| /* crypto/bn/bn_exp.c */ | 
 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
 |  * All rights reserved. | 
 |  * | 
 |  * This package is an SSL implementation written | 
 |  * by Eric Young (eay@cryptsoft.com). | 
 |  * The implementation was written so as to conform with Netscapes SSL. | 
 |  *  | 
 |  * This library is free for commercial and non-commercial use as long as | 
 |  * the following conditions are aheared to.  The following conditions | 
 |  * apply to all code found in this distribution, be it the RC4, RSA, | 
 |  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
 |  * included with this distribution is covered by the same copyright terms | 
 |  * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
 |  *  | 
 |  * Copyright remains Eric Young's, and as such any Copyright notices in | 
 |  * the code are not to be removed. | 
 |  * If this package is used in a product, Eric Young should be given attribution | 
 |  * as the author of the parts of the library used. | 
 |  * This can be in the form of a textual message at program startup or | 
 |  * in documentation (online or textual) provided with the package. | 
 |  *  | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * 1. Redistributions of source code must retain the copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in the | 
 |  *    documentation and/or other materials provided with the distribution. | 
 |  * 3. All advertising materials mentioning features or use of this software | 
 |  *    must display the following acknowledgement: | 
 |  *    "This product includes cryptographic software written by | 
 |  *     Eric Young (eay@cryptsoft.com)" | 
 |  *    The word 'cryptographic' can be left out if the rouines from the library | 
 |  *    being used are not cryptographic related :-). | 
 |  * 4. If you include any Windows specific code (or a derivative thereof) from  | 
 |  *    the apps directory (application code) you must include an acknowledgement: | 
 |  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
 |  *  | 
 |  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
 |  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 |  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
 |  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
 |  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
 |  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
 |  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
 |  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
 |  * SUCH DAMAGE. | 
 |  *  | 
 |  * The licence and distribution terms for any publically available version or | 
 |  * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
 |  * copied and put under another distribution licence | 
 |  * [including the GNU Public Licence.] | 
 |  */ | 
 | /* ==================================================================== | 
 |  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * | 
 |  * 1. Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer.  | 
 |  * | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  * | 
 |  * 3. All advertising materials mentioning features or use of this | 
 |  *    software must display the following acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
 |  * | 
 |  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
 |  *    endorse or promote products derived from this software without | 
 |  *    prior written permission. For written permission, please contact | 
 |  *    openssl-core@openssl.org. | 
 |  * | 
 |  * 5. Products derived from this software may not be called "OpenSSL" | 
 |  *    nor may "OpenSSL" appear in their names without prior written | 
 |  *    permission of the OpenSSL Project. | 
 |  * | 
 |  * 6. Redistributions of any form whatsoever must retain the following | 
 |  *    acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
 |  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
 |  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
 |  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
 |  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
 |  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
 |  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 |  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
 |  * OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  * ==================================================================== | 
 |  * | 
 |  * This product includes cryptographic software written by Eric Young | 
 |  * (eay@cryptsoft.com).  This product includes software written by Tim | 
 |  * Hudson (tjh@cryptsoft.com). | 
 |  * | 
 |  */ | 
 |  | 
 | #define OPENSSL_FIPSAPI | 
 |  | 
 | #include "cryptlib.h" | 
 | #include "bn_lcl.h" | 
 |  | 
 | #include <stdlib.h> | 
 | #ifdef _WIN32 | 
 | # include <malloc.h> | 
 | # ifndef alloca | 
 | #  define alloca _alloca | 
 | # endif | 
 | #elif defined(__GNUC__) | 
 | # ifndef alloca | 
 | #  define alloca(s) __builtin_alloca((s)) | 
 | # endif | 
 | #elif defined(__sun) | 
 | # include <alloca.h> | 
 | #endif | 
 |  | 
 | #undef RSAZ_ENABLED | 
 | #if defined(OPENSSL_BN_ASM_MONT) && \ | 
 | 	(defined(__x86_64) || defined(__x86_64__) || \ | 
 | 	 defined(_M_AMD64) || defined(_M_X64)) | 
 | # include "rsaz_exp.h" | 
 | # define RSAZ_ENABLED | 
 | #endif | 
 |  | 
 | #undef SPARC_T4_MONT | 
 | #if defined(OPENSSL_BN_ASM_MONT) && (defined(__sparc__) || defined(__sparc)) | 
 | # include "sparc_arch.h" | 
 | extern unsigned int OPENSSL_sparcv9cap_P[]; | 
 | # define SPARC_T4_MONT | 
 | #endif | 
