_test_cleanup(EVP_TEST *t) | 
 | { | 
 |     DIGEST_DATA *mdat = t->data; | 
 |  | 
 |     OPENSSL_free(mdat->input); | 
 |     OPENSSL_free(mdat->output); | 
 | } | 
 |  | 
 | static int digest_test_parse(EVP_TEST *t, | 
 |                              const char *keyword, const char *value) | 
 | { | 
 |     DIGEST_DATA *mdata = t->data; | 
 |  | 
 |     if (strcmp(keyword, "Input") == 0) | 
 |         return test_bin(value, &mdata->input, &mdata->input_len); | 
 |     if (strcmp(keyword, "Output") == 0) | 
 |         return test_bin(value, &mdata->output, &mdata->output_len); | 
 |     if (strcmp(keyword, "Count") == 0) { | 
 |         long nrpt = atoi(value); | 
 |         if (nrpt <= 0) | 
 |             return 0; | 
 |         mdata->nrpt = (size_t)nrpt; | 
 |         return 1; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static int digest_test_run(EVP_TEST *t) | 
 | { | 
 |     DIGEST_DATA *mdata = t->data; | 
 |     size_t i; | 
 |     EVP_MD_CTX *mctx; | 
 |     unsigned char md[EVP_MAX_MD_SIZE]; | 
 |     unsigned int md_len; | 
 |  | 
 |     t->err = "TEST_FAILURE"; | 
 |     if (!TEST_ptr(mctx = EVP_MD_CTX_new())) | 
 |         goto err; | 
 |  | 
 |     if (!EVP_DigestInit_ex(mctx, mdata->digest, NULL)) { | 
 |         t->err = "DIGESTINIT_ERROR"; | 
 |         goto err; | 
 |     } | 
 |     for (i = 0; i < mdata->nrpt; i++) | 
 |         if (!EVP_DigestUpdate(mctx, mdata->input, mdata->input_len)) { | 
 |             t->err = "DIGESTUPDATE_ERROR"; | 
 |             goto err; | 
 |         } | 
 |     if (!EVP_DigestFinal(mctx, md, &md_len)) { | 
 |         t->err = "DIGESTFINAL_ERROR"; | 
 |         goto err; | 
 |     } | 
 |     if (md_len != mdata->output_len) { | 
 |         t->err = "DIGEST_LENGTH_MISMATCH"; | 
 |         goto err; | 
 |     } | 
 |     if (!TEST_mem_eq(mdata->output, mdata->output_len, md, md_len)) { | 
 |         t->err = "DIGEST_MISMATCH"; | 
 |         goto err; | 
 |     } | 
 |     t->err = NULL; | 
 |  | 
 |  err: | 
 |     EVP_MD_CTX_free(mctx); | 
 |     return 1; | 
 | } | 
 |  | 
 | static const EVP_TEST_METHOD digest_test_method = { | 
 |     "Digest", | 
 |     digest_test_init, | 
 |     digest_test_cleanup, | 
 |     digest_test_parse, | 
 |     digest_test_run | 
 | }; | 
 |  | 
 | /* Cipher tests */ | 
 | typedef struct cipher_data_st { | 
 |     const EVP_CIPHER *cipher; | 
 |     int enc; | 
 |     /* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */ | 
 |     int aead; | 
 |     unsigned char *key; | 
 |     size_t key_len; | 
 |     unsigned char *iv; | 
 |     size_t iv_len; | 
 |     unsigned char *plaintext; | 
 |     size_t plaintext_len; | 
 |     unsigned char *ciphertext; | 
 |     size_t ciphertext_len; | 
 |     /* GCM, CCM only */ | 
 |     unsigned char *aad; | 
 |     size_t aad_len; | 
 |     unsigned char *tag; | 
 |     size_t tag_len; | 
 | } CIPHER_DATA; | 
 |  | 
 | static int cipher_test_init(EVP_TEST *t, const char *alg) | 
 | { | 
 |     const EVP_CIPHER *cipher; | 
 |     CIPHER_DATA *cdat = t->data; | 
 |  | 
 |     cipher = EVP_get_cipherbyname(alg); | 
 |     if (!cipher) { | 
 |         /* If alg has an OID assume disabled algorithm */ | 
 |         if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) { | 
 |             t->skip = 1; | 
 |             return 1; | 
 |         } | 
 |         return 0; | 
 |     } | 
 |     cdat = OPENSSL_malloc(sizeof(*cdat)); | 
 |     cdat->cipher = cipher; | 
 |     cdat->enc = -1; | 
 |     cdat->key = NULL; | 
 |     cdat->iv = NULL; | 
 |     cdat->ciphertext = NULL; | 
 |     cdat->plaintext = NULL; | 
 |     cdat->aad = NULL; | 
 |     cdat->tag = NULL; | 
 |     t->data = cdat; | 
 |     if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE | 
 |         || EVP_CIPHER_mode(cipher) == EVP_CIPH_OCB_MODE | 
 |         || EVP_CIPHER_mode(cipher) == EVP_CIPH_CCM_MODE) | 
 |         cdat->aead = EVP_CIPHER_mode(cipher); | 
 |     else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) | 
 |         cdat->aead = -1; | 
 |     else | 
 |         cdat->aead = 0; | 
 |  | 
 |     return 1; | 
 | } | 
 |  | 
 | static void cipher_test_cleanup(EVP_TEST *t) | 
 | { | 
 |     CIPHER_DATA *cdat = t->data; | 
 |  | 
 |     OPENSSL_free(cdat->key); | 
 |     OPENSSL_free(cdat->iv); | 
 |     OPENSSL_free(cdat->ciphertext); | 
 |     OPENSSL_free(cdat->plaintext); | 
 |     OPENSSL_free(cdat->aad); | 
 |     OPENSSL_free(cdat->tag); | 
 | } | 
 |  | 
 | static int cipher_test_parse(EVP_TEST *t, const char *keyword, | 
 |                              const char *value) | 
 | { | 
 |     CIPHER_DATA *cdat = t->data; | 
 |  | 
 |     if (strcmp(keyword, "Key") == 0) | 
 |         return test_bin(value, &cdat->key, &cdat->key_len); | 
 |     if (strcmp(keyword, "IV") == 0) | 
 |         return test_bin(value, &cdat->iv, &cdat->iv_len); | 
 |     if (strcmp(keyword, "Plaintext") == 0) | 
 |         return test_bin(value, &cdat->plaintext, &cdat->plaintext_len); | 
 |     if (strcmp(keyword, "Ciphertext") == 0) | 
 |         return test_bin(value, &cdat->ciphertext, &cdat->ciphertext_len); | 
 |     if (cdat->aead) { | 
 |         if (strcmp(keyword, "AAD") == 0) | 
 |             return test_bin(value, &cdat->aad, &cdat->aad_len); | 
 |         if (strcmp(keyword, "Tag") == 0) | 
 |             return test_bin(value, &cdat->tag, &cdat->tag_len); | 
 |     } | 
 |  | 
 |     if (strcmp(keyword, "Operation") == 0) { | 
 |         if (strcmp(value, "ENCRYPT") == 0) | 
 |             cdat->enc = 1; | 
 |         else if (strcmp(value, "DECRYPT") == 0) | 
 |             cdat->enc = 0; | 
 |         else | 
 |             return 0; | 
 |         return 1; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static int cipher_test_enc(EVP_TEST *t, int enc, | 
 |                            size_t out_misalign, size_t inp_misalign, int frag) | 
 | { | 
 |     CIPHER_DATA *cdat = t->data; | 
 |     unsigned char *in, *out, *tmp = NULL; | 
 |     size_t in_len, out_len, donelen = 0; | 
 |     int ok = 0, tmplen, chunklen, tmpflen; | 
 |     EVP_CIPHER_CTX *ctx = NULL; | 
 |  | 
 |     t->err = "TEST_FAILURE"; | 
 |     if (!TEST_ptr(ctx = EVP_CIPHER_CTX_new())) | 
