| /* |
| * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <openssl/objects.h> |
| #include <openssl/evp.h> |
| #include <openssl/hmac.h> |
| #include <openssl/core_names.h> |
| #include <openssl/ocsp.h> |
| #include <openssl/conf.h> |
| #include <openssl/x509v3.h> |
| #include <openssl/dh.h> |
| #include <openssl/bn.h> |
| #include <openssl/provider.h> |
| #include <openssl/param_build.h> |
| #include "internal/nelem.h" |
| #include "internal/sizes.h" |
| #include "internal/tlsgroups.h" |
| #include "ssl_local.h" |
| #include <openssl/ct.h> |
| |
| static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey); |
| static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu); |
| |
| SSL3_ENC_METHOD const TLSv1_enc_data = { |
| tls1_enc, |
| tls1_mac, |
| tls1_setup_key_block, |
| tls1_generate_master_secret, |
| tls1_change_cipher_state, |
| tls1_final_finish_mac, |
| TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, |
| TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, |
| tls1_alert_code, |
| tls1_export_keying_material, |
| 0, |
| ssl3_set_handshake_header, |
| tls_close_construct_packet, |
| ssl3_handshake_write |
| }; |
| |
| SSL3_ENC_METHOD const TLSv1_1_enc_data = { |
| tls1_enc, |
| tls1_mac, |
| tls1_setup_key_block, |
| tls1_generate_master_secret, |
| tls1_change_cipher_state, |
| tls1_final_finish_mac, |
| TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, |
| TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, |
| tls1_alert_code, |
| tls1_export_keying_material, |
| SSL_ENC_FLAG_EXPLICIT_IV, |
| ssl3_set_handshake_header, |
| tls_close_construct_packet, |
| ssl3_handshake_write |
| }; |
| |
| SSL3_ENC_METHOD const TLSv1_2_enc_data = { |
| tls1_enc, |
| tls1_mac, |
| tls1_setup_key_block, |
| tls1_generate_master_secret, |
| tls1_change_cipher_state, |
| tls1_final_finish_mac, |
| TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, |
| TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, |
| tls1_alert_code, |
| tls1_export_keying_material, |
| SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF |
| | SSL_ENC_FLAG_TLS1_2_CIPHERS, |
| ssl3_set_handshake_header, |
| tls_close_construct_packet, |
| ssl3_handshake_write |
| }; |
| |
| SSL3_ENC_METHOD const TLSv1_3_enc_data = { |
| tls13_enc, |
| tls1_mac, |
| tls13_setup_key_block, |
| tls13_generate_master_secret, |
| tls13_change_cipher_state, |
| tls13_final_finish_mac, |
| TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, |
| TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, |
| tls13_alert_code, |
| tls13_export_keying_material, |
| SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF, |
| ssl3_set_handshake_header, |
| tls_close_construct_packet, |
| ssl3_handshake_write |
| }; |
| |
| long tls1_default_timeout(void) |
| { |
| /* |
| * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for |
| * http, the cache would over fill |
| */ |
| return (60 * 60 * 2); |
| } |
| |
| int tls1_new(SSL *s) |
| { |
| if (!ssl3_new(s)) |
| return 0; |
| if (!s->method->ssl_clear(s)) |
| return 0; |
| |
| return 1; |
| } |
| |
| void tls1_free(SSL *s) |
| { |
| OPENSSL_free(s->ext.session_ticket); |
| ssl3_free(s); |
| } |
| |
| int tls1_clear(SSL *s) |
| { |
| if (!ssl3_clear(s)) |
| return 0; |
| |
| if (s->method->version == TLS_ANY_VERSION) |
| s->version = TLS_MAX_VERSION_INTERNAL; |
| else |
| s->version = s->method->version; |
| |
| return 1; |
| } |
| |
| /* Legacy NID to group_id mapping. Only works for groups we know about */ |
| static struct { |
| int nid; |
| uint16_t group_id; |
| } nid_to_group[] = { |
| {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1}, |
| {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1}, |
| {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2}, |
| {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1}, |
| {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2}, |
| {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1}, |
| {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1}, |
| {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1}, |
| {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1}, |
| {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1}, |
| {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1}, |
| {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1}, |