 |  | 
 | /* maximum precomputation table size for *variable* sliding windows */ | 
 | #define TABLE_SIZE	32 | 
 |  | 
 | /* this one works - simple but works */ | 
 | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | 
 | 	{ | 
 | 	int i,bits,ret=0; | 
 | 	BIGNUM *v,*rr; | 
 |  | 
 | 	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | 
 | 		{ | 
 | 		/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | 
 | 		BNerr(BN_F_BN_EXP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
 | 		return -1; | 
 | 		} | 
 |  | 
 | 	BN_CTX_start(ctx); | 
 | 	if ((r == a) || (r == p)) | 
 | 		rr = BN_CTX_get(ctx); | 
 | 	else | 
 | 		rr = r; | 
 | 	v = BN_CTX_get(ctx); | 
 | 	if (rr == NULL || v == NULL) goto err; | 
 |  | 
 | 	if (BN_copy(v,a) == NULL) goto err; | 
 | 	bits=BN_num_bits(p); | 
 |  | 
 | 	if (BN_is_odd(p)) | 
 | 		{ if (BN_copy(rr,a) == NULL) goto err; } | 
 | 	else	{ if (!BN_one(rr)) goto err; } | 
 |  | 
 | 	for (i=1; i<bits; i++) | 
 | 		{ | 
 | 		if (!BN_sqr(v,v,ctx)) goto err; | 
 | 		if (BN_is_bit_set(p,i)) | 
 | 			{ | 
 | 			if (!BN_mul(rr,rr,v,ctx)) goto err; | 
 | 			} | 
 | 		} | 
 | 	ret=1; | 
 | err: | 
 | 	if (r != rr) BN_copy(r,rr); | 
 | 	BN_CTX_end(ctx); | 
 | 	bn_check_top(r); | 
 | 	return(ret); | 
 | 	} | 
 |  | 
 |  | 
 | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | 
 | 	       BN_CTX *ctx) | 
 | 	{ | 
 | 	int ret; | 
 |  | 
 | 	bn_check_top(a); | 
 | 	bn_check_top(p); | 
 | 	bn_check_top(m); | 
 |  | 
 | 	/* For even modulus  m = 2^k*m_odd,  it might make sense to compute | 
 | 	 * a^p mod m_odd  and  a^p mod 2^k  separately (with Montgomery | 
 | 	 * exponentiation for the odd part), using appropriate exponent | 
 | 	 * reductions, and combine the results using the CRT. | 
 | 	 * | 
 | 	 * For now, we use Montgomery only if the modulus is odd; otherwise, | 
 | 	 * exponentiation using the reciprocal-based quick remaindering | 
 | 	 * algorithm is used. | 
 | 	 * | 
 | 	 * (Timing obtained with expspeed.c [computations  a^p mod m | 
 | 	 * where  a, p, m  are of the same length: 256, 512, 1024, 2048, | 
 | 	 * 4096, 8192 bits], compared to the running time of the | 
 | 	 * standard algorithm: | 
 | 	 * | 
 | 	 *   BN_mod_exp_mont   33 .. 40 %  [AMD K6-2, Linux, debug configuration] | 
 |          *                     55 .. 77 %  [UltraSparc processor, but | 
 | 	 *                                  debug-solaris-sparcv8-gcc conf.] | 
 | 	 *  | 
 | 	 *   BN_mod_exp_recp   50 .. 70 %  [AMD K6-2, Linux, debug configuration] | 
 | 	 *                     62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] | 
 | 	 * | 
 | 	 * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont | 
 | 	 * at 2048 and more bits, but at 512 and 1024 bits, it was | 
 | 	 * slower even than the standard algorithm! | 
 | 	 * | 
 | 	 * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] | 
 | 	 * should be obtained when the new Montgomery reduction code | 
 | 	 * has been integrated into OpenSSL.) | 
 | 	 */ | 
 |  | 
 | #define MONT_MUL_MOD | 
 | #define MONT_EXP_WORD | 
 | #define RECP_MUL_MOD | 
 |  | 
 | #ifdef MONT_MUL_MOD | 
 | 	/* I have finally been able to take out this pre-condition of | 
 | 	 * the top bit being set.  It was caused by an error in BN_div | 
 | 	 * with negatives.  There was also another problem when for a^b%m | 
 | 	 * a >= m.  eay 07-May-97 */ | 
 | /*	if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */ | 
 |  | 
 | 	if (BN_is_odd(m)) | 
 | 		{ | 
 | #  ifdef MONT_EXP_WORD | 
 | 		if (a->top == 1 && !a->neg && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)) | 
 | 			{ | 
 | 			BN_ULONG A = a->d[0]; | 
 | 			ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL); | 
 | 			} | 
 | 		else | 
 | #  endif | 
 | 			ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL); | 
 | 		} | 
 | 	else | 
 | #endif | 
 | #ifdef RECP_MUL_MOD | 
 | 		{ ret=BN_mod_exp_recp(r,a,p,m,ctx); } | 
 | #else | 
 | 		{ ret=BN_mod_exp_simple(r,a,p,m,ctx); } | 
 | #endif | 
 |  | 
 | 	bn_check_top(r); | 
 | 	return(ret); | 
 | 	} | 
 |  | 
 |  | 
 | int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | 
 | 		    const BIGNUM *m, BN_CTX *ctx) | 
 | 	{ | 
 | 	int i,j,bits,ret=0,wstart,wend,window,wvalue; | 
 | 	int start=1; | 
 | 	BIGNUM *aa; | 
 | 	/* Table of variables obtained from 'ctx' */ | 
 | 	BIGNUM *val[TABLE_SIZE]; | 
 | 	BN_RECP_CTX recp; | 
 |  | 
 | 	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | 
 | 		{ | 
 | 		/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | 
 | 		BNerr(BN_F_BN_MOD_EXP_RECP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
 | 		return -1; | 
 | 		} | 
 |  | 
 | 	bits=BN_num_bits(p); | 
 |  | 
 | 	if (bits == 0) | 
 | 		{ | 
 | 		ret = BN_one(r); | 
 | 		return ret; | 
 | 		} | 
 |  | 
 | 	BN_CTX_start(ctx); | 
 | 	aa = BN_CTX_get(ctx); | 
 | 	val[0] = BN_CTX_get(ctx); | 
 | 	if(!aa || !val[0]) goto err; | 
 |  | 
 | 	BN_RECP_CTX_init(&recp); | 
 | 	if (m->neg) | 
 | 		{ | 
 | 		/* ignore sign of 'm' */ | 
 | 		if (!BN_copy(aa, m)) goto err; | 
 | 		aa->neg = 0; | 
 | 		if (BN_RECP_CTX_set(&recp,aa,ctx) <= 0) goto err; | 
 | 		} | 
 | 	else | 
 | 		{ | 
 | 		if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err; | 
 | 		} | 
 |  | 
 | 	if (!BN_nnmod(val[0],a,m,ctx)) goto err;		/* 1 */ | 
 | 	if (BN_is_zero(val[0])) | 
 | 		{ | 
 | 		BN_zero(r); | 
 | 		ret = 1; | 
 | 		goto err; | 
 | 		} | 
 |  | 
 | 	window = BN_window_bits_for_exponent_size(bits); | 
 | 	if (window > 1) | 
 | 		{ | 
 | 		if (!BN_mod_mul_reciprocal(aa,val[0],val[0],&recp,ctx)) | 