 |         goto err; | 
 |     EVP_CIPHER_CTX_set_flags(ctx, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW); | 
 |     if (enc) { | 
 |         in = cdat->plaintext; | 
 |         in_len = cdat->plaintext_len; | 
 |         out = cdat->ciphertext; | 
 |         out_len = cdat->ciphertext_len; | 
 |     } else { | 
 |         in = cdat->ciphertext; | 
 |         in_len = cdat->ciphertext_len; | 
 |         out = cdat->plaintext; | 
 |         out_len = cdat->plaintext_len; | 
 |     } | 
 |     if (inp_misalign == (size_t)-1) { | 
 |         /* | 
 |          * Exercise in-place encryption | 
 |          */ | 
 |         tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH); | 
 |         if (!tmp) | 
 |             goto err; | 
 |         in = memcpy(tmp + out_misalign, in, in_len); | 
 |     } else { | 
 |         inp_misalign += 16 - ((out_misalign + in_len) & 15); | 
 |         /* | 
 |          * 'tmp' will store both output and copy of input. We make the copy | 
 |          * of input to specifically aligned part of 'tmp'. So we just | 
 |          * figured out how much padding would ensure the required alignment, | 
 |          * now we allocate extended buffer and finally copy the input just | 
 |          * past inp_misalign in expression below. Output will be written | 
 |          * past out_misalign... | 
 |          */ | 
 |         tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH + | 
 |                              inp_misalign + in_len); | 
 |         if (!tmp) | 
 |             goto err; | 
 |         in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH + | 
 |                     inp_misalign, in, in_len); | 
 |     } | 
 |     if (!EVP_CipherInit_ex(ctx, cdat->cipher, NULL, NULL, NULL, enc)) { | 
 |         t->err = "CIPHERINIT_ERROR"; | 
 |         goto err; | 
 |     } | 
 |     if (cdat->iv) { | 
 |         if (cdat->aead) { | 
 |             if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, | 
 |                                      cdat->iv_len, 0)) { | 
 |                 t->err = "INVALID_IV_LENGTH"; | 
 |                 goto err; | 
 |             } | 
 |         } else if (cdat->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx)) { | 
 |             t->err = "INVALID_IV_LENGTH"; | 
 |             goto err; | 
 |         } | 
 |     } | 
 |     if (cdat->aead) { | 
 |         unsigned char *tag; | 
 |         /* | 
 |          * If encrypting or OCB just set tag length initially, otherwise | 
 |          * set tag length and value. | 
 |          */ | 
 |         if (enc || cdat->aead == EVP_CIPH_OCB_MODE) { | 
 |             t->err = "TAG_LENGTH_SET_ERROR"; | 
 |             tag = NULL; | 
 |         } else { | 
 |             t->err = "TAG_SET_ERROR"; | 
 |             tag = cdat->tag; | 
 |         } | 
 |         if (tag || cdat->aead != EVP_CIPH_GCM_MODE) { | 
 |             if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, | 
 |                                      cdat->tag_len, tag)) | 
 |                 goto err; | 
 |         } | 
 |     } | 
 |  | 
 |     if (!EVP_CIPHER_CTX_set_key_length(ctx, cdat->key_len)) { | 
 |         t->err = "INVALID_KEY_LENGTH"; | 
 |         goto err; | 
 |     } | 
 |     if (!EVP_CipherInit_ex(ctx, NULL, NULL, cdat->key, cdat->iv, -1)) { | 
 |         t->err = "KEY_SET_ERROR"; | 
 |         goto err; | 
 |     } | 
 |  | 
 |     if (!enc && cdat->aead == EVP_CIPH_OCB_MODE) { | 
 |         if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, | 
 |                                  cdat->tag_len, cdat->tag)) { | 
 |             t->err = "TAG_SET_ERROR"; | 
 |             goto err; | 
 |         } | 
 |     } | 
 |  | 
 |     if (cdat->aead == EVP_CIPH_CCM_MODE) { | 
 |         if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) { | 
 |             t->err = "CCM_PLAINTEXT_LENGTH_SET_ERROR"; | 
 |             goto err; | 
 |         } | 
 |     } | 
 |     if (cdat->aad) { | 
 |         t->err = "AAD_SET_ERROR"; | 
 |         if (!frag) { | 
 |             if (!EVP_CipherUpdate(ctx, NULL, &chunklen, cdat->aad, | 
 |                                   cdat->aad_len)) | 
 |                 goto err; | 
 |         } else { | 
 |             /* | 
 |              * Supply the AAD in chunks less than the block size where possible | 
 |              */ | 
 |             if (cdat->aad_len > 0) { | 
 |                 if (!EVP_CipherUpdate(ctx, NULL, &chunklen, cdat->aad, 1)) | 
 |                     goto err; | 
 |                 donelen++; | 
 |             } | 
 |             if (cdat->aad_len > 2) { | 
 |                 if (!EVP_CipherUpdate(ctx, NULL, &chunklen, cdat->aad + donelen, | 
 |                                       cdat->aad_len - 2)) | 
 |                     goto err; | 
 |                 donelen += cdat->aad_len - 2; | 
 |             } | 
 |             if (cdat->aad_len > 1 | 
 |                     && !EVP_CipherUpdate(ctx, NULL, &chunklen, | 
 |                                          cdat->aad + donelen, 1)) | 
 |                 goto err; | 
 |         } | 
 |     } | 
 |     EVP_CIPHER_CTX_set_padding(ctx, 0); | 
 |     t->err = "CIPHERUPDATE_ERROR"; | 
 |     tmplen = 0; | 
 |     if (!frag) { | 
 |         /* We supply the data all in one go */ | 
 |         if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len)) | 
 |             goto err; | 
 |     } else { | 
 |         /* Supply the data in chunks less than the block size where possible */ | 
 |         if (in_len > 0) { | 
 |             if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &chunklen, in, 1)) | 
 |                 goto err; | 
 |             tmplen += chunklen; | 
 |             in++; | 
 |             in_len--; | 
 |         } | 
 |         if (in_len > 1) { | 
 |             if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen, | 
 |                                   in, in_len - 1)) | 
 |                 goto err; | 
 |             tmplen += chunklen; | 
 |             in += in_len - 1; | 
 |             in_len = 1; | 
 |         } | 
 |         if (in_len > 0 ) { | 
 |             if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen, | 