| {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1}, |
| {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1}, |
| {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1}, |
| {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1}, |
| {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2}, |
| {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1}, |
| {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1}, |
| {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1}, |
| {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1}, |
| {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1}, |
| {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1}, |
| {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1}, |
| {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1}, |
| {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1}, |
| {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1}, |
| {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1}, |
| {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519}, |
| {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448}, |
| {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A}, |
| {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B}, |
| {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C}, |
| {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D}, |
| {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A}, |
| {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B}, |
| {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C}, |
| {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048}, |
| {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072}, |
| {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096}, |
| {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144}, |
| {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192} |
| }; |
| |
| static const unsigned char ecformats_default[] = { |
| TLSEXT_ECPOINTFORMAT_uncompressed, |
| TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime, |
| TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2 |
| }; |
| |
| /* The default curves */ |
| static const uint16_t supported_groups_default[] = { |
| OSSL_TLS_GROUP_ID_x25519, /* X25519 (29) */ |
| OSSL_TLS_GROUP_ID_secp256r1, /* secp256r1 (23) */ |
| OSSL_TLS_GROUP_ID_x448, /* X448 (30) */ |
| OSSL_TLS_GROUP_ID_secp521r1, /* secp521r1 (25) */ |
| OSSL_TLS_GROUP_ID_secp384r1, /* secp384r1 (24) */ |
| OSSL_TLS_GROUP_ID_gc256A, /* GC256A (34) */ |
| OSSL_TLS_GROUP_ID_gc256B, /* GC256B (35) */ |
| OSSL_TLS_GROUP_ID_gc256C, /* GC256C (36) */ |
| OSSL_TLS_GROUP_ID_gc256D, /* GC256D (37) */ |
| OSSL_TLS_GROUP_ID_gc512A, /* GC512A (38) */ |
| OSSL_TLS_GROUP_ID_gc512B, /* GC512B (39) */ |
| OSSL_TLS_GROUP_ID_gc512C, /* GC512C (40) */ |
| OSSL_TLS_GROUP_ID_ffdhe2048, /* ffdhe2048 (0x100) */ |
| OSSL_TLS_GROUP_ID_ffdhe3072, /* ffdhe3072 (0x101) */ |
| OSSL_TLS_GROUP_ID_ffdhe4096, /* ffdhe4096 (0x102) */ |
| OSSL_TLS_GROUP_ID_ffdhe6144, /* ffdhe6144 (0x103) */ |
| OSSL_TLS_GROUP_ID_ffdhe8192, /* ffdhe8192 (0x104) */ |
| }; |
| |
| static const uint16_t suiteb_curves[] = { |
| OSSL_TLS_GROUP_ID_secp256r1, |
| OSSL_TLS_GROUP_ID_secp384r1, |
| }; |
| |
| struct provider_group_data_st { |
| SSL_CTX *ctx; |
| OSSL_PROVIDER *provider; |
| }; |
| |
| #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10 |
| static OSSL_CALLBACK add_provider_groups; |
| static int add_provider_groups(const OSSL_PARAM params[], void *data) |
| { |
| struct provider_group_data_st *pgd = data; |
| SSL_CTX *ctx = pgd->ctx; |
| OSSL_PROVIDER *provider = pgd->provider; |
| const OSSL_PARAM *p; |
| TLS_GROUP_INFO *ginf = NULL; |
| EVP_KEYMGMT *keymgmt; |
| unsigned int gid; |
| unsigned int is_kem = 0; |
| int ret = 0; |
| |
| if (ctx->group_list_max_len == ctx->group_list_len) { |
| TLS_GROUP_INFO *tmp = NULL; |
| |
| if (ctx->group_list_max_len == 0) |
| tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO) |
| * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE); |
| else |
| tmp = OPENSSL_realloc(ctx->group_list, |
| (ctx->group_list_max_len |
| + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE) |
| * sizeof(TLS_GROUP_INFO)); |
| if (tmp == NULL) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| ctx->group_list = tmp; |