 | 			goto err;				/* 2 */ | 
 | 		j=1<<(window-1); | 
 | 		for (i=1; i<j; i++) | 
 | 			{ | 
 | 			if(((val[i] = BN_CTX_get(ctx)) == NULL) || | 
 | 					!BN_mod_mul_reciprocal(val[i],val[i-1], | 
 | 						aa,&recp,ctx)) | 
 | 				goto err; | 
 | 			} | 
 | 		} | 
 | 		 | 
 | 	start=1;	/* This is used to avoid multiplication etc | 
 | 			 * when there is only the value '1' in the | 
 | 			 * buffer. */ | 
 | 	wvalue=0;	/* The 'value' of the window */ | 
 | 	wstart=bits-1;	/* The top bit of the window */ | 
 | 	wend=0;		/* The bottom bit of the window */ | 
 |  | 
 | 	if (!BN_one(r)) goto err; | 
 |  | 
 | 	for (;;) | 
 | 		{ | 
 | 		if (BN_is_bit_set(p,wstart) == 0) | 
 | 			{ | 
 | 			if (!start) | 
 | 				if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) | 
 | 				goto err; | 
 | 			if (wstart == 0) break; | 
 | 			wstart--; | 
 | 			continue; | 
 | 			} | 
 | 		/* We now have wstart on a 'set' bit, we now need to work out | 
 | 		 * how bit a window to do.  To do this we need to scan | 
 | 		 * forward until the last set bit before the end of the | 
 | 		 * window */ | 
 | 		j=wstart; | 
 | 		wvalue=1; | 
 | 		wend=0; | 
 | 		for (i=1; i<window; i++) | 
 | 			{ | 
 | 			if (wstart-i < 0) break; | 
 | 			if (BN_is_bit_set(p,wstart-i)) | 
 | 				{ | 
 | 				wvalue<<=(i-wend); | 
 | 				wvalue|=1; | 
 | 				wend=i; | 
 | 				} | 
 | 			} | 
 |  | 
 | 		/* wend is the size of the current window */ | 
 | 		j=wend+1; | 
 | 		/* add the 'bytes above' */ | 
 | 		if (!start) | 
 | 			for (i=0; i<j; i++) | 
 | 				{ | 
 | 				if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) | 
 | 					goto err; | 
 | 				} | 
 | 		 | 
 | 		/* wvalue will be an odd number < 2^window */ | 
 | 		if (!BN_mod_mul_reciprocal(r,r,val[wvalue>>1],&recp,ctx)) | 
 | 			goto err; | 
 |  | 
 | 		/* move the 'window' down further */ | 
 | 		wstart-=wend+1; | 
 | 		wvalue=0; | 
 | 		start=0; | 
 | 		if (wstart < 0) break; | 
 | 		} | 
 | 	ret=1; | 
 | err: | 
 | 	BN_CTX_end(ctx); | 
 | 	BN_RECP_CTX_free(&recp); | 
 | 	bn_check_top(r); | 
 | 	return(ret); | 
 | 	} | 
 |  | 
 |  | 
 | int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | 
 | 		    const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | 
 | 	{ | 
 | 	int i,j,bits,ret=0,wstart,wend,window,wvalue; | 
 | 	int start=1; | 
 | 	BIGNUM *d,*r; | 
 | 	const BIGNUM *aa; | 
 | 	/* Table of variables obtained from 'ctx' */ | 
 | 	BIGNUM *val[TABLE_SIZE]; | 
 | 	BN_MONT_CTX *mont=NULL; | 
 |  | 
 | 	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | 
 | 		{ | 
 | 		return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); | 
 | 		} | 
 |  | 
 | 	bn_check_top(a); | 
 | 	bn_check_top(p); | 
 | 	bn_check_top(m); | 
 |  | 
 | 	if (!BN_is_odd(m)) | 
 | 		{ | 
 | 		BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS); | 
 | 		return(0); | 
 | 		} | 
 | 	bits=BN_num_bits(p); | 
 | 	if (bits == 0) | 
 | 		{ | 
 | 		ret = BN_one(rr); | 
 | 		return ret; | 
 | 		} | 
 |  | 
 | 	BN_CTX_start(ctx); | 
 | 	d = BN_CTX_get(ctx); | 
 | 	r = BN_CTX_get(ctx); | 
 | 	val[0] = BN_CTX_get(ctx); | 
 | 	if (!d || !r || !val[0]) goto err; | 
 |  | 
 | 	/* If this is not done, things will break in the montgomery | 
 | 	 * part */ | 
 |  | 
 | 	if (in_mont != NULL) | 
 | 		mont=in_mont; | 
 | 	else | 
 | 		{ | 
 | 		if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | 
 | 		if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | 
 | 		} | 
 |  | 
 | 	if (a->neg || BN_ucmp(a,m) >= 0) | 
 | 		{ | 
 | 		if (!BN_nnmod(val[0],a,m,ctx)) | 
 | 			goto err; | 
 | 		aa= val[0]; | 
 | 		} | 
 | 	else | 
 | 		aa=a; | 
 | 	if (BN_is_zero(aa)) | 
 | 		{ | 
 | 		BN_zero(rr); | 
 | 		ret = 1; | 
 | 		goto err; | 
 | 		} | 
 | 	if (!BN_to_montgomery(val[0],aa,mont,ctx)) goto err; /* 1 */ | 
 |  | 
 | 	window = BN_window_bits_for_exponent_size(bits); | 
 | 	if (window > 1) | 
 | 		{ | 
 | 		if (!BN_mod_mul_montgomery(d,val[0],val[0],mont,ctx)) goto err; /* 2 */ | 
 | 		j=1<<(window-1); | 
 | 		for (i=1; i<j; i++) | 
 | 			{ | 
 | 			if(((val[i] = BN_CTX_get(ctx)) == NULL) || | 
 | 					!BN_mod_mul_montgomery(val[i],val[i-1], | 
 | 						d,mont,ctx)) | 
 | 				goto err; | 
 | 			} | 
 | 		} | 
 |  | 
 | 	start=1;	/* This is used to avoid multiplication etc | 
 | 			 * when there is only the value '1' in the | 
 | 			 * buffer. */ | 
 | 	wvalue=0;	/* The 'value' of the window */ | 
 | 	wstart=bits-1;	/* The top bit of the window */ | 
 | 	wend=0;		/* The bottom bit of the window */ | 
 |  | 
 | #if 1	/* by Shay Gueron's suggestion */ | 
 | 	j = m->top;	/* borrow j */ | 
 | 	if (m->d[j-1] & (((BN_ULONG)1)<<(BN_BITS2-1))) | 
 | 		{ | 
 | 		if (bn_wexpand(r,j) == NULL) goto err; | 
 | 		/* 2^(top*BN_BITS2) - m */ | 
 | 		r->d[0] = (0-m->d[0])&BN_MASK2; | 
 | 		for(i=1;i<j;i++) r->d[i] = (~m->d[i])&BN_MASK2; | 
 | 		r->top = j; | 
 | 		/* Upper words will be zero if the corresponding words of 'm' | 
 | 		 * were 0xfff[...], so decrement r->top accordingly. */ | 
 | 		bn_correct_top(r); | 
 | 		} | 
 | 	else | 
 | #endif | 
 | 	if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; | 
 | 	for (;;) | 
 | 		{ | 
 | 		if (BN_is_bit_set(p,wstart) == 0) | 
 | 			{ | 
 | 			if (!start) | 
 | 				{ | 
 | 				if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | 
 | 				goto err; | 
 | 				} | 
 | 			if (wstart == 0) break; | 
 | 			wstart--; | 
 | 			continue; | 
 | 			} | 
 | 		/* We now have wstart on a 'set' bit, we now need to work out | 
 | 		 * how bit a window to do.  To do this we need to scan | 