 |                                   in, 1)) | 
 |                 goto err; | 
 |             tmplen += chunklen; | 
 |         } | 
 |     } | 
 |     if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen)) { | 
 |         t->err = "CIPHERFINAL_ERROR"; | 
 |         goto err; | 
 |     } | 
 |     if (!TEST_mem_eq(out, out_len, tmp + out_misalign, tmplen + tmpflen)) { | 
 |         t->err = "VALUE_MISMATCH"; | 
 |         goto err; | 
 |     } | 
 |     if (enc && cdat->aead) { | 
 |         unsigned char rtag[16]; | 
 |  | 
 |         if (cdat->tag_len > sizeof(rtag)) { | 
 |             t->err = "TAG_LENGTH_INTERNAL_ERROR"; | 
 |             goto err; | 
 |         } | 
 |         if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, | 
 |                                  cdat->tag_len, rtag)) { | 
 |             t->err = "TAG_RETRIEVE_ERROR"; | 
 |             goto err; | 
 |         } | 
 |         if (!TEST_mem_eq(cdat->tag, cdat->tag_len, rtag, cdat->tag_len)) { | 
 |             t->err = "TAG_VALUE_MISMATCH"; | 
 |             goto err; | 
 |         } | 
 |     } | 
 |     t->err = NULL; | 
 |     ok = 1; | 
 |  err: | 
 |     OPENSSL_free(tmp); | 
 |     EVP_CIPHER_CTX_free(ctx); | 
 |     return ok; | 
 | } | 
 |  | 
 | static int cipher_test_run(EVP_TEST *t) | 
 | { | 
 |     CIPHER_DATA *cdat = t->data; | 
 |     int rv, frag = 0; | 
 |     size_t out_misalign, inp_misalign; | 
 |  | 
 |     if (!cdat->key) { | 
 |         t->err = "NO_KEY"; | 
 |         return 0; | 
 |     } | 
 |     if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) { | 
 |         /* IV is optional and usually omitted in wrap mode */ | 
 |         if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) { | 
 |             t->err = "NO_IV"; | 
 |             return 0; | 
 |         } | 
 |     } | 
 |     if (cdat->aead && !cdat->tag) { | 
 |         t->err = "NO_TAG"; | 
 |         return 0; | 
 |     } | 
 |     for (out_misalign = 0; out_misalign <= 1;) { | 
 |         static char aux_err[64]; | 
 |         t->aux_err = aux_err; | 
 |         for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) { | 
 |             if (inp_misalign == (size_t)-1) { | 
 |                 /* kludge: inp_misalign == -1 means "exercise in-place" */ | 
 |                 BIO_snprintf(aux_err, sizeof(aux_err), | 
 |                              "%s in-place, %sfragmented", | 
 |                              out_misalign ? "misaligned" : "aligned", | 
 |                              frag ? "" : "not "); | 
 |             } else { | 
 |                 BIO_snprintf(aux_err, sizeof(aux_err), | 
 |                              "%s output and %s input, %sfragmented", | 
 |                              out_misalign ? "misaligned" : "aligned", | 
 |                              inp_misalign ? "misaligned" : "aligned", | 
 |                              frag ? "" : "not "); | 
 |             } | 
 |             if (cdat->enc) { | 
 |                 rv = cipher_test_enc(t, 1, out_misalign, inp_misalign, frag); | 
 |                 /* Not fatal errors: return */ | 
 |                 if (rv != 1) { | 
 |                     if (rv < 0) | 
 |                         return 0; | 
 |                     return 1; | 
 |                 } | 
 |             } | 
 |             if (cdat->enc != 1) { | 
 |                 rv = cipher_test_enc(t, 0, out_misalign, inp_misalign, frag); | 
 |                 /* Not fatal errors: return */ | 
 |                 if (rv != 1) { | 
 |                     if (rv < 0) | 
 |                         return 0; | 
 |                     return 1; | 
 |                 } | 
 |             } | 
 |         } | 
 |  | 
 |         if (out_misalign == 1 && frag == 0) { | 
 |             /* | 
 |              * XTS, CCM and Wrap modes have special requirements about input | 
 |              * lengths so we don't fragment for those | 
 |              */ | 
 |             if (cdat->aead == EVP_CIPH_CCM_MODE | 
 |                     || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_XTS_MODE | 
 |                      || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_WRAP_MODE) | 
 |                 break; | 
 |             out_misalign = 0; | 
 |             frag++; | 
 |         } else { | 
 |             out_misalign++; | 
 |         } | 
 |     } | 
 |     t->aux_err = NULL; | 
 |  | 
 |     return 1; | 
 | } | 
 |  | 
 | static const EVP_TEST_METHOD cipher_test_method = { | 
 |     "Cipher", | 
 |     cipher_test_init, | 
 |     cipher_test_cleanup, | 
 |     cipher_test_parse, | 
 |     cipher_test_run | 
 | }; | 
 |  | 
 | typedef struct mac_data_st { | 
 |     /* MAC type */ | 
 |     int type; | 
 |     /* Algorithm string for this MAC */ | 
 |     char *alg; | 
 |     /* MAC key */ | 
 |     unsigned char *key; | 
 |     size_t key_len; | 
 |     /* Input to MAC */ | 
 |     unsigned char *input; | 
 |     size_t input_len; | 
 |     /* Expected output */ | 
 |     unsigned char *output; | 
 |     size_t output_len; | 
 | } MAC_DATA; | 
 |  | 
 | static int mac_test_init(EVP_TEST *t, const char *alg) | 
 | { | 
 |     int type; | 
 |     MAC_DATA *mdat; | 
 |  | 
 |     if (strcmp(alg, "HMAC") == 0) { | 
 |         type = EVP_PKEY_HMAC; | 
 |     } else if (strcmp(alg, "CMAC") == 0) { | 
 | #ifndef OPENSSL_NO_CMAC | 
 |         type = EVP_PKEY_CMAC; | 
 | #else | 
 |         t->skip = 1; | 
 |         return 1; | 
 | #endif | 
 |     } else if (strcmp(alg, "Poly1305") == 0) { | 
 | #ifndef OPENSSL_NO_POLY1305 | 
 |         type = EVP_PKEY_POLY1305; | 
 | #else | 
 |         t->skip = 1; | 
 |         return 1; | 
 | #endif | 
 |     } else if (strcmp(alg, "SipHash") == 0) { | 
 | #ifndef OPENSSL_NO_SIPHASH | 
 |         type = EVP_PKEY_SIPHASH; | 
 | #else | 
 |         t->skip = 1; | 
 |         return 1; | 
 | #endif | 
 |     } else | 
 |         return 0; | 
 |  | 
 |     mdat = OPENSSL_zalloc(sizeof(*mdat)); | 
 |     mdat->type = type; | 
 |     t->data = mdat; | 
 |     return 1; | 
 | } | 
 |  | 
 | static void mac_test_cleanup(EVP_TEST *t) | 
 | { | 
 |     MAC_DATA *mdat = t->data; | 
 |  | 
