| /* crypto/bn/bn_prime.c */ |
| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| |
| #include <stdio.h> |
| #include <time.h> |
| #include "cryptlib.h" |
| #include "bn_lcl.h" |
| #include <openssl/rand.h> |
| |
| /* The quick sieve algorithm approach to weeding out primes is |
| * Philip Zimmermann's, as implemented in PGP. I have had a read of |
| * his comments and implemented my own version. |
| */ |
| #include "bn_prime.h" |
| |
| /* number of Miller-Rabin iterations for an error rate of less than 2^-80 |
| * for random 'b'-bit input, b >= 100 (taken from table 4.4 in the Handbook |
| * of Applied Cryptography [Menezes, van Oorschot, Vanstone; CRC Press 1996]; |
| * original paper: Damgaard, Landrock, Pomerance: Average case error estimates |
| * for the strong probable prime test. -- Math. Comp. 61 (1993) 177-194) */ |
| #define BN_prime_checks_size(b) ((b) >= 1300 ? 2 : \ |
| (b) >= 850 ? 3 : \ |
| (b) >= 650 ? 4 : \ |
| (b) >= 550 ? 5 : \ |
| (b) >= 450 ? 6 : \ |
| (b) >= 400 ? 7 : \ |
| (b) >= 350 ? 8 : \ |
| (b) >= 300 ? 9 : \ |
| (b) >= 250 ? 12 : \ |
| (b) >= 200 ? 15 : \ |
| (b) >= 150 ? 18 : \ |
| /* b >= 100 */ 27) |
| |
| static int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx,BN_CTX *ctx2, |
| BN_MONT_CTX *mont); |
| static int probable_prime(BIGNUM *rnd, int bits); |
| static int probable_prime_dh(BIGNUM *rnd, int bits, |
| BIGNUM *add, BIGNUM *rem, BN_CTX *ctx); |
| static int probable_prime_dh_safe(BIGNUM *rnd, int bits, |
| BIGNUM *add, BIGNUM *rem, BN_CTX *ctx); |
| |
| BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, BIGNUM *add, |
| BIGNUM *rem, void (*callback)(int,int,void *), void *cb_arg) |
| { |
| BIGNUM *rnd=NULL; |
| BIGNUM t; |
| int found=0; |
| int i,j,c1=0; |
| BN_CTX *ctx; |
| int checks = BN_prime_checks_size(bits); |
| |
| ctx=BN_CTX_new(); |
| if (ctx == NULL) goto err; |
| if (ret == NULL) |
| { |
| if ((rnd=BN_new()) == NULL) goto err; |
| } |
| else |
| rnd=ret; |
| BN_init(&t); |
| loop: |
| /* make a random number and set the top and bottom bits */ |
| if (add == NULL) |
| { |
| if (!probable_prime(rnd,bits)) goto err; |
| } |
| else |
| { |
| if (safe) |
| { |
| if (!probable_prime_dh_safe(rnd,bits,add,rem,ctx)) |
| goto err; |
| } |
| else |
| { |
| if (!probable_prime_dh(rnd,bits,add,rem,ctx)) |
| goto err; |
| } |
| } |
| /* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */ |
| if (callback != NULL) callback(0,c1++,cb_arg); |
| |
| if (!safe) |
| { |
| i=BN_is_prime(rnd,checks,callback,ctx,cb_arg); |
| if (i == -1) goto err; |
| if (i == 0) goto loop; |
| } |
| else |
| { |
| /* for "safe prime" generation, |
| * check that (p-1)/2 is prime. |
| * Since a prime is odd, We just |
| * need to divide by 2 */ |
| if (!BN_rshift1(&t,rnd)) goto err; |
| |
| for (i=0; i<checks; i++) |
| { |
| j=BN_is_prime(rnd,1,callback,ctx,cb_arg); |
| if (j == -1) goto err; |
| if (j == 0) goto loop; |
| |
| j=BN_is_prime(&t,1,callback,ctx,cb_arg); |
| if (j == -1) goto err; |
| if (j == 0) goto loop; |
| |
| if (callback != NULL) callback(2,c1-1,cb_arg); |
| /* We have a safe prime test pass */ |
| } |
| } |
| /* we have a prime :-) */ |
| found = 1; |
| err: |
| if (!found && (ret == NULL) && (rnd != NULL)) BN_free(rnd); |
| BN_free(&t); |
| if (ctx != NULL) BN_CTX_free(ctx); |
| return(found ? rnd : NULL); |
| } |
| |