 | 		 * forward until the last set bit before the end of the | 
 | 		 * window */ | 
 | 		j=wstart; | 
 | 		wvalue=1; | 
 | 		wend=0; | 
 | 		for (i=1; i<window; i++) | 
 | 			{ | 
 | 			if (wstart-i < 0) break; | 
 | 			if (BN_is_bit_set(p,wstart-i)) | 
 | 				{ | 
 | 				wvalue<<=(i-wend); | 
 | 				wvalue|=1; | 
 | 				wend=i; | 
 | 				} | 
 | 			} | 
 |  | 
 | 		/* wend is the size of the current window */ | 
 | 		j=wend+1; | 
 | 		/* add the 'bytes above' */ | 
 | 		if (!start) | 
 | 			for (i=0; i<j; i++) | 
 | 				{ | 
 | 				if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | 
 | 					goto err; | 
 | 				} | 
 | 		 | 
 | 		/* wvalue will be an odd number < 2^window */ | 
 | 		if (!BN_mod_mul_montgomery(r,r,val[wvalue>>1],mont,ctx)) | 
 | 			goto err; | 
 |  | 
 | 		/* move the 'window' down further */ | 
 | 		wstart-=wend+1; | 
 | 		wvalue=0; | 
 | 		start=0; | 
 | 		if (wstart < 0) break; | 
 | 		} | 
 | #if defined(SPARC_T4_MONT) | 
 | 	if (OPENSSL_sparcv9cap_P[0]&(SPARCV9_VIS3|SPARCV9_PREFER_FPU)) | 
 | 		{ | 
 | 		j = mont->N.top;	/* borrow j */ | 
 | 		val[0]->d[0] = 1;	/* borrow val[0] */ | 
 | 		for (i=1;i<j;i++) val[0]->d[i] = 0; | 
 | 		val[0]->top = j; | 
 | 		if (!BN_mod_mul_montgomery(rr,r,val[0],mont,ctx)) goto err; | 
 | 		} | 
 | 	else | 
 | #endif | 
 | 	if (!BN_from_montgomery(rr,r,mont,ctx)) goto err; | 
 | 	ret=1; | 
 | err: | 
 | 	if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | 
 | 	BN_CTX_end(ctx); | 
 | 	bn_check_top(rr); | 
 | 	return(ret); | 
 | 	} | 
 |  | 
 | #if defined(SPARC_T4_MONT) | 
 | static BN_ULONG bn_get_bits(const BIGNUM *a, int bitpos) | 
 | 	{ | 
 | 	BN_ULONG ret=0; | 
 | 	int wordpos; | 
 |  | 
 | 	wordpos = bitpos/BN_BITS2; | 
 | 	bitpos %= BN_BITS2; | 
 | 	if (wordpos>=0 && wordpos < a->top) | 
 | 		{ | 
 | 		ret = a->d[wordpos]&BN_MASK2; | 
 | 		if (bitpos) | 
 | 			{ | 
 | 			ret >>= bitpos; | 
 | 			if (++wordpos < a->top) | 
 | 				ret |= a->d[wordpos]<<(BN_BITS2-bitpos); | 
 | 			} | 
 | 		} | 
 |  | 
 | 	return ret&BN_MASK2; | 
 | } | 
 | #endif | 
 |  | 
 | /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layout | 
 |  * so that accessing any of these table values shows the same access pattern as far | 
 |  * as cache lines are concerned.  The following functions are used to transfer a BIGNUM | 
 |  * from/to that table. */ | 
 |  | 
 | static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top, unsigned char *buf, int idx, int width) | 
 | 	{ | 
 | 	size_t i, j; | 
 |  | 
 | 	if (top > b->top) | 
 | 		top = b->top; /* this works because 'buf' is explicitly zeroed */ | 
 | 	for (i = 0, j=idx; i < top * sizeof b->d[0]; i++, j+=width) | 
 | 		{ | 
 | 		buf[j] = ((unsigned char*)b->d)[i]; | 
 | 		} | 
 |  | 
 | 	return 1; | 
 | 	} | 
 |  | 
 | static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width) | 
 | 	{ | 
 | 	size_t i, j; | 
 |  | 
 | 	if (bn_wexpand(b, top) == NULL) | 
 | 		return 0; | 
 |  | 
 | 	for (i=0, j=idx; i < top * sizeof b->d[0]; i++, j+=width) | 
 | 		{ | 
 | 		((unsigned char*)b->d)[i] = buf[j]; | 
 | 		} | 
 |  | 
 | 	b->top = top; | 
 | 	bn_correct_top(b); | 
 | 	return 1; | 
 | 	}	 | 
 |  | 
 | /* Given a pointer value, compute the next address that is a cache line multiple. */ | 
 | #define MOD_EXP_CTIME_ALIGN(x_) \ | 
 | 	((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) | 
 |  | 
 | /* This variant of BN_mod_exp_mont() uses fixed windows and the special | 
 |  * precomputation memory layout to limit data-dependency to a minimum | 
 |  * to protect secret exponents (cf. the hyper-threading timing attacks | 
 |  * pointed out by Colin Percival, | 
 |  * http://www.daemonology.net/hyperthreading-considered-harmful/) | 
 |  */ | 
 | int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | 
 | 		    const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | 
 | 	{ | 
 | 	int i,bits,ret=0,window,wvalue; | 
 | 	int top; | 
 | 	BN_MONT_CTX *mont=NULL; | 
 |  | 
 | 	int numPowers; | 
 | 	unsigned char *powerbufFree=NULL; | 
 | 	int powerbufLen = 0; | 
 | 	unsigned char *powerbuf=NULL; | 
 | 	BIGNUM tmp, am; | 
 | #if defined(SPARC_T4_MONT) | 
 | 	unsigned int t4=0; | 
 | #endif | 
 |  | 
 | 	bn_check_top(a); | 
 | 	bn_check_top(p); | 
 | 	bn_check_top(m); | 
 |  | 
 | 	top = m->top; | 
 |  | 
 | 	if (!(m->d[0] & 1)) | 
 | 		{ | 
 | 		BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME,BN_R_CALLED_WITH_EVEN_MODULUS); | 
 | 		return(0); | 
 | 		} | 
 | 	bits=BN_num_bits(p); | 
 | 	if (bits == 0) | 
 | 		{ | 
 | 		ret = BN_one(rr); | 
 | 		return ret; | 
 | 		} | 
 |  | 
 | 	BN_CTX_start(ctx); | 
 |  | 
 | 	/* Allocate a montgomery context if it was not supplied by the caller. | 
 | 	 * If this is not done, things will break in the montgomery part. | 
 |  	 */ | 
 | 	if (in_mont != NULL) | 
 | 		mont=in_mont; | 
 | 	else | 
 | 		{ | 
 | 		if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | 
 | 		if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | 
 | 		} | 
 |  | 
 | #ifdef RSAZ_ENABLED | 
 | 	/* | 
 | 	 * If the size of the operands allow it, perform the optimized | 
 | 	 * RSAZ exponentiation. For further information see | 
 | 	 * crypto/bn/rsaz_exp.c and accompanying assembly modules. | 
 | 	 */ | 
 | 	if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024) | 
 | 	    && rsaz_avx2_eligible()) | 
 | 	    	{ | 
 | 		if (NULL == bn_wexpand(rr, 16)) goto err; | 
 | 		RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0]); | 
 | 		rr->top = 16; | 
 | 		rr->neg = 0; | 
 | 		bn_correct_top(rr); | 
 | 		ret = 1; | 
 | 		goto err; | 