 |     OPENSSL_free(mdat->alg); | 
 |     OPENSSL_free(mdat->key); | 
 |     OPENSSL_free(mdat->input); | 
 |     OPENSSL_free(mdat->output); | 
 | } | 
 |  | 
 | static int mac_test_parse(EVP_TEST *t, | 
 |                           const char *keyword, const char *value) | 
 | { | 
 |     MAC_DATA *mdata = t->data; | 
 |  | 
 |     if (strcmp(keyword, "Key") == 0) | 
 |         return test_bin(value, &mdata->key, &mdata->key_len); | 
 |     if (strcmp(keyword, "Algorithm") == 0) { | 
 |         mdata->alg = OPENSSL_strdup(value); | 
 |         if (!mdata->alg) | 
 |             return 0; | 
 |         return 1; | 
 |     } | 
 |     if (strcmp(keyword, "Input") == 0) | 
 |         return test_bin(value, &mdata->input, &mdata->input_len); | 
 |     if (strcmp(keyword, "Output") == 0) | 
 |         return test_bin(value, &mdata->output, &mdata->output_len); | 
 |     return 0; | 
 | } | 
 |  | 
 | static int mac_test_run(EVP_TEST *t) | 
 | { | 
 |     MAC_DATA *mdata = t->data; | 
 |     EVP_MD_CTX *mctx = NULL; | 
 |     EVP_PKEY_CTX *pctx = NULL, *genctx = NULL; | 
 |     EVP_PKEY *key = NULL; | 
 |     const EVP_MD *md = NULL; | 
 |     unsigned char *mac = NULL; | 
 |     size_t mac_len; | 
 |  | 
 | #ifdef OPENSSL_NO_DES | 
 |     if (mdata->alg != NULL && strstr(mdata->alg, "DES") != NULL) { | 
 |         /* Skip DES */ | 
 |         t->err = NULL; | 
 |         goto err; | 
 |     } | 
 | #endif | 
 |  | 
 |     if (!TEST_ptr(genctx = EVP_PKEY_CTX_new_id(mdata->type, NULL))) { | 
 |         t->err = "MAC_PKEY_CTX_ERROR"; | 
 |         goto err; | 
 |     } | 
 |  | 
 |     if (EVP_PKEY_keygen_init(genctx) <= 0) { | 
 |         t->err = "MAC_KEYGEN_INIT_ERROR"; | 
 |         goto err; | 
 |     } | 
 |     if (mdata->type == EVP_PKEY_CMAC | 
 |              && EVP_PKEY_CTX_ctrl_str(genctx, "cipher", mdata->alg) <= 0) { | 
 |         t->err = "MAC_ALGORITHM_SET_ERROR"; | 
 |         goto err; | 
 |     } | 
 |  | 
 |     if (EVP_PKEY_CTX_set_mac_key(genctx, mdata->key, mdata->key_len) <= 0) { | 
 |         t->err = "MAC_KEY_SET_ERROR"; | 
 |         goto err; | 
 |     } | 
 |  | 
 |     if (EVP_PKEY_keygen(genctx, &key) <= 0) { | 
 |         t->err = "MAC_KEY_GENERATE_ERROR"; | 
 |         goto err; | 
 |     } | 
 |     if (mdata->type == EVP_PKEY_HMAC) { | 
 |         if (!TEST_ptr(md = EVP_get_digestbyname(mdata->alg))) { | 
 |             t->err = "MAC_ALGORITHM_SET_ERROR"; | 
 |             goto err; | 
 |         } | 
 |     } | 
 |     if (!TEST_ptr(mctx = EVP_MD_CTX_new())) { | 
 |         t->err = "INTERNAL_ERROR"; | 
 |         goto err; | 
 |     } | 
 |     if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key)) { | 
 |         t->err = "DIGESTSIGNINIT_ERROR"; | 
 |         goto err; | 
 |     } | 
 |  | 
 |     if (!EVP_DigestSignUpdate(mctx, mdata->input, mdata->input_len)) { | 
 |         t->err = "DIGESTSIGNUPDATE_ERROR"; | 
 |         goto err; | 
 |     } | 
 |     if (!EVP_DigestSignFinal(mctx, NULL, &mac_len)) { | 
 |         t->err = "DIGESTSIGNFINAL_LENGTH_ERROR"; | 
 |         goto err; | 
 |     } | 
 |     if (!TEST_ptr(mac = OPENSSL_malloc(mac_len))) { | 
 |         t->err = "TEST_FAILURE"; | 
 |         goto err; | 
 |     } | 
 |     if (!EVP_DigestSignFinal(mctx, mac, &mac_len) | 
 |             || !TEST_mem_eq(mdata->output, mdata->output_len, mac, mac_len)) { | 
 |         t->err = "TEST_MAC_ERR"; | 
 |         goto err; | 
 |     } | 
 |  | 
 |     t->err = NULL; | 
 |  err: | 
 |     EVP_MD_CTX_free(mctx); | 
 |     OPENSSL_free(mac); | 
 |     EVP_PKEY_CTX_free(genctx); | 
 |     EVP_PKEY_free(key); | 
 |     return 1; | 
 | } | 
 |  | 
 | static const EVP_TEST_METHOD mac_test_method = { | 
 |     "MAC", | 
 |     mac_test_init, | 
 |     mac_test_cleanup, | 
 |     mac_test_parse, | 
 |     mac_test_run | 
 | }; | 
 |  | 
 | /* | 
 |  * Public key operations. These are all very similar and can share | 
 |  * a lot of common code. | 
 |  */ | 
 |  | 
 | typedef struct pkey_data_st { | 
 |     /* Context for this operation */ | 
 |     EVP_PKEY_CTX *ctx; | 
 |     /* Key operation to perform */ | 
 |     int (*keyop) (EVP_PKEY_CTX *ctx, | 
 |                   unsigned char *sig, size_t *siglen, | 
 |                   const unsigned char *tbs, size_t tbslen); | 
 |     /* Input to MAC */ | 
 |     unsigned char *input; | 
 |     size_t input_len; | 
 |     /* Expected output */ | 
 |     unsigned char *output; | 
 |     size_t output_len; | 
 | } PKEY_DATA; | 
 |  | 
 | /* | 
 |  * Perform public key operation setup: lookup key, allocated ctx and call | 
 |  * the appropriate initialisation function | 
 |  */ | 
 | static int pkey_test_init(EVP_TEST *t, const char *name, | 
 |                           int use_public, | 
 |                           int (*keyopinit) (EVP_PKEY_CTX *ctx), | 
 |                           int (*keyop) (EVP_PKEY_CTX *ctx, | 
 |                                         unsigned char *sig, size_t *siglen, | 
 |                                         const unsigned char *tbs, | 
 |                                         size_t tbslen) | 
 |     ) | 
 | { | 
 |     PKEY_DATA *kdata; | 
 |     EVP_PKEY *pkey = NULL; | 
 |     int rv = 0; | 
 |  | 
 |     if (use_public) | 
 |         rv = find_key(&pkey, name, public_keys); | 
 |     if (rv == 0) | 
 |         rv = find_key(&pkey, name, private_keys); | 
 |     if (rv == 0 || pkey == NULL) { | 
 |         t->skip = 1; | 
 |         return 1; | 
 |     } | 
 |  | 
 |     if (!TEST_ptr(kdata = OPENSSL_malloc(sizeof(*kdata)))) { | 
 |         EVP_PKEY_free(pkey); | 
 |         return 0; | 
 |     } | 
 |     kdata->ctx = NULL; | 
 |     kdata->input = NULL; | 
 |     kdata->output = NULL; | 
 |     kdata->keyop = keyop; | 
 |     t->data = kdata; | 
 |     if (!TEST_ptr(kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL))) | 
 |         return 0; | 
 |     if (keyopinit(kdata->ctx) <= 0) | 
 |         t->err = "KEYOP_INIT_ERROR"; | 
 |     return 1; | 
 | } | 
 |  | 
 | static void pkey_test_cleanup(EVP_TEST *t) | 
 | { | 
 |     PKEY_DATA *kdata = t->data; | 
 |  | 
 |     OPENSSL_free(kdata->input); | 
 |     OPENSSL_free(kdata->output); | 