| memset(tmp + ctx->group_list_max_len, |
| 0, |
| sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE); |
| ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE; |
| } |
| |
| ginf = &ctx->group_list[ctx->group_list_len]; |
| |
| p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME); |
| if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); |
| goto err; |
| } |
| ginf->tlsname = OPENSSL_strdup(p->data); |
| if (ginf->tlsname == NULL) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL); |
| if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); |
| goto err; |
| } |
| ginf->realname = OPENSSL_strdup(p->data); |
| if (ginf->realname == NULL) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID); |
| if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); |
| goto err; |
| } |
| ginf->group_id = (uint16_t)gid; |
| |
| p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG); |
| if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); |
| goto err; |
| } |
| ginf->algorithm = OPENSSL_strdup(p->data); |
| if (ginf->algorithm == NULL) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS); |
| if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); |
| goto err; |
| } |
| |
| p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM); |
| if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); |
| goto err; |
| } |
| ginf->is_kem = 1 & is_kem; |
| |
| p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS); |
| if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); |
| goto err; |
| } |
| |
| p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS); |
| if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); |
| goto err; |
| } |
| |
| p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS); |
| if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); |
| goto err; |
| } |
| |
| p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS); |
| if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); |
| goto err; |
| } |
| /* |
| * Now check that the algorithm is actually usable for our property query |
| * string. Regardless of the result we still return success because we have |
| * successfully processed this group, even though we may decide not to use |
| * it. |
| */ |
| ret = 1; |
| keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq); |
| if (keymgmt != NULL) { |
| /* |
| * We have successfully fetched the algorithm - however if the provider |
| * doesn't match this one then we ignore it. |
| * |
| * Note: We're cheating a little here. Technically if the same algorithm |
| * is available from more than one provider then it is undefined which |
| * implementation you will get back. Theoretically this could be |
| * different every time...we assume here that you'll always get the |
| * same one back if you repeat the exact same fetch. Is this a reasonable |
| * assumption to make (in which case perhaps we should document this |
| * behaviour)? |
| */ |
| if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) { |
| /* We have a match - so we will use this group */ |
| ctx->group_list_len++; |
| ginf = NULL; |
| } |
| EVP_KEYMGMT_free(keymgmt); |
| } |
| err: |
| if (ginf != NULL) { |
| OPENSSL_free(ginf->tlsname); |
| OPENSSL_free(ginf->realname); |
| OPENSSL_free(ginf->algorithm); |
| ginf->tlsname = ginf->realname = NULL; |
| } |
| return ret; |
| } |
| |
| static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx) |
| { |
| struct provider_group_data_st pgd; |
| |
| pgd.ctx = vctx; |
| pgd.provider = provider; |
| return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP", |
| add_provider_groups, &pgd); |
| } |
| |
| int ssl_load_groups(SSL_CTX *ctx) |
| { |
| size_t i, j, num_deflt_grps = 0; |
| uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)]; |
| |
| if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx)) |
| return 0; |
| |
| for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) { |
| for (j = 0; j < ctx->group_list_len; j++) { |
| if (ctx->group_list[j].group_id == supported_groups_default[i]) { |
| tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id; |
| break; |
| } |
| } |
| } |
| |
| if (num_deflt_grps == 0) |
| return 1; |
| |
| ctx->ext.supported_groups_default |
| = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps); |
| |