 | 		} | 
 | 	else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) | 
 | 		{ | 
 | 		if (NULL == bn_wexpand(rr,8)) goto err; | 
 | 		RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d); | 
 | 		rr->top = 8; | 
 | 		rr->neg = 0; | 
 | 		bn_correct_top(rr); | 
 | 		ret = 1; | 
 | 		goto err; | 
 | 		} | 
 | #endif | 
 |  | 
 | 	/* Get the window size to use with size of p. */ | 
 | 	window = BN_window_bits_for_ctime_exponent_size(bits); | 
 | #if defined(SPARC_T4_MONT) | 
 | 	if (window>=5 && (top&15)==0 && top<=64 && | 
 | 	    (OPENSSL_sparcv9cap_P[1]&(CFR_MONTMUL|CFR_MONTSQR))== | 
 | 	    			     (CFR_MONTMUL|CFR_MONTSQR) && | 
 | 	    (t4=OPENSSL_sparcv9cap_P[0])) | 
 | 		window=5; | 
 | 	else | 
 | #endif | 
 | #if defined(OPENSSL_BN_ASM_MONT5) | 
 | 	if (window>=5) | 
 | 		{ | 
 | 		window=5;	/* ~5% improvement for RSA2048 sign, and even for RSA4096 */ | 
 | 		if ((top&7)==0)	powerbufLen += 2*top*sizeof(m->d[0]); | 
 | 		} | 
 | #endif | 
 | 	(void)0; | 
 |  | 
 | 	/* Allocate a buffer large enough to hold all of the pre-computed | 
 | 	 * powers of am, am itself and tmp. | 
 | 	 */ | 
 | 	numPowers = 1 << window; | 
 | 	powerbufLen += sizeof(m->d[0])*(top*numPowers + | 
 | 				((2*top)>numPowers?(2*top):numPowers)); | 
 | #ifdef alloca | 
 | 	if (powerbufLen < 3072) | 
 | 		powerbufFree = alloca(powerbufLen+MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH); | 
 | 	else | 
 | #endif | 
 | 	if ((powerbufFree=(unsigned char*)OPENSSL_malloc(powerbufLen+MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) | 
 | 		goto err; | 
 | 		 | 
 | 	powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree); | 
 | 	memset(powerbuf, 0, powerbufLen); | 
 |  | 
 | #ifdef alloca | 
 | 	if (powerbufLen < 3072) | 
 | 		powerbufFree = NULL; | 
 | #endif | 
 |  | 
 | 	/* lay down tmp and am right after powers table */ | 
 | 	tmp.d     = (BN_ULONG *)(powerbuf + sizeof(m->d[0])*top*numPowers); | 
 | 	am.d      = tmp.d + top; | 
 | 	tmp.top   = am.top  = 0; | 
 | 	tmp.dmax  = am.dmax = top; | 
 | 	tmp.neg   = am.neg  = 0; | 
 | 	tmp.flags = am.flags = BN_FLG_STATIC_DATA; | 
 |  | 
 | 	/* prepare a^0 in Montgomery domain */ | 
 | #if 1	/* by Shay Gueron's suggestion */ | 
 | 	if (m->d[top-1] & (((BN_ULONG)1)<<(BN_BITS2-1))) | 
 | 		{ | 
 | 		/* 2^(top*BN_BITS2) - m */ | 
 | 		tmp.d[0] = (0-m->d[0])&BN_MASK2; | 
 | 		for (i=1;i<top;i++) tmp.d[i] = (~m->d[i])&BN_MASK2; | 
 | 		tmp.top = top; | 
 | 		} | 
 | 	else | 
 | #endif | 
 |  	if (!BN_to_montgomery(&tmp,BN_value_one(),mont,ctx))	goto err; | 
 |  | 
 | 	/* prepare a^1 in Montgomery domain */ | 
 | 	if (a->neg || BN_ucmp(a,m) >= 0) | 
 | 		{ | 
 | 		if (!BN_mod(&am,a,m,ctx))			goto err; | 
 | 		if (!BN_to_montgomery(&am,&am,mont,ctx))	goto err; | 
 | 		} | 
 | 	else	if (!BN_to_montgomery(&am,a,mont,ctx))		goto err; | 
 |  | 
 | #if defined(SPARC_T4_MONT) | 
 |     if (t4) | 
 | 	{ | 
 | 	typedef int (*bn_pwr5_mont_f)(BN_ULONG *tp,const BN_ULONG *np, | 
 | 			const BN_ULONG *n0,const void *table,int power,int bits); | 
 | 	int bn_pwr5_mont_t4_8(BN_ULONG *tp,const BN_ULONG *np, | 
 | 			const BN_ULONG *n0,const void *table,int power,int bits); | 
 | 	int bn_pwr5_mont_t4_16(BN_ULONG *tp,const BN_ULONG *np, | 
 | 			const BN_ULONG *n0,const void *table,int power,int bits); | 
 | 	int bn_pwr5_mont_t4_24(BN_ULONG *tp,const BN_ULONG *np, | 
 | 			const BN_ULONG *n0,const void *table,int power,int bits); | 
 | 	int bn_pwr5_mont_t4_32(BN_ULONG *tp,const BN_ULONG *np, | 
 | 			const BN_ULONG *n0,const void *table,int power,int bits); | 
 | 	static const bn_pwr5_mont_f pwr5_funcs[4] = { | 
 | 			bn_pwr5_mont_t4_8,	bn_pwr5_mont_t4_16, | 
 | 			bn_pwr5_mont_t4_24,	bn_pwr5_mont_t4_32 }; | 
 | 	bn_pwr5_mont_f pwr5_worker = pwr5_funcs[top/16-1]; | 
 |  | 
 | 	typedef int (*bn_mul_mont_f)(BN_ULONG *rp,const BN_ULONG *ap, | 
 | 			const void *bp,const BN_ULONG *np,const BN_ULONG *n0); | 
 | 	int bn_mul_mont_t4_8(BN_ULONG *rp,const BN_ULONG *ap, | 
 | 			const void *bp,const BN_ULONG *np,const BN_ULONG *n0); | 
 | 	int bn_mul_mont_t4_16(BN_ULONG *rp,const BN_ULONG *ap, | 
 | 			const void *bp,const BN_ULONG *np,const BN_ULONG *n0); | 
 | 	int bn_mul_mont_t4_24(BN_ULONG *rp,const BN_ULONG *ap, | 
 | 			const void *bp,const BN_ULONG *np,const BN_ULONG *n0); | 
 | 	int bn_mul_mont_t4_32(BN_ULONG *rp,const BN_ULONG *ap, | 
 | 			const void *bp,const BN_ULONG *np,const BN_ULONG *n0); | 
 | 	static const bn_mul_mont_f mul_funcs[4] = { | 
 | 			bn_mul_mont_t4_8,	bn_mul_mont_t4_16, | 
 | 			bn_mul_mont_t4_24,	bn_mul_mont_t4_32 }; | 
 | 	bn_mul_mont_f mul_worker = mul_funcs[top/16-1]; | 
 |  | 
 | 	void bn_mul_mont_vis3(BN_ULONG *rp,const BN_ULONG *ap, | 
 | 			const void *bp,const BN_ULONG *np, | 
 | 			const BN_ULONG *n0,int num); | 
 | 	void bn_mul_mont_t4(BN_ULONG *rp,const BN_ULONG *ap, | 
 | 			const void *bp,const BN_ULONG *np, | 
 | 			const BN_ULONG *n0,int num); | 
 | 	void bn_mul_mont_gather5_t4(BN_ULONG *rp,const BN_ULONG *ap, | 
 | 			const void *table,const BN_ULONG *np, | 
 | 			const BN_ULONG *n0,int num,int power); | 
 | 	void bn_flip_n_scatter5_t4(const BN_ULONG *inp,size_t num, | 
 | 			void *table,size_t power); | 
 | 	void bn_gather5_t4(BN_ULONG *out,size_t num, | 
 | 			void *table,size_t power); | 
 | 	void bn_flip_t4(BN_ULONG *dst,BN_ULONG *src,size_t num); | 
 |  | 
 | 	BN_ULONG *np=mont->N.d, *n0=mont->n0; | 
 | 	int stride = 5*(6-(top/16-1));	/* multiple of 5, but less than 32 */ | 
 |  | 
 | 	/* BN_to_montgomery can contaminate words above .top | 
 | 	 * [in BN_DEBUG[_DEBUG] build]... */ | 