 |     EVP_PKEY_CTX_free(kdata->ctx); | 
 | } | 
 |  | 
 | static int pkey_test_ctrl(EVP_TEST *t, EVP_PKEY_CTX *pctx, | 
 |                           const char *value) | 
 | { | 
 |     int rv; | 
 |     char *p, *tmpval; | 
 |  | 
 |     if (!TEST_ptr(tmpval = OPENSSL_strdup(value))) | 
 |         return 0; | 
 |     p = strchr(tmpval, ':'); | 
 |     if (p != NULL) | 
 |         *p++ = 0; | 
 |     rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p); | 
 |     if (rv == -2) { | 
 |         t->err = "PKEY_CTRL_INVALID"; | 
 |         rv = 1; | 
 |     } else if (p != NULL && rv <= 0) { | 
 |         /* If p has an OID and lookup fails assume disabled algorithm */ | 
 |         int nid = OBJ_sn2nid(p); | 
 |  | 
 |         if (nid == NID_undef) | 
 |              nid = OBJ_ln2nid(p); | 
 |         if ((nid != NID_undef) && EVP_get_digestbynid(nid) == NULL && | 
 |             EVP_get_cipherbynid(nid) == NULL) { | 
 |             t->skip = 1; | 
 |             rv = 1; | 
 |         } else { | 
 |             t->err = "PKEY_CTRL_ERROR"; | 
 |             rv = 1; | 
 |         } | 
 |     } | 
 |     OPENSSL_free(tmpval); | 
 |     return rv > 0; | 
 | } | 
 |  | 
 | static int pkey_test_parse(EVP_TEST *t, | 
 |                            const char *keyword, const char *value) | 
 | { | 
 |     PKEY_DATA *kdata = t->data; | 
 |     if (strcmp(keyword, "Input") == 0) | 
 |         return test_bin(value, &kdata->input, &kdata->input_len); | 
 |     if (strcmp(keyword, "Output") == 0) | 
 |         return test_bin(value, &kdata->output, &kdata->output_len); | 
 |     if (strcmp(keyword, "Ctrl") == 0) | 
 |         return pkey_test_ctrl(t, kdata->ctx, value); | 
 |     return 0; | 
 | } | 
 |  | 
 | static int pkey_test_run(EVP_TEST *t) | 
 | { | 
 |     PKEY_DATA *kdata = t->data; | 
 |     unsigned char *out = NULL; | 
 |     size_t out_len; | 
 |  | 
 |     if (kdata->keyop(kdata->ctx, NULL, &out_len, kdata->input, | 
 |                      kdata->input_len) <= 0 | 
 |             || !TEST_ptr(out = OPENSSL_malloc(out_len))) { | 
 |         t->err = "KEYOP_LENGTH_ERROR"; | 
 |         goto err; | 
 |     } | 
 |     if (kdata->keyop(kdata->ctx, out, | 
 |                      &out_len, kdata->input, kdata->input_len) <= 0) { | 
 |         t->err = "KEYOP_ERROR"; | 
 |         goto err; | 
 |     } | 
 |     if (!TEST_mem_eq(kdata->output, kdata->output_len, out, out_len)) { | 
 |         t->err = "KEYOP_MISMATCH"; | 
 |         goto err; | 
 |     } | 
 |     t->err = NULL; | 
 |  err: | 
 |     OPENSSL_free(out); | 
 |     return 1; | 
 | } | 
 |  | 
 | static int sign_test_init(EVP_TEST *t, const char *name) | 
 | { | 
 |     return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign); | 
 | } | 
 |  | 
 | static const EVP_TEST_METHOD psign_test_method = { | 
 |     "Sign", | 
 |     sign_test_init, | 
 |     pkey_test_cleanup, | 
 |     pkey_test_parse, | 
 |     pkey_test_run | 
 | }; | 
 |  | 
 | static int verify_recover_test_init(EVP_TEST *t, const char *name) | 
 | { | 
 |     return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init, | 
 |                           EVP_PKEY_verify_recover); | 
 | } | 
 |  | 
 | static const EVP_TEST_METHOD pverify_recover_test_method = { | 
 |     "VerifyRecover", | 
 |     verify_recover_test_init, | 
 |     pkey_test_cleanup, | 
 |     pkey_test_parse, | 
 |     pkey_test_run | 
 | }; | 
 |  | 
 | static int decrypt_test_init(EVP_TEST *t, const char *name) | 
 | { | 
 |     return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init, | 
 |                           EVP_PKEY_decrypt); | 
 | } | 
 |  | 
 | static const EVP_TEST_METHOD pdecrypt_test_method = { | 
 |     "Decrypt", | 
 |     decrypt_test_init, | 
 |     pkey_test_cleanup, | 
 |     pkey_test_parse, | 
 |     pkey_test_run | 
 | }; | 
 |  | 
 | static int verify_test_init(EVP_TEST *t, const char *name) | 
 | { | 
 |     return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0); | 
 | } | 
 |  | 
 | static int verify_test_run(EVP_TEST *t) | 
 | { | 
 |     PKEY_DATA *kdata = t->data; | 
 |  | 
 |     if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len, | 
 |                         kdata->input, kdata->input_len) <= 0) | 
 |         t->err = "VERIFY_ERROR"; | 
 |     return 1; | 
 | } | 
 |  | 
 | static const EVP_TEST_METHOD pverify_test_method = { | 
 |     "Verify", | 
 |     verify_test_init, | 
 |     pkey_test_cleanup, | 
 |     pkey_test_parse, | 
 |     verify_test_run | 
 | }; | 
 |  | 
 |  | 
 | static int pderive_test_init(EVP_TEST *t, const char *name) | 
 | { | 
 |     return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0); | 
 | } | 
 |  | 
 | static int pderive_test_parse(EVP_TEST *t, | 
 |                               const char *keyword, const char *value) | 
 | { | 
 |     PKEY_DATA *kdata = t->data; | 
 |  | 
 |     if (strcmp(keyword, "PeerKey") == 0) { | 
 |         EVP_PKEY *peer; | 
 |         if (find_key(&peer, value, public_keys) == 0) | 
 |             return 0; | 
 |         if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0) | 
 |             return 0; | 
 |         return 1; | 
 |     } | 
 |     if (strcmp(keyword, "SharedSecret") == 0) | 
 |         return test_bin(value, &kdata->output, &kdata->output_len); | 
 |     if (strcmp(keyword, "Ctrl") == 0) | 
 |         return pkey_test_ctrl(t, kdata->ctx, value); | 
 |     return 0; | 
 | } | 
 |  | 
 | static int pderive_test_run(EVP_TEST *t) | 
 | { | 
 |     PKEY_DATA *kdata = t->data; | 
 |     unsigned char *out = NULL; | 
 |     size_t out_len; | 
 |  | 
 |     out_len = kdata->output_len; | 
 |     if (!TEST_ptr(out = OPENSSL_malloc(out_len))) { | 
 |         t->err = "DERIVE_ERROR"; | 
 |         goto err; | 
 |     } | 
 |     if (EVP_PKEY_derive(kdata->ctx, out, &out_len) <= 0) { | 
 |         t->err = "DERIVE_ERROR"; | 
 |         goto err; | 
 |     } | 
 |     if (!TEST_mem_eq(kdata->output, kdata->output_len, out, out_len)) { | 
 |         t->err = "SHARED_SECRET_MISMATCH"; | 
 |         goto err; | 
 |     } | 
 |  | 
 |     t->err = NULL; | 
 |  err: | 
 |     OPENSSL_free(out); | 
 |     return 1; | 
 | } | 
 |  | 