| if (ctx->ext.supported_groups_default == NULL) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| memcpy(ctx->ext.supported_groups_default, |
| tmp_supp_groups, |
| num_deflt_grps * sizeof(tmp_supp_groups[0])); |
| ctx->ext.supported_groups_default_len = num_deflt_grps; |
| |
| return 1; |
| } |
| |
| static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name) |
| { |
| size_t i; |
| |
| for (i = 0; i < ctx->group_list_len; i++) { |
| if (strcmp(ctx->group_list[i].tlsname, name) == 0 |
| || strcmp(ctx->group_list[i].realname, name) == 0) |
| return ctx->group_list[i].group_id; |
| } |
| |
| return 0; |
| } |
| |
| uint16_t ssl_group_id_internal_to_tls13(uint16_t curve_id) |
| { |
| switch(curve_id) { |
| case OSSL_TLS_GROUP_ID_brainpoolP256r1: |
| return OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13; |
| case OSSL_TLS_GROUP_ID_brainpoolP384r1: |
| return OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13; |
| case OSSL_TLS_GROUP_ID_brainpoolP512r1: |
| return OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13; |
| case OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13: |
| case OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13: |
| case OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13: |
| return 0; |
| default: |
| return curve_id; |
| } |
| } |
| |
| uint16_t ssl_group_id_tls13_to_internal(uint16_t curve_id) |
| { |
| switch(curve_id) { |
| case OSSL_TLS_GROUP_ID_brainpoolP256r1: |
| case OSSL_TLS_GROUP_ID_brainpoolP384r1: |
| case OSSL_TLS_GROUP_ID_brainpoolP512r1: |
| return 0; |
| case OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13: |
| return OSSL_TLS_GROUP_ID_brainpoolP256r1; |
| case OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13: |
| return OSSL_TLS_GROUP_ID_brainpoolP384r1; |
| case OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13: |
| return OSSL_TLS_GROUP_ID_brainpoolP512r1; |
| default: |
| return curve_id; |
| } |
| } |
| |
| const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id) |
| { |
| size_t i; |
| |
| for (i = 0; i < ctx->group_list_len; i++) { |
| if (ctx->group_list[i].group_id == group_id) |
| return &ctx->group_list[i]; |
| } |
| |
| return NULL; |
| } |
| |
| int tls1_group_id2nid(uint16_t group_id, int include_unknown) |
| { |
| size_t i; |
| |
| if (group_id == 0) |
| return NID_undef; |
| |
| /* |
| * Return well known Group NIDs - for backwards compatibility. This won't |
| * work for groups we don't know about. |
| */ |
| for (i = 0; i < OSSL_NELEM(nid_to_group); i++) |
| { |
| if (nid_to_group[i].group_id == group_id) |
| return nid_to_group[i].nid; |
| } |
| if (!include_unknown) |
| return NID_undef; |
| return TLSEXT_nid_unknown | (int)group_id; |
| } |
| |
| uint16_t tls1_nid2group_id(int nid) |
| { |
| size_t i; |
| |
| /* |
| * Return well known Group ids - for backwards compatibility. This won't |
| * work for groups we don't know about. |
| */ |
| for (i = 0; i < OSSL_NELEM(nid_to_group); i++) |
| { |
| if (nid_to_group[i].nid == nid) |
| return nid_to_group[i].group_id; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Set *pgroups to the supported groups list and *pgroupslen to |
| * the number of groups supported. |
| */ |
| void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups, |
| size_t *pgroupslen) |
| { |
| /* For Suite B mode only include P-256, P-384 */ |
| switch (tls1_suiteb(s)) { |
| case SSL_CERT_FLAG_SUITEB_128_LOS: |
| *pgroups = suiteb_curves; |
| *pgroupslen = OSSL_NELEM(suiteb_curves); |
| break; |
| |
| case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: |
| *pgroups = suiteb_curves; |
| *pgroupslen = 1; |
| break; |
| |
| case SSL_CERT_FLAG_SUITEB_192_LOS: |
| *pgroups = suiteb_curves + 1; |
| *pgroupslen = 1; |
| break; |
| |
| default: |
| if (s->ext.supportedgroups == NULL) { |
| *pgroups = s->ctx->ext.supported_groups_default; |
| *pgroupslen = s->ctx->ext.supported_groups_default_len; |
| } else { |
| *pgroups = s->ext.supportedgroups; |
| *pgroupslen = s->ext.supportedgroups_len; |
| } |
| break; |
| } |
| } |
| |
| int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion, |
| int isec, int *okfortls13) |
| { |
| const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id); |
| int ret; |
| |
| if (okfortls13 != NULL) |
| *okfortls13 = 0; |
| |
| if (ginfo == NULL) |
| return 0; |
| |