 | 	for (i=am.top; i<top; i++)	am.d[i]=0; | 
 | 	for (i=tmp.top; i<top; i++)	tmp.d[i]=0; | 
 |  | 
 | 	bn_flip_n_scatter5_t4(tmp.d,top,powerbuf,0); | 
 | 	bn_flip_n_scatter5_t4(am.d,top,powerbuf,1); | 
 | 	if (!(*mul_worker)(tmp.d,am.d,am.d,np,n0) && | 
 | 	    !(*mul_worker)(tmp.d,am.d,am.d,np,n0)) | 
 | 		bn_mul_mont_vis3(tmp.d,am.d,am.d,np,n0,top); | 
 | 	bn_flip_n_scatter5_t4(tmp.d,top,powerbuf,2); | 
 |  | 
 | 	for (i=3; i<32; i++) | 
 | 		{ | 
 | 		/* Calculate a^i = a^(i-1) * a */ | 
 | 		if (!(*mul_worker)(tmp.d,tmp.d,am.d,np,n0) && | 
 | 		    !(*mul_worker)(tmp.d,tmp.d,am.d,np,n0)) | 
 | 			bn_mul_mont_vis3(tmp.d,tmp.d,am.d,np,n0,top); | 
 | 		bn_flip_n_scatter5_t4(tmp.d,top,powerbuf,i); | 
 | 		} | 
 |  | 
 | 	/* switch to 64-bit domain */  | 
 | 	np = alloca(top*sizeof(BN_ULONG)); | 
 | 	top /= 2; | 
 | 	bn_flip_t4(np,mont->N.d,top); | 
 |  | 
 | 	bits--; | 
 | 	for (wvalue=0, i=bits%5; i>=0; i--,bits--) | 
 | 		wvalue = (wvalue<<1)+BN_is_bit_set(p,bits); | 
 | 	bn_gather5_t4(tmp.d,top,powerbuf,wvalue); | 
 |  | 
 | 	/* Scan the exponent one window at a time starting from the most | 
 | 	 * significant bits. | 
 | 	 */ | 
 | 	while (bits >= 0) | 
 | 		{ | 
 | 		if (bits < stride) stride = bits+1; | 
 | 		bits -= stride; | 
 | 		wvalue = bn_get_bits(p,bits+1); | 
 |  | 
 | 		if ((*pwr5_worker)(tmp.d,np,n0,powerbuf,wvalue,stride)) continue; | 
 | 		/* retry once and fall back */ | 
 | 		if ((*pwr5_worker)(tmp.d,np,n0,powerbuf,wvalue,stride)) continue; | 
 |  | 
 | 		bits += stride-5; | 
 | 		wvalue >>= stride-5; | 
 | 		wvalue &= 31; | 
 | 		bn_mul_mont_t4(tmp.d,tmp.d,tmp.d,np,n0,top); | 
 | 		bn_mul_mont_t4(tmp.d,tmp.d,tmp.d,np,n0,top); | 
 | 		bn_mul_mont_t4(tmp.d,tmp.d,tmp.d,np,n0,top); | 
 | 		bn_mul_mont_t4(tmp.d,tmp.d,tmp.d,np,n0,top); | 
 | 		bn_mul_mont_t4(tmp.d,tmp.d,tmp.d,np,n0,top); | 
 | 		bn_mul_mont_gather5_t4(tmp.d,tmp.d,powerbuf,np,n0,top,wvalue); | 
 | 		} | 
 |  | 
 | 	bn_flip_t4(tmp.d,tmp.d,top); | 
 | 	top *= 2; | 
 | 	/* back to 32-bit domain */ | 
 | 	tmp.top=top; | 
 | 	bn_correct_top(&tmp); | 
 | 	OPENSSL_cleanse(np,top*sizeof(BN_ULONG)); | 
 | 	} | 
 |     else | 
 | #endif | 
 | #if defined(OPENSSL_BN_ASM_MONT5) | 
 |     /* This optimization uses ideas from http://eprint.iacr.org/2011/239, | 
 |      * specifically optimization of cache-timing attack countermeasures | 
 |      * and pre-computation optimization. */ | 
 |  | 
 |     /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as | 
 |      * 512-bit RSA is hardly relevant, we omit it to spare size... */  | 
 |     if (window==5 && top>1) | 
 | 	{ | 
 | 	void bn_mul_mont_gather5(BN_ULONG *rp,const BN_ULONG *ap, | 
 | 			const void *table,const BN_ULONG *np, | 
 | 			const BN_ULONG *n0,int num,int power); | 
 | 	void bn_scatter5(const BN_ULONG *inp,size_t num, | 
 | 			void *table,size_t power); | 
 | 	void bn_gather5(BN_ULONG *out,size_t num, | 
 | 			void *table,size_t power); | 
 | 	void bn_power5(BN_ULONG *rp,const BN_ULONG *ap, | 
 | 			const void *table,const BN_ULONG *np, | 
 | 			const BN_ULONG *n0,int num,int power); | 
 | 	int bn_get_bits5(const BN_ULONG *ap,int off); | 
 | 	int bn_from_montgomery(BN_ULONG *rp,const BN_ULONG *ap, | 
 | 			const BN_ULONG *not_used,const BN_ULONG *np, | 
 | 			const BN_ULONG *n0,int num); | 
 |  | 
 | 	BN_ULONG *np=mont->N.d, *n0=mont->n0, *np2; | 
 |  | 
 | 	/* BN_to_montgomery can contaminate words above .top | 
 | 	 * [in BN_DEBUG[_DEBUG] build]... */ | 
 | 	for (i=am.top; i<top; i++)	am.d[i]=0; | 
 | 	for (i=tmp.top; i<top; i++)	tmp.d[i]=0; | 
 |  | 
 | 	if (top&7) | 
 | 		np2 = np; | 
 | 	else | 
 | 		for (np2=am.d+top,i=0; i<top; i++) np2[2*i]=np[i]; | 
 |  | 
 | 	bn_scatter5(tmp.d,top,powerbuf,0); | 
 | 	bn_scatter5(am.d,am.top,powerbuf,1); | 
 | 	bn_mul_mont(tmp.d,am.d,am.d,np,n0,top); | 
 | 	bn_scatter5(tmp.d,top,powerbuf,2); | 
 |  | 
 | #if 0 | 
 | 	for (i=3; i<32; i++) | 
 | 		{ | 
 | 		/* Calculate a^i = a^(i-1) * a */ | 
 | 		bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np2,n0,top,i-1); | 
 | 		bn_scatter5(tmp.d,top,powerbuf,i); | 
 | 		} | 
 | #else | 
 | 	/* same as above, but uses squaring for 1/2 of operations */ | 
 | 	for (i=4; i<32; i*=2) | 
 | 		{ | 
 | 		bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); | 
 | 		bn_scatter5(tmp.d,top,powerbuf,i); | 
 | 		} | 
 | 	for (i=3; i<8; i+=2) | 
 | 		{ | 
 | 		int j; | 
 | 		bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np2,n0,top,i-1); | 
 | 		bn_scatter5(tmp.d,top,powerbuf,i); | 
 | 		for (j=2*i; j<32; j*=2) | 
 | 			{ | 
 | 			bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); | 
 | 			bn_scatter5(tmp.d,top,powerbuf,j); | 
 | 			} | 
 | 		} | 
 | 	for (; i<16; i+=2) | 
 | 		{ | 
 | 		bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np2,n0,top,i-1); | 
 | 		bn_scatter5(tmp.d,top,powerbuf,i); | 
 | 		bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); | 
 | 		bn_scatter5(tmp.d,top,powerbuf,2*i); | 
 | 		} | 
 | 	for (; i<32; i+=2) | 
 | 		{ | 
 | 		bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np2,n0,top,i-1); | 
 | 		bn_scatter5(tmp.d,top,powerbuf,i); | 
 | 		} | 
 | #endif | 
 | 	bits--; | 
 | 	for (wvalue=0, i=bits%5; i>=0; i--,bits--) | 
 | 		wvalue = (wvalue<<1)+BN_is_bit_set(p,bits); | 
 | 	bn_gather5(tmp.d,top,powerbuf,wvalue); | 
 |  | 
 | 	/* Scan the exponent one window at a time starting from the most | 
 | 	 * significant bits. | 
 | 	 */ | 
 | 	if (top&7) | 
 | 	    while (bits >= 0) | 
 | 		{ | 
 | 		for (wvalue=0, i=0; i<5; i++,bits--) | 
 | 			wvalue = (wvalue<<1)+BN_is_bit_set(p,bits); | 