 | static const EVP_TEST_METHOD pderive_test_method = { | 
 |     "Derive", | 
 |     pderive_test_init, | 
 |     pkey_test_cleanup, | 
 |     pderive_test_parse, | 
 |     pderive_test_run | 
 | }; | 
 |  | 
 | /* PBE tests */ | 
 |  | 
 | #define PBE_TYPE_SCRYPT 1 | 
 | #define PBE_TYPE_PBKDF2 2 | 
 | #define PBE_TYPE_PKCS12 3 | 
 |  | 
 | typedef struct pbe_data_st { | 
 |     int pbe_type; | 
 |         /* scrypt parameters */ | 
 |     uint64_t N, r, p, maxmem; | 
 |         /* PKCS#12 parameters */ | 
 |     int id, iter; | 
 |     const EVP_MD *md; | 
 |         /* password */ | 
 |     unsigned char *pass; | 
 |     size_t pass_len; | 
 |         /* salt */ | 
 |     unsigned char *salt; | 
 |     size_t salt_len; | 
 |         /* Expected output */ | 
 |     unsigned char *key; | 
 |     size_t key_len; | 
 | } PBE_DATA; | 
 |  | 
 | #ifndef OPENSSL_NO_SCRYPT | 
 | static int scrypt_test_parse(EVP_TEST *t, | 
 |                              const char *keyword, const char *value) | 
 | { | 
 |     PBE_DATA *pdata = t->data; | 
 |  | 
 |     if (strcmp(keyword, "N") == 0) | 
 |         return test_uint64(value, &pdata->N); | 
 |     if (strcmp(keyword, "p") == 0) | 
 |         return test_uint64(value, &pdata->p); | 
 |     if (strcmp(keyword, "r") == 0) | 
 |         return test_uint64(value, &pdata->r); | 
 |     if (strcmp(keyword, "maxmem") == 0) | 
 |         return test_uint64(value, &pdata->maxmem); | 
 |     return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static int pbkdf2_test_parse(EVP_TEST *t, | 
 |                              const char *keyword, const char *value) | 
 | { | 
 |     PBE_DATA *pdata = t->data; | 
 |  | 
 |     if (strcmp(keyword, "iter") == 0) { | 
 |         pdata->iter = atoi(value); | 
 |         if (pdata->iter <= 0) | 
 |             return 0; | 
 |         return 1; | 
 |     } | 
 |     if (strcmp(keyword, "MD") == 0) { | 
 |         pdata->md = EVP_get_digestbyname(value); | 
 |         if (pdata->md == NULL) | 
 |             return 0; | 
 |         return 1; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static int pkcs12_test_parse(EVP_TEST *t, | 
 |                              const char *keyword, const char *value) | 
 | { | 
 |     PBE_DATA *pdata = t->data; | 
 |  | 
 |     if (strcmp(keyword, "id") == 0) { | 
 |         pdata->id = atoi(value); | 
 |         if (pdata->id <= 0) | 
 |             return 0; | 
 |         return 1; | 
 |     } | 
 |     return pbkdf2_test_parse(t, keyword, value); | 
 | } | 
 |  | 
 | static int pbe_test_init(EVP_TEST *t, const char *alg) | 
 | { | 
 |     PBE_DATA *pdat; | 
 |     int pbe_type = 0; | 
 |  | 
 |     if (strcmp(alg, "scrypt") == 0) { | 
 | #ifndef OPENSSL_NO_SCRYPT | 
 |         pbe_type = PBE_TYPE_SCRYPT; | 
 | #else | 
 |         t->skip = 1; | 
 |         return 1; | 
 | #endif | 
 |     } else if (strcmp(alg, "pbkdf2") == 0) { | 
 |         pbe_type = PBE_TYPE_PBKDF2; | 
 |     } else if (strcmp(alg, "pkcs12") == 0) { | 
 |         pbe_type = PBE_TYPE_PKCS12; | 
 |     } else { | 
 |         TEST_error("Unknown pbe algorithm %s", alg); | 
 |     } | 
 |     pdat = OPENSSL_malloc(sizeof(*pdat)); | 
 |     pdat->pbe_type = pbe_type; | 
 |     pdat->pass = NULL; | 
 |     pdat->salt = NULL; | 
 |     pdat->N = 0; | 
 |     pdat->r = 0; | 
 |     pdat->p = 0; | 
 |     pdat->maxmem = 0; | 
 |     pdat->id = 0; | 
 |     pdat->iter = 0; | 
 |     pdat->md = NULL; | 
 |     t->data = pdat; | 
 |     return 1; | 
 | } | 
 |  | 
 | static void pbe_test_cleanup(EVP_TEST *t) | 
 | { | 
 |     PBE_DATA *pdat = t->data; | 
 |  | 
 |     OPENSSL_free(pdat->pass); | 
 |     OPENSSL_free(pdat->salt); | 
 |     OPENSSL_free(pdat->key); | 
 | } | 
 |  | 
 | static int pbe_test_parse(EVP_TEST *t, | 
 |                           const char *keyword, const char *value) | 
 | { | 
 |     PBE_DATA *pdata = t->data; | 
 |  | 
 |     if (strcmp(keyword, "Password") == 0) | 
 |         return test_bin(value, &pdata->pass, &pdata->pass_len); | 
 |     if (strcmp(keyword, "Salt") == 0) | 
 |         return test_bin(value, &pdata->salt, &pdata->salt_len); | 
 |     if (strcmp(keyword, "Key") == 0) | 
 |         return test_bin(value, &pdata->key, &pdata->key_len); | 
 |     if (pdata->pbe_type == PBE_TYPE_PBKDF2) | 
 |         return pbkdf2_test_parse(t, keyword, value); | 
 |     else if (pdata->pbe_type == PBE_TYPE_PKCS12) | 
 |         return pkcs12_test_parse(t, keyword, value); | 
 | #ifndef OPENSSL_NO_SCRYPT | 
 |     else if (pdata->pbe_type == PBE_TYPE_SCRYPT) | 
 |         return scrypt_test_parse(t, keyword, value); | 
 | #endif | 
 |     return 0; | 
 | } | 
 |  | 
 | static int pbe_test_run(EVP_TEST *t) | 
 | { | 
 |     PBE_DATA *pdata = t->data; | 
 |     unsigned char *key; | 
 |  | 
 |     if (!TEST_ptr(key = OPENSSL_malloc(pdata->key_len))) { | 
 |         t->err = "INTERNAL_ERROR"; | 
 |         goto err; | 
 |     } | 
 |     if (pdata->pbe_type == PBE_TYPE_PBKDF2) { | 
 |         if (PKCS5_PBKDF2_HMAC((char *)pdata->pass, pdata->pass_len, | 
 |                               pdata->salt, pdata->salt_len, | 
 |                               pdata->iter, pdata->md, | 
 |                               pdata->key_len, key) == 0) { | 
 |             t->err = "PBKDF2_ERROR"; | 
 |             goto err; | 
 |         } | 
 | #ifndef OPENSSL_NO_SCRYPT | 
 |     } else if (pdata->pbe_type == PBE_TYPE_SCRYPT) { | 
 |         if (EVP_PBE_scrypt((const char *)pdata->pass, pdata->pass_len, | 
 |                            pdata->salt, pdata->salt_len, | 
 |                            pdata->N, pdata->r, pdata->p, pdata->maxmem, | 
 |                            key, pdata->key_len) == 0) { | 
 |             t->err = "SCRYPT_ERROR"; | 
 |             goto err; | 
 |         } | 
 | #endif | 
 |     } else if (pdata->pbe_type == PBE_TYPE_PKCS12) { | 
 |         if (PKCS12_key_gen_uni(pdata->pass, pdata->pass_len, | 
 |                                pdata->salt, pdata->salt_len, | 
 |                                pdata->id, pdata->iter, pdata->key_len, | 
 |                                key, pdata->md) == 0) { | 
 |             t->err = "PKCS12_ERROR"; | 
