| =pod |
| |
| =head1 NAME |
| |
| scrypt - EVP_PKEY scrypt KDF support |
| |
| =head1 SYNOPSIS |
| |
| #include <openssl/kdf.h> |
| |
| int EVP_PKEY_CTX_set1_pbe_pass(EVP_PKEY_CTX *pctx, unsigned char *pass, |
| int passlen); |
| |
| int EVP_PKEY_CTX_set1_scrypt_salt(EVP_PKEY_CTX *pctx, unsigned char *salt, |
| int saltlen); |
| |
| int EVP_PKEY_CTX_set_scrypt_N(EVP_PKEY_CTX *pctx, uint64_t N); |
| |
| int EVP_PKEY_CTX_set_scrypt_r(EVP_PKEY_CTX *pctx, uint64_t r); |
| |
| int EVP_PKEY_CTX_set_scrypt_p(EVP_PKEY_CTX *pctx, uint64_t p); |
| |
| int EVP_PKEY_CTX_set_scrypt_maxmem_bytes(EVP_PKEY_CTX *pctx, uint64_t maxmem); |
| |
| =head1 DESCRIPTION |
| |
| The EVP_PKEY_SCRYPT algorithm implements the scrypt password based key |
| derivation function, as described in RFC 7914. It is memory-hard in the sense |
| that it deliberately requires a significant amount of RAM for efficient |
| computation. The intention of this is to render brute forcing of passwords on |
| systems that lack large amounts of main memory (such as GPUs or ASICs) |
| computationally infeasible. |
| |
| scrypt provides three work factors that can be customized: N, r and p. N, which |
| has to be a positive power of two, is the general work factor and scales CPU |
| time in an approximately linear fashion. r is the block size of the internally |
| used hash function and p is the parallelization factor. Both r and p need to be |
| greater than zero. The amount of RAM that scrypt requires for its computation |
| is roughly (128 * N * r * p) bytes. |
| |
| In the original paper of Colin Percival ("Stronger Key Derivation via |
| Sequential Memory-Hard Functions", 2009), the suggested values that give a |
| computation time of less than 5 seconds on a 2.5 GHz Intel Core 2 Duo are N = |
| 2^20 = 1048576, r = 8, p = 1. Consequently, the required amount of memory for |
| this computation is roughly 1 GiB. On a more recent CPU (Intel i7-5930K at 3.5 |
| GHz), this computation takes about 3 seconds. When N, r or p are not specified, |
| they default to 1048576, 8, and 1, respectively. The default amount of RAM that |
| may be used by scrypt defaults to 1025 MiB. |
| |
| EVP_PKEY_CTX_set1_pbe_pass() sets the B<passlen> bytes long password. |
| |
| EVP_PKEY_CTX_set1_scrypt_salt() sets the B<saltlen> bytes long salt value. |
| |
| EVP_PKEY_CTX_set_scrypt_N(), EVP_PKEY_CTX_set_scrypt_r() and |
| EVP_PKEY_CTX_set_scrypt_p() configure the work factors N, r and p. |
| |
| EVP_PKEY_CTX_set_scrypt_maxmem_bytes() sets how much RAM key derivation may |
| maximally use, given in bytes. If RAM is exceeded because the load factors are |
| chosen too high, the key derivation will fail. |
| |
| =head1 STRING CTRLS |
| |
| scrypt also supports string based control operations via |
| L<EVP_PKEY_CTX_ctrl_str(3)>. |
| The B<password> can be directly specified using the B<type> parameter "pass" or |
| given in hex encoding using the "hexpass" parameter. Similarly, the B<salt> can |