 |  | 
 | 		bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); | 
 | 		bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); | 
 | 		bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); | 
 | 		bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); | 
 | 		bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); | 
 | 		bn_mul_mont_gather5(tmp.d,tmp.d,powerbuf,np,n0,top,wvalue); | 
 | 		} | 
 | 	else | 
 | 	    { | 
 | 	    while (bits >= 0) | 
 | 		{ | 
 | 		wvalue = bn_get_bits5(p->d,bits-4); | 
 | 		bits-=5; | 
 | 		bn_power5(tmp.d,tmp.d,powerbuf,np2,n0,top,wvalue); | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	ret=bn_from_montgomery(tmp.d,tmp.d,NULL,np2,n0,top); | 
 | 	tmp.top=top; | 
 | 	bn_correct_top(&tmp); | 
 | 	if (ret) | 
 | 		{ | 
 | 		if (!BN_copy(rr,&tmp)) ret=0; | 
 | 		goto err; /* non-zero ret means it's not error */ | 
 | 		} | 
 | 	} | 
 |     else | 
 | #endif | 
 | 	{ | 
 | 	if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, numPowers)) goto err; | 
 | 	if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am,  top, powerbuf, 1, numPowers)) goto err; | 
 |  | 
 | 	/* If the window size is greater than 1, then calculate | 
 | 	 * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) | 
 | 	 * (even powers could instead be computed as (a^(i/2))^2 | 
 | 	 * to use the slight performance advantage of sqr over mul). | 
 | 	 */ | 
 | 	if (window > 1) | 
 | 		{ | 
 | 		if (!BN_mod_mul_montgomery(&tmp,&am,&am,mont,ctx))	goto err; | 
 | 		if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2, numPowers)) goto err; | 
 | 		for (i=3; i<numPowers; i++) | 
 | 			{ | 
 | 			/* Calculate a^i = a^(i-1) * a */ | 
 | 			if (!BN_mod_mul_montgomery(&tmp,&am,&tmp,mont,ctx)) | 
 | 				goto err; | 
 | 			if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i, numPowers)) goto err; | 
 | 			} | 
 | 		} | 
 |  | 
 | 	bits--; | 
 | 	for (wvalue=0, i=bits%window; i>=0; i--,bits--) | 
 | 		wvalue = (wvalue<<1)+BN_is_bit_set(p,bits); | 
 | 	if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp,top,powerbuf,wvalue,numPowers)) goto err; | 
 |   | 
 | 	/* Scan the exponent one window at a time starting from the most | 
 | 	 * significant bits. | 
 | 	 */ | 
 |  	while (bits >= 0) | 
 |   		{ | 
 |  		wvalue=0; /* The 'value' of the window */ | 
 |  		 | 
 |  		/* Scan the window, squaring the result as we go */ | 
 |  		for (i=0; i<window; i++,bits--) | 
 |  			{ | 
 | 			if (!BN_mod_mul_montgomery(&tmp,&tmp,&tmp,mont,ctx))	goto err; | 
 | 			wvalue = (wvalue<<1)+BN_is_bit_set(p,bits); | 
 |   			} | 
 |  		 | 
 | 		/* Fetch the appropriate pre-computed value from the pre-buf */ | 
 | 		if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue, numPowers)) goto err; | 
 |  | 
 |  		/* Multiply the result into the intermediate result */ | 
 |  		if (!BN_mod_mul_montgomery(&tmp,&tmp,&am,mont,ctx)) goto err; | 
 |   		} | 
 | 	} | 
 |  | 
 |  	/* Convert the final result from montgomery to standard format */ | 
 | #if defined(SPARC_T4_MONT) | 
 | 	if (OPENSSL_sparcv9cap_P[0]&(SPARCV9_VIS3|SPARCV9_PREFER_FPU)) | 
 | 		{ | 
 | 		am.d[0] = 1;	/* borrow am */ | 
 | 		for (i=1;i<top;i++) am.d[i] = 0; | 
 | 		if (!BN_mod_mul_montgomery(rr,&tmp,&am,mont,ctx)) goto err; | 
 | 		} | 
 | 	else | 
 | #endif | 
 | 	if (!BN_from_montgomery(rr,&tmp,mont,ctx)) goto err; | 
 | 	ret=1; | 
 | err: | 
 | 	if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | 
 | 	if (powerbuf!=NULL) | 
 | 		{ | 
 | 		OPENSSL_cleanse(powerbuf,powerbufLen); | 
 | 		if (powerbufFree) OPENSSL_free(powerbufFree); | 
 | 		} | 
 | 	BN_CTX_end(ctx); | 
 | 	return(ret); | 
 | 	} | 
 |  | 
 | int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, | 
 |                          const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | 
 | 	{ | 
 | 	BN_MONT_CTX *mont = NULL; | 
 | 	int b, bits, ret=0; | 
 | 	int r_is_one; | 
 | 	BN_ULONG w, next_w; | 
 | 	BIGNUM *d, *r, *t; | 
 | 	BIGNUM *swap_tmp; | 
 | #define BN_MOD_MUL_WORD(r, w, m) \ | 
 | 		(BN_mul_word(r, (w)) && \ | 
 | 		(/* BN_ucmp(r, (m)) < 0 ? 1 :*/  \ | 
 | 			(BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) | 
 | 		/* BN_MOD_MUL_WORD is only used with 'w' large, | 
 | 		 * so the BN_ucmp test is probably more overhead | 
 | 		 * than always using BN_mod (which uses BN_copy if | 
 | 		 * a similar test returns true). */ | 
 | 		/* We can use BN_mod and do not need BN_nnmod because our | 
 | 		 * accumulator is never negative (the result of BN_mod does | 
 | 		 * not depend on the sign of the modulus). | 
 | 		 */ | 
 | #define BN_TO_MONTGOMERY_WORD(r, w, mont) \ | 
 | 		(BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) | 
 |  | 
 | 	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | 
 | 		{ | 
 | 		/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | 
 | 		BNerr(BN_F_BN_MOD_EXP_MONT_WORD,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
 | 		return -1; | 
 | 		} | 
 |  | 
 | 	bn_check_top(p); | 
 | 	bn_check_top(m); | 
 |  | 
 | 	if (!BN_is_odd(m)) | 
 | 		{ | 
 | 		BNerr(BN_F_BN_MOD_EXP_MONT_WORD,BN_R_CALLED_WITH_EVEN_MODULUS); | 
 | 		return(0); | 
 | 		} | 
 | 	if (m->top == 1) | 
 | 		a %= m->d[0]; /* make sure that 'a' is reduced */ | 
 |  | 
 | 	bits = BN_num_bits(p); | 
 | 	if (bits == 0) | 
 | 		{ | 
 | 		/* x**0 mod 1 is still zero. */ | 
 | 		if (BN_is_one(m)) | 
 | 			{ | 
 | 			ret = 1; | 
 | 			BN_zero(rr); | 
 | 			} | 
 | 		else | 
 | 			ret = BN_one(rr); | 
 | 		return ret; | 
 | 		} | 
 | 	if (a == 0) | 
 | 		{ | 