 |             goto err; | 
 |         } | 
 |     } | 
 |     if (!TEST_mem_eq(pdata->key, pdata->key_len, key, pdata->key_len)) { | 
 |         t->err = "KEY_MISMATCH"; | 
 |         goto err; | 
 |     } | 
 |     t->err = NULL; | 
 | err: | 
 |     OPENSSL_free(key); | 
 |     return 1; | 
 | } | 
 |  | 
 | static const EVP_TEST_METHOD pbe_test_method = { | 
 |     "PBE", | 
 |     pbe_test_init, | 
 |     pbe_test_cleanup, | 
 |     pbe_test_parse, | 
 |     pbe_test_run | 
 | }; | 
 |  | 
 | /* Base64 tests */ | 
 |  | 
 | typedef enum { | 
 |     BASE64_CANONICAL_ENCODING = 0, | 
 |     BASE64_VALID_ENCODING = 1, | 
 |     BASE64_INVALID_ENCODING = 2 | 
 | } base64_encoding_type; | 
 |  | 
 | typedef struct encode_data_st { | 
 |     /* Input to encoding */ | 
 |     unsigned char *input; | 
 |     size_t input_len; | 
 |     /* Expected output */ | 
 |     unsigned char *output; | 
 |     size_t output_len; | 
 |     base64_encoding_type encoding; | 
 | } ENCODE_DATA; | 
 |  | 
 | static int encode_test_init(EVP_TEST *t, const char *encoding) | 
 | { | 
 |     ENCODE_DATA *edata = OPENSSL_zalloc(sizeof(*edata)); | 
 |  | 
 |     if (strcmp(encoding, "canonical") == 0) { | 
 |         edata->encoding = BASE64_CANONICAL_ENCODING; | 
 |     } else if (strcmp(encoding, "valid") == 0) { | 
 |         edata->encoding = BASE64_VALID_ENCODING; | 
 |     } else if (strcmp(encoding, "invalid") == 0) { | 
 |         edata->encoding = BASE64_INVALID_ENCODING; | 
 |         t->expected_err = OPENSSL_strdup("DECODE_ERROR"); | 
 |         if (t->expected_err == NULL) | 
 |             return 0; | 
 |     } else { | 
 |         TEST_info("Bad encoding: %s. Should be one of " | 
 |                   "{canonical, valid, invalid}", encoding); | 
 |         return 0; | 
 |     } | 
 |     t->data = edata; | 
 |     return 1; | 
 | } | 
 |  | 
 | static void encode_test_cleanup(EVP_TEST *t) | 
 | { | 
 |     ENCODE_DATA *edata = t->data; | 
 |  | 
 |     OPENSSL_free(edata->input); | 
 |     OPENSSL_free(edata->output); | 
 |     memset(edata, 0, sizeof(*edata)); | 
 | } | 
 |  | 
 | static int encode_test_parse(EVP_TEST *t, | 
 |                              const char *keyword, const char *value) | 
 | { | 
 |     ENCODE_DATA *edata = t->data; | 
 |     if (strcmp(keyword, "Input") == 0) | 
 |         return test_bin(value, &edata->input, &edata->input_len); | 
 |     if (strcmp(keyword, "Output") == 0) | 
 |         return test_bin(value, &edata->output, &edata->output_len); | 
 |     return 0; | 
 | } | 
 |  | 
 | static int encode_test_run(EVP_TEST *t) | 
 | { | 
 |     ENCODE_DATA *edata = t->data; | 
 |     unsigned char *encode_out = NULL, *decode_out = NULL; | 
 |     int output_len, chunk_len; | 
 |     EVP_ENCODE_CTX *decode_ctx; | 
 |  | 
 |     if (!TEST_ptr(decode_ctx = EVP_ENCODE_CTX_new())) { | 
 |         t->err = "INTERNAL_ERROR"; | 
 |         goto err; | 
 |     } | 
 |  | 
 |     if (edata->encoding == BASE64_CANONICAL_ENCODING) { | 
 |         EVP_ENCODE_CTX *encode_ctx; | 
 |  | 
 |         if (!TEST_ptr(encode_ctx = EVP_ENCODE_CTX_new()) | 
 |                 || !TEST_ptr(encode_out = | 
 |                         OPENSSL_malloc(EVP_ENCODE_LENGTH(edata->input_len)))) | 
 |             goto err; | 
 |  | 
 |         EVP_EncodeInit(encode_ctx); | 
 |         EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len, | 
 |                          edata->input, edata->input_len); | 
 |         output_len = chunk_len; | 
 |  | 
 |         EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len); | 
 |         output_len += chunk_len; | 
 |  | 
 |         EVP_ENCODE_CTX_free(encode_ctx); | 
 |  | 
 |         if (!TEST_mem_eq(edata->output, edata->output_len, | 
 |                          encode_out, output_len)) { | 
 |             t->err = "BAD_ENCODING"; | 
 |             goto err; | 
 |         } | 
 |     } | 
 |  | 
 |     if (!TEST_ptr(decode_out = | 
 |                 OPENSSL_malloc(EVP_DECODE_LENGTH(edata->output_len)))) | 
 |         goto err; | 
 |  | 
 |     EVP_DecodeInit(decode_ctx); | 
 |     if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, edata->output, | 
 |                          edata->output_len) < 0) { | 
 |         t->err = "DECODE_ERROR"; | 
 |         goto err; | 
 |     } | 
 |     output_len = chunk_len; | 
 |  | 
 |     if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) { | 
 |         t->err = "DECODE_ERROR"; | 
 |         goto err; | 
 |     } | 
 |     output_len += chunk_len; | 
 |  | 
 |     if (edata->encoding != BASE64_INVALID_ENCODING | 
 |             && !TEST_mem_eq(edata->input, edata->input_len, | 
 |                             decode_out, output_len)) { | 
 |         t->err = "BAD_DECODING"; | 
 |         goto err; | 
 |     } | 
 |  | 
 |     t->err = NULL; | 
 |  err: | 
 |     OPENSSL_free(encode_out); | 
 |     OPENSSL_free(decode_out); | 
 |     EVP_ENCODE_CTX_free(decode_ctx); | 
 |     return 1; | 
 | } | 
 |  | 
 | static const EVP_TEST_METHOD encode_test_method = { | 
 |     "Encoding", | 
 |     encode_test_init, | 
 |     encode_test_cleanup, | 
 |     encode_test_parse, | 
 |     encode_test_run, | 
 | }; | 
 |  | 
 | /* KDF operations */ | 
 |  | 
 | typedef struct kdf_data_st { | 
 |     /* Context for this operation */ | 
 |     EVP_PKEY_CTX *ctx; | 
 |     /* Expected output */ | 
 |     unsigned char *output; | 
 |     size_t output_len; | 
 | } KDF_DATA; | 
 |  | 
 | /* | 
 |  * Perform public key operation setup: lookup key, allocated ctx and call | 
 |  * the appropriate initialisation function | 
 |  */ | 
 | static int kdf_test_init(EVP_TEST *t, const char *name) | 
 | { | 
 |     KDF_DATA *kdata; | 
 |  | 
 |     kdata = OPENSSL_malloc(sizeof(*kdata)); | 
 |     if (kdata == NULL) | 
 |         return 0; | 
 |     kdata->ctx = NULL; | 
 |     kdata->output = NULL; | 
 |     t->data = kdata; | 
 |     kdata->ctx = EVP_PKEY_CTX_new_id(OBJ_sn2nid(name), NULL); | 
 |     if (kdata->ctx == NULL) | 
 |         return 0; | 
 |     if (EVP_PKEY_derive_init(kdata->ctx) <= 0) | 
 |         return 0; | 
 |     return 1; | 
 | } | 
 |  | 
 | static void kdf_test_cleanup(EVP_TEST *t) | 