| int BN_is_prime(BIGNUM *a, int checks, void (*callback)(int,int,void *), |
| BN_CTX *ctx_passed, void *cb_arg) |
| { |
| int i,j,c2=0,ret= -1; |
| BIGNUM *check; |
| BN_CTX *ctx=NULL,*ctx2=NULL; |
| BN_MONT_CTX *mont=NULL; |
| |
| if (checks == BN_prime_checks) |
| { |
| int bits = BN_num_bits(a); |
| checks = BN_prime_checks_size(bits); |
| } |
| |
| if (!BN_is_odd(a)) |
| return(0); |
| if (ctx_passed != NULL) |
| ctx=ctx_passed; |
| else |
| if ((ctx=BN_CTX_new()) == NULL) goto err; |
| |
| if ((ctx2=BN_CTX_new()) == NULL) goto err; |
| if ((mont=BN_MONT_CTX_new()) == NULL) goto err; |
| |
| check= &(ctx->bn[ctx->tos++]); |
| |
| /* Setup the montgomery structure */ |
| if (!BN_MONT_CTX_set(mont,a,ctx2)) goto err; |
| |
| for (i=0; i<checks; i++) |
| { |
| if (!BN_rand(check,BN_num_bits(a)-1,0,0)) goto err; |
| j=witness(check,a,ctx,ctx2,mont); |
| if (j == -1) goto err; |
| if (j) |
| { |
| ret=0; |
| goto err; |
| } |
| if (callback != NULL) callback(1,c2++,cb_arg); |
| } |
| ret=1; |
| err: |
| ctx->tos--; |
| if ((ctx_passed == NULL) && (ctx != NULL)) |
| BN_CTX_free(ctx); |
| if (ctx2 != NULL) |
| BN_CTX_free(ctx2); |
| if (mont != NULL) BN_MONT_CTX_free(mont); |
| |
| return(ret); |
| } |
| |
| #define RECP_MUL_MOD |
| |
| static int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx, BN_CTX *ctx2, |
| BN_MONT_CTX *mont) |
| { |
| int k,i,ret= -1,good; |
| BIGNUM *d,*dd,*tmp,*d1,*d2,*n1; |
| BIGNUM *mont_one,*mont_n1,*mont_a; |
| |
| d1= &(ctx->bn[ctx->tos]); |
| d2= &(ctx->bn[ctx->tos+1]); |
| n1= &(ctx->bn[ctx->tos+2]); |
| ctx->tos+=3; |
| |
| mont_one= &(ctx2->bn[ctx2->tos]); |
| mont_n1= &(ctx2->bn[ctx2->tos+1]); |
| mont_a= &(ctx2->bn[ctx2->tos+2]); |
| ctx2->tos+=3; |
| |
| d=d1; |
| dd=d2; |
| if (!BN_one(d)) goto err; |
| if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */ |
| k=BN_num_bits(n1); |
| |
| if (!BN_to_montgomery(mont_one,BN_value_one(),mont,ctx2)) goto err; |
| if (!BN_to_montgomery(mont_n1,n1,mont,ctx2)) goto err; |
| if (!BN_to_montgomery(mont_a,a,mont,ctx2)) goto err; |
| |
| BN_copy(d,mont_one); |
| for (i=k-1; i>=0; i--) |
| { |
| if ( (BN_cmp(d,mont_one) != 0) && |
| (BN_cmp(d,mont_n1) != 0)) |
| good=1; |
| else |
| good=0; |
| |
| BN_mod_mul_montgomery(dd,d,d,mont,ctx2); |
| |
| if (good && (BN_cmp(dd,mont_one) == 0)) |
| { |
| ret=1; |
| goto err; |
| } |
| if (BN_is_bit_set(n1,i)) |
| { |
| BN_mod_mul_montgomery(d,dd,mont_a,mont,ctx2); |
| } |
| else |
| { |
| tmp=d; |
| d=dd; |
| dd=tmp; |
| } |
| } |
| if (BN_cmp(d,mont_one) == 0) |
| i=0; |
| else i=1; |
| ret=i; |
| err: |
| ctx->tos-=3; |
| ctx2->tos-=3; |
| return(ret); |
| } |
| |
| static int probable_prime(BIGNUM *rnd, int bits) |
| { |
| int i; |
| MS_STATIC BN_ULONG mods[NUMPRIMES]; |
| BN_ULONG delta,d; |
| |
| again: |
| if (!BN_rand(rnd,bits,1,1)) return(0); |
| /* we now have a random number 'rand' to test. */ |
| for (i=1; i<NUMPRIMES; i++) |
| mods[i]=BN_mod_word(rnd,(BN_ULONG)primes[i]); |
| delta=0; |
| loop: for (i=1; i<NUMPRIMES; i++) |
| { |
| /* check that rnd is not a prime and also |
| * that gcd(rnd-1,primes) == 1 (except for 2) */ |
| if (((mods[i]+delta)%primes[i]) <= 1) |
| { |
| d=delta; |
| delta+=2; |
| /* perhaps need to check for overflow of |
| * delta (but delta can be upto 2^32) |
| * 21-May-98 eay - added overflow check */ |
| if (delta < d) goto again; |
| goto loop; |
| } |
| } |
| if (!BN_add_word(rnd,delta)) return(0); |