 | 		BN_zero(rr); | 
 | 		ret = 1; | 
 | 		return ret; | 
 | 		} | 
 |  | 
 | 	BN_CTX_start(ctx); | 
 | 	d = BN_CTX_get(ctx); | 
 | 	r = BN_CTX_get(ctx); | 
 | 	t = BN_CTX_get(ctx); | 
 | 	if (d == NULL || r == NULL || t == NULL) goto err; | 
 |  | 
 | 	if (in_mont != NULL) | 
 | 		mont=in_mont; | 
 | 	else | 
 | 		{ | 
 | 		if ((mont = BN_MONT_CTX_new()) == NULL) goto err; | 
 | 		if (!BN_MONT_CTX_set(mont, m, ctx)) goto err; | 
 | 		} | 
 |  | 
 | 	r_is_one = 1; /* except for Montgomery factor */ | 
 |  | 
 | 	/* bits-1 >= 0 */ | 
 |  | 
 | 	/* The result is accumulated in the product r*w. */ | 
 | 	w = a; /* bit 'bits-1' of 'p' is always set */ | 
 | 	for (b = bits-2; b >= 0; b--) | 
 | 		{ | 
 | 		/* First, square r*w. */ | 
 | 		next_w = w*w; | 
 | 		if ((next_w/w) != w) /* overflow */ | 
 | 			{ | 
 | 			if (r_is_one) | 
 | 				{ | 
 | 				if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | 
 | 				r_is_one = 0; | 
 | 				} | 
 | 			else | 
 | 				{ | 
 | 				if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | 
 | 				} | 
 | 			next_w = 1; | 
 | 			} | 
 | 		w = next_w; | 
 | 		if (!r_is_one) | 
 | 			{ | 
 | 			if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err; | 
 | 			} | 
 |  | 
 | 		/* Second, multiply r*w by 'a' if exponent bit is set. */ | 
 | 		if (BN_is_bit_set(p, b)) | 
 | 			{ | 
 | 			next_w = w*a; | 
 | 			if ((next_w/a) != w) /* overflow */ | 
 | 				{ | 
 | 				if (r_is_one) | 
 | 					{ | 
 | 					if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | 
 | 					r_is_one = 0; | 
 | 					} | 
 | 				else | 
 | 					{ | 
 | 					if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | 
 | 					} | 
 | 				next_w = a; | 
 | 				} | 
 | 			w = next_w; | 
 | 			} | 
 | 		} | 
 |  | 
 | 	/* Finally, set r:=r*w. */ | 
 | 	if (w != 1) | 
 | 		{ | 
 | 		if (r_is_one) | 
 | 			{ | 
 | 			if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | 
 | 			r_is_one = 0; | 
 | 			} | 
 | 		else | 
 | 			{ | 
 | 			if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | 
 | 			} | 
 | 		} | 
 |  | 
 | 	if (r_is_one) /* can happen only if a == 1*/ | 
 | 		{ | 
 | 		if (!BN_one(rr)) goto err; | 
 | 		} | 
 | 	else | 
 | 		{ | 
 | 		if (!BN_from_montgomery(rr, r, mont, ctx)) goto err; | 
 | 		} | 
 | 	ret = 1; | 
 | err: | 
 | 	if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | 
 | 	BN_CTX_end(ctx); | 
 | 	bn_check_top(rr); | 
 | 	return(ret); | 
 | 	} | 
 |  | 
 |  | 
 | /* The old fallback, simple version :-) */ | 
 | int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | 
 | 		const BIGNUM *m, BN_CTX *ctx) | 
 | 	{ | 
 | 	int i,j,bits,ret=0,wstart,wend,window,wvalue; | 
 | 	int start=1; | 
 | 	BIGNUM *d; | 
 | 	/* Table of variables obtained from 'ctx' */ | 
 | 	BIGNUM *val[TABLE_SIZE]; | 
 |  | 
 | 	if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | 
 | 		{ | 
 | 		/* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | 
 | 		BNerr(BN_F_BN_MOD_EXP_SIMPLE,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
 | 		return -1; | 
 | 		} | 
 |  | 
 | 	bits=BN_num_bits(p); | 
 |  | 
 | 	if (bits == 0) | 
 | 		{ | 
 | 		ret = BN_one(r); | 
 | 		return ret; | 
 | 		} | 
 |  | 
 | 	BN_CTX_start(ctx); | 
 | 	d = BN_CTX_get(ctx); | 
 | 	val[0] = BN_CTX_get(ctx); | 
 | 	if(!d || !val[0]) goto err; | 
 |  | 
 | 	if (!BN_nnmod(val[0],a,m,ctx)) goto err;		/* 1 */ | 
 | 	if (BN_is_zero(val[0])) | 
 | 		{ | 
 | 		BN_zero(r); | 
 | 		ret = 1; | 
 | 		goto err; | 
 | 		} | 
 |  | 
 | 	window = BN_window_bits_for_exponent_size(bits); | 
 | 	if (window > 1) | 
 | 		{ | 
 | 		if (!BN_mod_mul(d,val[0],val[0],m,ctx)) | 
 | 			goto err;				/* 2 */ | 
 | 		j=1<<(window-1); | 
 | 		for (i=1; i<j; i++) | 
 | 			{ | 
 | 			if(((val[i] = BN_CTX_get(ctx)) == NULL) || | 
 | 					!BN_mod_mul(val[i],val[i-1],d,m,ctx)) | 
 | 				goto err; | 
 | 			} | 
 | 		} | 
 |  | 
 | 	start=1;	/* This is used to avoid multiplication etc | 
 | 			 * when there is only the value '1' in the | 
 | 			 * buffer. */ | 
 | 	wvalue=0;	/* The 'value' of the window */ | 
 | 	wstart=bits-1;	/* The top bit of the window */ | 
 | 	wend=0;		/* The bottom bit of the window */ | 
 |  | 
 | 	if (!BN_one(r)) goto err; | 
 |  | 
 | 	for (;;) | 
 | 		{ | 
 | 		if (BN_is_bit_set(p,wstart) == 0) | 
 | 			{ | 
 | 			if (!start) | 
 | 				if (!BN_mod_mul(r,r,r,m,ctx)) | 
 | 				goto err; | 
 | 			if (wstart == 0) break; | 
 | 			wstart--; | 
 | 			continue; | 
 | 			} | 
 | 		/* We now have wstart on a 'set' bit, we now need to work out | 
 | 		 * how bit a window to do.  To do this we need to scan | 
 | 		 * forward until the last set bit before the end of the | 
 | 		 * window */ | 
 | 		j=wstart; | 
 | 		wvalue=1; | 
 | 		wend=0; | 
 | 		for (i=1; i<window; i++) | 
 | 			{ | 
 | 			if (wstart-i < 0) break; | 
 | 			if (BN_is_bit_set(p,wstart-i)) | 
 | 				{ | 
 | 				wvalue<<=(i-wend); | 
 | 				wvalue|=1; | 
 | 				wend=i; | 
 | 				} | 
 | 			} | 
 |  | 
 | 		/* wend is the size of the current window */ | 
 | 		j=wend+1; | 
 | 		/* add the 'bytes above' */ | 
 | 		if (!start) | 
 | 			for (i=0; i<j; i++) | 
 | 				{ | 
 | 				if (!BN_mod_mul(r,r,r,m,ctx)) | 
 | 					goto err; | 
 | 				} | 
 | 		 | 
 | 		/* wvalue will be an odd number < 2^window */ | 
 | 		if (!BN_mod_mul(r,r,val[wvalue>>1],m,ctx)) | 
 | 			goto err; | 
 |  | 
 | 		/* move the 'window' down further */ | 
 | 		wstart-=wend+1; | 
 | 		wvalue=0; | 
 | 		start=0; | 
 | 		if (wstart < 0) break; | 
 | 		} | 
 | 	ret=1; | 
 | err: | 
 | 	BN_CTX_end(ctx); | 
 | 	bn_check_top(r); | 
 | 	return(ret); | 
 | 	} |