 | { | 
 |     KDF_DATA *kdata = t->data; | 
 |     OPENSSL_free(kdata->output); | 
 |     EVP_PKEY_CTX_free(kdata->ctx); | 
 | } | 
 |  | 
 | static int kdf_test_parse(EVP_TEST *t, | 
 |                           const char *keyword, const char *value) | 
 | { | 
 |     KDF_DATA *kdata = t->data; | 
 |  | 
 |     if (strcmp(keyword, "Output") == 0) | 
 |         return test_bin(value, &kdata->output, &kdata->output_len); | 
 |     if (strncmp(keyword, "Ctrl", 4) == 0) | 
 |         return pkey_test_ctrl(t, kdata->ctx, value); | 
 |     return 0; | 
 | } | 
 |  | 
 | static int kdf_test_run(EVP_TEST *t) | 
 | { | 
 |     KDF_DATA *kdata = t->data; | 
 |     unsigned char *out = NULL; | 
 |     size_t out_len = kdata->output_len; | 
 |  | 
 |     if (!TEST_ptr(out = OPENSSL_malloc(out_len))) { | 
 |         t->err = "INTERNAL_ERROR"; | 
 |         goto err; | 
 |     } | 
 |     if (EVP_PKEY_derive(kdata->ctx, out, &out_len) <= 0) { | 
 |         t->err = "KDF_DERIVE_ERROR"; | 
 |         goto err; | 
 |     } | 
 |     if (!TEST_mem_eq(kdata->output, kdata->output_len, out, out_len)) { | 
 |         t->err = "KDF_MISMATCH"; | 
 |         goto err; | 
 |     } | 
 |     t->err = NULL; | 
 |  | 
 |  err: | 
 |     OPENSSL_free(out); | 
 |     return 1; | 
 | } | 
 |  | 
 | static const EVP_TEST_METHOD kdf_test_method = { | 
 |     "KDF", | 
 |     kdf_test_init, | 
 |     kdf_test_cleanup, | 
 |     kdf_test_parse, | 
 |     kdf_test_run | 
 | }; | 
 |  | 
 | typedef struct keypair_test_data_st { | 
 |     EVP_PKEY *privk; | 
 |     EVP_PKEY *pubk; | 
 | } KEYPAIR_TEST_DATA; | 
 |  | 
 | static int keypair_test_init(EVP_TEST *t, const char *pair) | 
 | { | 
 |     int rv = 0; | 
 |     EVP_PKEY *pk = NULL, *pubk = NULL; | 
 |     char *pub, *priv = NULL; | 
 |     KEYPAIR_TEST_DATA *data; | 
 |  | 
 |     if (!TEST_ptr(priv = OPENSSL_strdup(pair)) | 
 |             || !TEST_ptr(pub = strchr(priv, ':'))) { | 
 |         t->err = "PARSING_ERROR"; | 
 |         goto end; | 
 |     } | 
 |     *pub++ = 0; /* split priv and pub strings */ | 
 |  | 
 |     if (!TEST_true(find_key(&pk, priv, private_keys))) { | 
 |         TEST_info("Cannot find private key: %s", priv); | 
 |         t->err = "MISSING_PRIVATE_KEY"; | 
 |         goto end; | 
 |     } | 
 |     if (!TEST_true(find_key(&pubk, pub, public_keys))) { | 
 |         TEST_info("Cannot find public key: %s", pub); | 
 |         t->err = "MISSING_PUBLIC_KEY"; | 
 |         goto end; | 
 |     } | 
 |  | 
 |     if (pk == NULL && pubk == NULL) { | 
 |         /* Both keys are listed but unsupported: skip this test */ | 
 |         t->skip = 1; | 
 |         rv = 1; | 
 |         goto end; | 
 |     } | 
 |  | 
 |     if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data)))) | 
 |         goto end; | 
 |  | 
 |     data->privk = pk; | 
 |     data->pubk = pubk; | 
 |     t->data = data; | 
 |     rv = 1; | 
 |     t->err = NULL; | 
 |  | 
 | end: | 
 |     OPENSSL_free(priv); | 
 |     return rv; | 
 | } | 
 |  | 
 | static void keypair_test_cleanup(EVP_TEST *t) | 
 | { | 
 |     OPENSSL_free(t->data); | 
 |     t->data = NULL; | 
 | } | 
 |  | 
 | /* For test that do not accept any custom keyword: | 
 |  *      return 0 if called | 
 |  */ | 
 | static int void_test_parse(EVP_TEST *t, const char *keyword, const char *value) | 
 | { | 
 |     return 0; | 
 | } | 
 |  | 
 | static int keypair_test_run(EVP_TEST *t) | 
 | { | 
 |     int rv = 0; | 
 |     const KEYPAIR_TEST_DATA *pair = t->data; | 
 |  | 
 |     if (pair->privk == NULL || pair->pubk == NULL) { | 
 |         /* | 
 |          * this can only happen if only one of the keys is not set | 
 |          * which means that one of them was unsupported while the | 
 |          * other isn't: hence a key type mismatch. | 
 |          */ | 
 |         t->err = "KEYPAIR_TYPE_MISMATCH"; | 
 |         rv = 1; | 
 |         goto end; | 
 |     } | 
 |  | 
 |     if ((rv = EVP_PKEY_cmp(pair->privk, pair->pubk)) != 1 ) { | 
 |         if ( 0 == rv ) { | 
 |             t->err = "KEYPAIR_MISMATCH"; | 
 |         } else if ( -1 == rv ) { | 
 |             t->err = "KEYPAIR_TYPE_MISMATCH"; | 
 |         } else if ( -2 == rv ) { | 
 |             t->err = "UNSUPPORTED_KEY_COMPARISON"; | 
 |         } else { | 
 |             TEST_error("Unexpected error in key comparison"); | 
 |             rv = 0; | 
 |             goto end; | 
 |         } | 
 |         rv = 1; | 
 |         goto end; | 
 |     } | 
 |  | 
 |     rv = 1; | 
 |     t->err = NULL; | 
 |  | 
 | end: | 
 |     return rv; | 
 | } | 
 |  | 
 | static const EVP_TEST_METHOD keypair_test_method = { | 
 |     "PrivPubKeyPair", | 
 |     keypair_test_init, | 
 |     keypair_test_cleanup, | 
 |     void_test_parse, | 
 |     keypair_test_run | 
 | }; | 
 |  | 
 | static int do_test_file(const char *testfile) | 
 | { | 
 |     BIO *in; | 
 |     char buf[10240]; | 
 |     EVP_TEST t; | 
 |  | 
 |     if (!TEST_ptr(in = BIO_new_file(testfile, "rb"))) | 
 |         return 0; | 
 |     memset(&t, 0, sizeof(t)); | 
 |     t.start_line = -1; | 
 |     t.in = in; | 
 |     t.err = NULL; | 
 |     while (BIO_gets(in, buf, sizeof(buf))) { | 
 |         t.line++; | 
 |         if (!TEST_true(parse_test_line(&t, buf))) | 
 |             return 0; | 
 |     } | 
 |     /* Run any final test we have */ | 
 |     if (!run_and_get_next(&t, NULL)) | 
 |         return 0; | 
 |  | 
 |     TEST_info("Completed %d tests with %d errors and %d skipped", | 
 |               t.ntests, t.errors, t.nskip); | 
 |     free_key_list(public_keys); | 
 |     free_key_list(private_keys); | 
 |     BIO_free(t.key); | 
 |     BIO_free(in); | 
 |     return t.errors == 0; | 
 | } | 
 |  | 
 | static char * const *testfiles; | 
 |  | 
 | static int run_file_tests(int i) | 
 | { | 
 |     return do_test_file(testfiles[i]); | 
 | } | 
 |  | 
 | int test_main(int argc, char *argv[]) | 
 | { | 
 |     if (argc < 2) { | 
 |         TEST_error("Usage: %s file...", argv[0]); | 
 |         return 0; | 
 |     } | 
 |     testfiles = &argv[1]; | 
 |  | 
 |     ADD_ALL_TESTS(run_file_tests, argc - 1); | 
 |  | 
 |     return run_tests(argv[0]); | 
 | } |