| #!/usr/bin/env perl | 
 |  | 
 | # ==================================================================== | 
 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | 
 | # project. The module is, however, dual licensed under OpenSSL and | 
 | # CRYPTOGAMS licenses depending on where you obtain it. For further | 
 | # details see http://www.openssl.org/~appro/cryptogams/. | 
 | # ==================================================================== | 
 |  | 
 | # September 2010. | 
 | # | 
 | # The module implements "4-bit" GCM GHASH function and underlying | 
 | # single multiplication operation in GF(2^128). "4-bit" means that it | 
 | # uses 256 bytes per-key table [+128 bytes shared table]. Performance | 
 | # was measured to be ~18 cycles per processed byte on z10, which is | 
 | # almost 40% better than gcc-generated code. It should be noted that | 
 | # 18 cycles is worse result than expected: loop is scheduled for 12 | 
 | # and the result should be close to 12. In the lack of instruction- | 
 | # level profiling data it's impossible to tell why... | 
 |  | 
 | # November 2010. | 
 | # | 
 | # Adapt for -m31 build. If kernel supports what's called "highgprs" | 
 | # feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit | 
 | # instructions and achieve "64-bit" performance even in 31-bit legacy | 
 | # application context. The feature is not specific to any particular | 
 | # processor, as long as it's "z-CPU". Latter implies that the code | 
 | # remains z/Architecture specific. On z990 it was measured to perform | 
 | # 2.8x better than 32-bit code generated by gcc 4.3. | 
 |  | 
 | # March 2011. | 
 | # | 
 | # Support for hardware KIMD-GHASH is verified to produce correct | 
 | # result and therefore is engaged. On z196 it was measured to process | 
 | # 8KB buffer ~7 faster than software implementation. It's not as | 
 | # impressive for smaller buffer sizes and for smallest 16-bytes buffer | 
 | # it's actually almost 2 times slower. Which is the reason why | 
 | # KIMD-GHASH is not used in gcm_gmult_4bit. | 
 |  | 
 | $flavour = shift; | 
 |  | 
 | if ($flavour =~ /3[12]/) { | 
 | 	$SIZE_T=4; | 
 | 	$g=""; | 
 | } else { | 
 | 	$SIZE_T=8; | 
 | 	$g="g"; | 
 | } | 
 |  | 
 | while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} | 
 | open STDOUT,">$output"; | 
 |  | 
 | $softonly=0; | 
 |  | 
 | $Zhi="%r0"; | 
 | $Zlo="%r1"; | 
 |  | 
 | $Xi="%r2";	# argument block | 
 | $Htbl="%r3"; | 
 | $inp="%r4"; | 
 | $len="%r5"; | 
 |  | 
 | $rem0="%r6";	# variables | 
 | $rem1="%r7"; | 
 | $nlo="%r8"; | 