| return(1); |
| } |
| |
| static int probable_prime_dh(BIGNUM *rnd, int bits, BIGNUM *add, BIGNUM *rem, |
| BN_CTX *ctx) |
| { |
| int i,ret=0; |
| BIGNUM *t1; |
| |
| t1= &(ctx->bn[ctx->tos++]); |
| |
| if (!BN_rand(rnd,bits,0,1)) goto err; |
| |
| /* we need ((rnd-rem) % add) == 0 */ |
| |
| if (!BN_mod(t1,rnd,add,ctx)) goto err; |
| if (!BN_sub(rnd,rnd,t1)) goto err; |
| if (rem == NULL) |
| { if (!BN_add_word(rnd,1)) goto err; } |
| else |
| { if (!BN_add(rnd,rnd,rem)) goto err; } |
| |
| /* we now have a random number 'rand' to test. */ |
| |
| loop: for (i=1; i<NUMPRIMES; i++) |
| { |
| /* check that rnd is a prime */ |
| if (BN_mod_word(rnd,(BN_ULONG)primes[i]) <= 1) |
| { |
| if (!BN_add(rnd,rnd,add)) goto err; |
| goto loop; |
| } |
| } |
| ret=1; |
| err: |
| ctx->tos--; |
| return(ret); |
| } |
| |
| static int probable_prime_dh_safe(BIGNUM *p, int bits, BIGNUM *padd, |
| BIGNUM *rem, BN_CTX *ctx) |
| { |
| int i,ret=0; |
| BIGNUM *t1,*qadd=NULL,*q=NULL; |
| |
| bits--; |
| t1= &(ctx->bn[ctx->tos++]); |
| q= &(ctx->bn[ctx->tos++]); |
| qadd= &(ctx->bn[ctx->tos++]); |
| |
| if (!BN_rshift1(qadd,padd)) goto err; |
| |
| if (!BN_rand(q,bits,0,1)) goto err; |
| |
| /* we need ((rnd-rem) % add) == 0 */ |
| if (!BN_mod(t1,q,qadd,ctx)) goto err; |
| if (!BN_sub(q,q,t1)) goto err; |
| if (rem == NULL) |
| { if (!BN_add_word(q,1)) goto err; } |
| else |
| { |
| if (!BN_rshift1(t1,rem)) goto err; |
| if (!BN_add(q,q,t1)) goto err; |
| } |
| |
| /* we now have a random number 'rand' to test. */ |
| if (!BN_lshift1(p,q)) goto err; |
| if (!BN_add_word(p,1)) goto err; |
| |
| loop: for (i=1; i<NUMPRIMES; i++) |
| { |
| /* check that p and q are prime */ |
| /* check that for p and q |
| * gcd(p-1,primes) == 1 (except for 2) */ |
| if ( (BN_mod_word(p,(BN_ULONG)primes[i]) == 0) || |
| (BN_mod_word(q,(BN_ULONG)primes[i]) == 0)) |
| { |
| if (!BN_add(p,p,padd)) goto err; |
| if (!BN_add(q,q,qadd)) goto err; |
| goto loop; |
| } |
| } |
| ret=1; |
| err: |
| ctx->tos-=3; |
| return(ret); |
| } |
| |
| #if 0 |
| static int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx) |
| { |
| int k,i,nb,ret= -1; |
| BIGNUM *d,*dd,*tmp; |
| BIGNUM *d1,*d2,*x,*n1,*inv; |
| |
| d1= &(ctx->bn[ctx->tos]); |
| d2= &(ctx->bn[ctx->tos+1]); |
| x= &(ctx->bn[ctx->tos+2]); |
| n1= &(ctx->bn[ctx->tos+3]); |
| inv=&(ctx->bn[ctx->tos+4]); |
| ctx->tos+=5; |
| |
| d=d1; |
| dd=d2; |
| if (!BN_one(d)) goto err; |
| if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */ |
| k=BN_num_bits(n1); |
| |
| /* i=BN_num_bits(n); */ |
| #ifdef RECP_MUL_MOD |
| nb=BN_reciprocal(inv,n,ctx); /**/ |
| if (nb == -1) goto err; |
| #endif |
| |
| for (i=k-1; i>=0; i--) |
| { |
| if (BN_copy(x,d) == NULL) goto err; |
| #ifndef RECP_MUL_MOD |
| if (!BN_mod_mul(dd,d,d,n,ctx)) goto err; |
| #else |
| if (!BN_mod_mul_reciprocal(dd,d,d,n,inv,nb,ctx)) goto err; |
| #endif |
| if ( BN_is_one(dd) && |
| !BN_is_one(x) && |
| (BN_cmp(x,n1) != 0)) |
| { |
| ret=1; |
| goto err; |
| } |
| if (BN_is_bit_set(n1,i)) |
| { |
| #ifndef RECP_MUL_MOD |
| if (!BN_mod_mul(d,dd,a,n,ctx)) goto err; |
| #else |
| if (!BN_mod_mul_reciprocal(d,dd,a,n,inv,nb,ctx)) goto err; |
| #endif |
| } |
| else |
| { |
| tmp=d; |
| d=dd; |
| dd=tmp; |
| } |
| } |
| if (BN_is_one(d)) |
| i=0; |
| else i=1; |
| ret=i; |
| err: |
| ctx->tos-=5; |
| return(ret); |
| } |
| #endif |