| either be specified using the B<type> parameter "salt" or in hex encoding by |
| using the "hexsalt" parameter. The work factors B<N>, B<r> and B<p> as well as |
| B<maxmem_bytes> can be set by using the parameters "N", "r", "p" and |
| "maxmem_bytes", respectively. |
| |
| =head1 NOTES |
| |
| All these functions are implemented as macros. |
| |
| A context for scrypt can be obtained by calling: |
| |
| EVP_PKEY_CTX *pctx = EVP_PKEY_new_id(EVP_PKEY_SCRYPT, NULL); |
| |
| The output length of an scrypt key derivation is specified via the length |
| parameter to the L<EVP_PKEY_derive(3)> function. |
| |
| =head1 RETURN VALUES |
| |
| All these functions return 1 for success and 0 or a negative value for failure. |
| In particular a return value of -2 indicates the operation is not supported by |
| the public key algorithm. |
| |
| =head1 EXAMPLE |
| |
| This example derives a 64-byte long test vector using scrypt using the password |
| "password", salt "NaCl" and N = 1024, r = 8, p = 16. |
| |
| EVP_PKEY_CTX *pctx; |
| unsigned char out[64]; |
| |
| size_t outlen = sizeof(out); |
| pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_SCRYPT, NULL); |
| |
| if (EVP_PKEY_derive_init(pctx) <= 0) { |
| error("EVP_PKEY_derive_init"); |
| } |
| if (EVP_PKEY_CTX_set1_pbe_pass(pctx, "password", 8) <= 0) { |
| error("EVP_PKEY_CTX_set1_pbe_pass"); |
| } |
| if (EVP_PKEY_CTX_set1_scrypt_salt(pctx, "NaCl", 4) <= 0) { |
| error("EVP_PKEY_CTX_set1_scrypt_salt"); |
| } |
| if (EVP_PKEY_CTX_set_scrypt_N(pctx, 1024) <= 0) { |
| error("EVP_PKEY_CTX_set_scrypt_N"); |
| } |
| if (EVP_PKEY_CTX_set_scrypt_r(pctx, 8) <= 0) { |
| error("EVP_PKEY_CTX_set_scrypt_r"); |
| } |
| if (EVP_PKEY_CTX_set_scrypt_p(pctx, 16) <= 0) { |
| error("EVP_PKEY_CTX_set_scrypt_p"); |
| } |
| if (EVP_PKEY_derive(pctx, out, &outlen) <= 0) { |
| error("EVP_PKEY_derive"); |
| } |
| |
| { |
| const unsigned char expected[sizeof(out)] = { |
| 0xfd, 0xba, 0xbe, 0x1c, 0x9d, 0x34, 0x72, 0x00, |
| 0x78, 0x56, 0xe7, 0x19, 0x0d, 0x01, 0xe9, 0xfe, |
| 0x7c, 0x6a, 0xd7, 0xcb, 0xc8, 0x23, 0x78, 0x30, |
| 0xe7, 0x73, 0x76, 0x63, 0x4b, 0x37, 0x31, 0x62, |
| 0x2e, 0xaf, 0x30, 0xd9, 0x2e, 0x22, 0xa3, 0x88, |
| 0x6f, 0xf1, 0x09, 0x27, 0x9d, 0x98, 0x30, 0xda, |
| 0xc7, 0x27, 0xaf, 0xb9, 0x4a, 0x83, 0xee, 0x6d, |
| 0x83, 0x60, 0xcb, 0xdf, 0xa2, 0xcc, 0x06, 0x40 |
| }; |
| |
| assert(!memcmp(out, expected, sizeof(out))); |
| } |
| |
| EVP_PKEY_CTX_free(pctx); |
| |
| =head1 CONFORMING TO |
| |
| RFC 7914 |
| |
| =head1 SEE ALSO |
| |
| L<EVP_PKEY_CTX_new(3)>, |
| L<EVP_PKEY_CTX_ctrl_str(3)>, |
| L<EVP_PKEY_derive(3)> |
| |
| =head1 COPYRIGHT |
| |
| Copyright 2017 The OpenSSL Project Authors. All Rights Reserved. |
| |
| Licensed under the OpenSSL license (the "License"). You may not use |
| this file except in compliance with the License. You can obtain a copy |
| in the file LICENSE in the source distribution or at |
| L<https://www.openssl.org/source/license.html>. |
| |
| =cut |