 | $nhi="%r9"; | 
 | $xi="%r10"; | 
 | $cnt="%r11"; | 
 | $tmp="%r12"; | 
 | $x78="%r13"; | 
 | $rem_4bit="%r14"; | 
 |  | 
 | $sp="%r15"; | 
 |  | 
 | $code.=<<___; | 
 | .text | 
 |  | 
 | .globl	gcm_gmult_4bit | 
 | .align	32 | 
 | gcm_gmult_4bit: | 
 | ___ | 
 | $code.=<<___ if(!$softonly && 0);	# hardware is slow for single block... | 
 | 	larl	%r1,OPENSSL_s390xcap_P | 
 | 	lg	%r0,0(%r1) | 
 | 	tmhl	%r0,0x4000	# check for message-security-assist | 
 | 	jz	.Lsoft_gmult | 
 | 	lghi	%r0,0 | 
 | 	la	%r1,16($sp) | 
 | 	.long	0xb93e0004	# kimd %r0,%r4 | 
 | 	lg	%r1,24($sp) | 
 | 	tmhh	%r1,0x4000	# check for function 65 | 
 | 	jz	.Lsoft_gmult | 
 | 	stg	%r0,16($sp)	# arrange 16 bytes of zero input | 
 | 	stg	%r0,24($sp) | 
 | 	lghi	%r0,65		# function 65 | 
 | 	la	%r1,0($Xi)	# H lies right after Xi in gcm128_context | 
 | 	la	$inp,16($sp) | 
 | 	lghi	$len,16 | 
 | 	.long	0xb93e0004	# kimd %r0,$inp | 
 | 	brc	1,.-4		# pay attention to "partial completion" | 
 | 	br	%r14 | 
 | .align	32 | 
 | .Lsoft_gmult: | 
 | ___ | 
 | $code.=<<___; | 
 | 	stm${g}	%r6,%r14,6*$SIZE_T($sp) | 
 |  | 
 | 	aghi	$Xi,-1 | 
 | 	lghi	$len,1 | 
 | 	lghi	$x78,`0xf<<3` | 
 | 	larl	$rem_4bit,rem_4bit | 
 |  | 
 | 	lg	$Zlo,8+1($Xi)		# Xi | 
 | 	j	.Lgmult_shortcut | 
 | .type	gcm_gmult_4bit,\@function | 
 | .size	gcm_gmult_4bit,(.-gcm_gmult_4bit) | 
 |  | 
 | .globl	gcm_ghash_4bit | 
 | .align	32 | 
 | gcm_ghash_4bit: | 
 | ___ | 
 | $code.=<<___ if(!$softonly); | 
 | 	larl	%r1,OPENSSL_s390xcap_P | 
 | 	lg	%r0,0(%r1) | 
 | 	tmhl	%r0,0x4000	# check for message-security-assist | 
 | 	jz	.Lsoft_ghash | 
 | 	lghi	%r0,0 | 
 | 	la	%r1,16($sp) | 
 | 	.long	0xb93e0004	# kimd %r0,%r4 | 
 | 	lg	%r1,24($sp) | 
 | 	tmhh	%r1,0x4000	# check for function 65 | 
 | 	jz	.Lsoft_ghash | 
 | 	lghi	%r0,65		# function 65 | 
 | 	la	%r1,0($Xi)	# H lies right after Xi in gcm128_context | 
 | 	.long	0xb93e0004	# kimd %r0,$inp | 
 | 	brc	1,.-4		# pay attention to "partial completion" | 
 | 	br	%r14 | 
 | .align	32 | 
 | .Lsoft_ghash: | 
 | ___ | 
 | $code.=<<___ if ($flavour =~ /3[12]/); | 
 | 	llgfr	$len,$len | 
 | ___ | 
 | $code.=<<___; | 
 | 	stm${g}	%r6,%r14,6*$SIZE_T($sp) | 
 |  | 
 | 	aghi	$Xi,-1 | 
 | 	srlg	$len,$len,4 | 
 | 	lghi	$x78,`0xf<<3` | 
 | 	larl	$rem_4bit,rem_4bit | 
 |  | 
 | 	lg	$Zlo,8+1($Xi)		# Xi | 
 | 	lg	$Zhi,0+1($Xi) | 
 | 	lghi	$tmp,0 | 
 | .Louter: | 
 | 	xg	$Zhi,0($inp)		# Xi ^= inp  | 
 | 	xg	$Zlo,8($inp) | 
 | 	xgr	$Zhi,$tmp | 
 | 	stg	$Zlo,8+1($Xi) | 
 | 	stg	$Zhi,0+1($Xi) | 
 |  | 
 | .Lgmult_shortcut: | 
 | 	lghi	$tmp,0xf0 | 
 | 	sllg	$nlo,$Zlo,4 | 
 | 	srlg	$xi,$Zlo,8		# extract second byte | 
 | 	ngr	$nlo,$tmp | 
 | 	lgr	$nhi,$Zlo | 
 | 	lghi	$cnt,14 | 
 | 	ngr	$nhi,$tmp | 
 |  | 
 | 	lg	$Zlo,8($nlo,$Htbl) | 
 | 	lg	$Zhi,0($nlo,$Htbl) | 
 |  | 
 | 	sllg	$nlo,$xi,4 | 
 | 	sllg	$rem0,$Zlo,3 | 
 | 	ngr	$nlo,$tmp | 
 | 	ngr	$rem0,$x78 | 
 | 	ngr	$xi,$tmp | 
 |  | 
 | 	sllg	$tmp,$Zhi,60 | 
 | 	srlg	$Zlo,$Zlo,4 | 
 | 	srlg	$Zhi,$Zhi,4 | 
 | 	xg	$Zlo,8($nhi,$Htbl) | 
 | 	xg	$Zhi,0($nhi,$Htbl) | 
 | 	lgr	$nhi,$xi | 
 | 	sllg	$rem1,$Zlo,3 | 
 | 	xgr	$Zlo,$tmp | 
 | 	ngr	$rem1,$x78 | 
 | 	sllg	$tmp,$Zhi,60 | 
 | 	j	.Lghash_inner | 
 | .align	16 | 
 | .Lghash_inner: | 
 | 	srlg	$Zlo,$Zlo,4 | 
 | 	srlg	$Zhi,$Zhi,4 | 
 | 	xg	$Zlo,8($nlo,$Htbl) | 
 | 	llgc	$xi,0($cnt,$Xi) | 
 | 	xg	$Zhi,0($nlo,$Htbl) | 
 | 	sllg	$nlo,$xi,4 | 
 | 	xg	$Zhi,0($rem0,$rem_4bit) | 
 | 	nill	$nlo,0xf0 | 
 | 	sllg	$rem0,$Zlo,3 | 
 | 	xgr	$Zlo,$tmp | 
 | 	ngr	$rem0,$x78 | 
 | 	nill	$xi,0xf0 | 
 |  | 
 | 	sllg	$tmp,$Zhi,60 | 
 | 	srlg	$Zlo,$Zlo,4 | 
 | 	srlg	$Zhi,$Zhi,4 | 
 | 	xg	$Zlo,8($nhi,$Htbl) | 
 | 	xg	$Zhi,0($nhi,$Htbl) | 
 | 	lgr	$nhi,$xi | 
 | 	xg	$Zhi,0($rem1,$rem_4bit) | 
 | 	sllg	$rem1,$Zlo,3 | 
 | 	xgr	$Zlo,$tmp | 
 | 	ngr	$rem1,$x78 | 
 | 	sllg	$tmp,$Zhi,60 | 
 | 	brct	$cnt,.Lghash_inner | 
 |  | 
 | 	srlg	$Zlo,$Zlo,4 | 
 | 	srlg	$Zhi,$Zhi,4 | 
 | 	xg	$Zlo,8($nlo,$Htbl) | 
 | 	xg	$Zhi,0($nlo,$Htbl) | 
 | 	sllg	$xi,$Zlo,3 | 
 | 	xg	$Zhi,0($rem0,$rem_4bit) | 
 | 	xgr	$Zlo,$tmp | 
 | 	ngr	$xi,$x78 | 
 |  | 
 | 	sllg	$tmp,$Zhi,60 | 
 | 	srlg	$Zlo,$Zlo,4 | 
 | 	srlg	$Zhi,$Zhi,4 | 
 | 	xg	$Zlo,8($nhi,$Htbl) | 
 | 	xg	$Zhi,0($nhi,$Htbl) | 
 | 	xgr	$Zlo,$tmp | 
 | 	xg	$Zhi,0($rem1,$rem_4bit) | 
 |  | 
 | 	lg	$tmp,0($xi,$rem_4bit) | 
 | 	la	$inp,16($inp) | 
 | 	sllg	$tmp,$tmp,4		# correct last rem_4bit[rem] | 
 | 	brctg	$len,.Louter | 
 |  | 
 | 	xgr	$Zhi,$tmp | 
 | 	stg	$Zlo,8+1($Xi) | 
 | 	stg	$Zhi,0+1($Xi) | 
 | 	lm${g}	%r6,%r14,6*$SIZE_T($sp) | 
 | 	br	%r14 | 
 | .type	gcm_ghash_4bit,\@function | 
 | .size	gcm_ghash_4bit,(.-gcm_ghash_4bit) | 
 |  | 
 | .align	64 | 
 | rem_4bit: | 
 | 	.long	`0x0000<<12`,0,`0x1C20<<12`,0,`0x3840<<12`,0,`0x2460<<12`,0 | 
 | 	.long	`0x7080<<12`,0,`0x6CA0<<12`,0,`0x48C0<<12`,0,`0x54E0<<12`,0 | 
 | 	.long	`0xE100<<12`,0,`0xFD20<<12`,0,`0xD940<<12`,0,`0xC560<<12`,0 | 
 | 	.long	`0x9180<<12`,0,`0x8DA0<<12`,0,`0xA9C0<<12`,0,`0xB5E0<<12`,0 | 
 | .type	rem_4bit,\@object | 
 | .size	rem_4bit,(.-rem_4bit) | 
 | .string	"GHASH for s390x, CRYPTOGAMS by <appro\@openssl.org>" | 
 | ___ | 
 |  | 
 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | 
 | print $code; | 
 | close STDOUT; |