| if (SSL_IS_DTLS(s)) { |
| if (ginfo->mindtls < 0 || ginfo->maxdtls < 0) |
| return 0; |
| if (ginfo->maxdtls == 0) |
| ret = 1; |
| else |
| ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls); |
| if (ginfo->mindtls > 0) |
| ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls); |
| } else { |
| if (ginfo->mintls < 0 || ginfo->maxtls < 0) |
| return 0; |
| if (ginfo->maxtls == 0) |
| ret = 1; |
| else |
| ret = (minversion <= ginfo->maxtls); |
| if (ginfo->mintls > 0) |
| ret &= (maxversion >= ginfo->mintls); |
| if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION) |
| *okfortls13 = (ginfo->maxtls == 0) |
| || (ginfo->maxtls >= TLS1_3_VERSION); |
| } |
| ret &= !isec |
| || strcmp(ginfo->algorithm, "EC") == 0 |
| || strcmp(ginfo->algorithm, "X25519") == 0 |
| || strcmp(ginfo->algorithm, "X448") == 0; |
| |
| return ret; |
| } |
| |
| /* See if group is allowed by security callback */ |
| int tls_group_allowed(SSL *s, uint16_t group, int op) |
| { |
| const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group); |
| unsigned char gtmp[2]; |
| |
| if (ginfo == NULL) |
| return 0; |
| |
| gtmp[0] = group >> 8; |
| gtmp[1] = group & 0xff; |
| return ssl_security(s, op, ginfo->secbits, |
| tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp); |
| } |
| |
| /* Return 1 if "id" is in "list" */ |
| static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen) |
| { |
| size_t i; |
| for (i = 0; i < listlen; i++) |
| if (list[i] == id) |
| return 1; |
| return 0; |
| } |
| |
| /*- |
| * For nmatch >= 0, return the id of the |nmatch|th shared group or 0 |
| * if there is no match. |
| * For nmatch == -1, return number of matches |
| * For nmatch == -2, return the id of the group to use for |
| * a tmp key, or 0 if there is no match. |
| */ |
| uint16_t tls1_shared_group(SSL *s, int nmatch) |
| { |
| const uint16_t *pref, *supp; |
| size_t num_pref, num_supp, i; |
| int k; |
| |
| /* Can't do anything on client side */ |
| if (s->server == 0) |
| return 0; |
| if (nmatch == -2) { |
| if (tls1_suiteb(s)) { |
| /* |
| * For Suite B ciphersuite determines curve: we already know |
| * these are acceptable due to previous checks. |
| */ |
| unsigned long cid = s->s3.tmp.new_cipher->id; |
| |
| if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) |
| return OSSL_TLS_GROUP_ID_secp256r1; |
| if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) |
| return OSSL_TLS_GROUP_ID_secp384r1; |
| /* Should never happen */ |
| return 0; |
| } |
| /* If not Suite B just return first preference shared curve */ |
| nmatch = 0; |
| } |
| /* |
| * If server preference set, our groups are the preference order |
| * otherwise peer decides. |
| */ |
| if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { |
| tls1_get_supported_groups(s, &pref, &num_pref); |
| tls1_get_peer_groups(s, &supp, &num_supp); |
| } else { |
| tls1_get_peer_groups(s, &pref, &num_pref); |
| tls1_get_supported_groups(s, &supp, &num_supp); |
| } |
| |
| for (k = 0, i = 0; i < num_pref; i++) { |
| uint16_t id = pref[i]; |
| uint16_t cid = id; |
| |
| if (SSL_IS_TLS13(s)) { |
| if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) |
| cid = ssl_group_id_internal_to_tls13(id); |
| else |
| cid = id = ssl_group_id_tls13_to_internal(id); |
| } |
| if (!tls1_in_list(cid, supp, num_supp) |
| || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED)) |
| continue; |
| if (nmatch == k) |
| return id; |
| k++; |
| } |
| if (nmatch == -1) |
| return k; |
| /* Out of range (nmatch > k). */ |
| return 0; |
| } |
| |
| int tls1_set_groups(uint16_t **pext, size_t *pextlen, |
| int *groups, size_t ngroups) |
| { |
| uint16_t *glist; |
| size_t i; |
| /* |
| * Bitmap of groups included to detect duplicates: two variables are added |
| * to detect duplicates as some values are more than 32. |
| */ |
| unsigned long *dup_list = NULL; |
| unsigned long dup_list_egrp = 0; |
| unsigned long dup_list_dhgrp = 0; |
| |
| if (ngroups == 0) { |
| ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH); |
| return 0; |
| } |
| if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| for (i = 0; i < ngroups; i++) { |
| unsigned long idmask; |
| uint16_t id; |
| id = tls1_nid2group_id(groups[i]); |
| if ((id & 0x00FF) >= (sizeof(unsigned long) * 8)) |
| goto err; |
| idmask = 1L << (id & 0x00FF); |
| dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp; |
| if (!id || ((*dup_list) & idmask)) |
| goto err; |
| *dup_list |= idmask; |
| glist[i] = id; |
| } |
| OPENSSL_free(*pext); |
| *pext = glist; |
| *pextlen = ngroups; |
| return 1; |
| err: |
| OPENSSL_free(glist); |
| return 0; |
| } |
| |
| # define GROUPLIST_INCREMENT 40 |
| # define GROUP_NAME_BUFFER_LENGTH 64 |
| typedef struct { |
| SSL_CTX *ctx; |
| size_t gidcnt; |
| size_t gidmax; |
| uint16_t *gid_arr; |
| } gid_cb_st; |
| |
| static int gid_cb(const char *elem, int len, void *arg) |
| { |
| gid_cb_st *garg = arg; |
| size_t i; |
| uint16_t gid = 0; |
| char etmp[GROUP_NAME_BUFFER_LENGTH]; |
| |
| if (elem == NULL) |
| return 0; |
| if (garg->gidcnt == garg->gidmax) { |
| uint16_t *tmp = |
| OPENSSL_realloc(garg->gid_arr, garg->gidmax + GROUPLIST_INCREMENT); |
| if (tmp == NULL) |
| return 0; |
| garg->gidmax += GROUPLIST_INCREMENT; |
| garg->gid_arr = tmp; |
| } |
| if (len > (int)(sizeof(etmp) - 1)) |
| return 0; |
| memcpy(etmp, elem, len); |
| etmp[len] = 0; |
| |
| gid = tls1_group_name2id(garg->ctx, etmp); |
| if (gid == 0) |
| return 0; |
| for (i = 0; i < garg->gidcnt; i++) |
| if (garg->gid_arr[i] == gid) |
| return 0; |
| garg->gid_arr[garg->gidcnt++] = gid; |
| return 1; |
| } |
| |
| /* Set groups based on a colon separated list */ |
| int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen, |
| const char *str) |
| { |
| gid_cb_st gcb; |
| uint16_t *tmparr; |
| int ret = 0; |
| |
| gcb.gidcnt = 0; |
| gcb.gidmax = GROUPLIST_INCREMENT; |
| gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr)); |
| if (gcb.gid_arr == NULL) |
| return 0; |
| gcb.ctx = ctx; |
| if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb)) |
| goto end; |
| if (pext == NULL) { |
| ret = 1; |
| goto end; |
| } |
| |
| /* |
| * gid_cb ensurse there are no duplicates so we can just go ahead and set |
| * the result |
| */ |
| tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr)); |
| if (tmparr == NULL) |
| goto end; |
| *pext = tmparr; |
| *pextlen = gcb.gidcnt; |
| ret = 1; |
| end: |
| OPENSSL_free(gcb.gid_arr); |
| return ret; |
| } |
| |
| /* Check a group id matches preferences */ |
| int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups) |
| { |
| const uint16_t *groups; |
| size_t groups_len; |
| |
| if (group_id == 0) |
| return 0; |
| |
| /* Check for Suite B compliance */ |
| if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) { |
| unsigned long cid = s->s3.tmp.new_cipher->id; |
| |
| if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) { |
| if (group_id != OSSL_TLS_GROUP_ID_secp256r1) |
| return 0; |
| } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) { |
| if (group_id != OSSL_TLS_GROUP_ID_secp384r1) |
| return 0; |
| } else { |
| /* Should never happen */ |
| return 0; |
| } |
| } |
| |
| if (check_own_groups) { |
| /* Check group is one of our preferences */ |
| tls1_get_supported_groups(s, &groups, &groups_len); |
| if (!tls1_in_list(group_id, groups, groups_len)) |
| return 0; |
| } |
| |
| if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK)) |
| return 0; |
| |
| /* For clients, nothing more to check */ |
| if (!s->server) |
| return 1; |
| |
| /* Check group is one of peers preferences */ |
| tls1_get_peer_groups(s, &groups, &groups_len); |
| |
| /* |
| * RFC 4492 does not require the supported elliptic curves extension |
| * so if it is not sent we can just choose any curve. |
| * It is invalid to send an empty list in the supported groups |
| * extension, so groups_len == 0 always means no extension. |
| */ |
| if (groups_len == 0) |
| return 1; |
| return tls1_in_list(group_id, groups, groups_len); |
| } |
| |
| void tls1_get_formatlist(SSL *s, const unsigned char **pformats, |
| size_t *num_formats) |
| { |
| /* |
| * If we have a custom point format list use it otherwise use default |
| */ |
| if (s->ext.ecpointformats) { |
| *pformats = s->ext.ecpointformats; |
| *num_formats = s->ext.ecpointformats_len; |
| } else { |
| *pformats = ecformats_default; |
| /* For Suite B we don't support char2 fields */ |
| if (tls1_suiteb(s)) |
| *num_formats = sizeof(ecformats_default) - 1; |
| else |
| *num_formats = sizeof(ecformats_default); |
| } |
| } |
| |
| /* Check a key is compatible with compression extension */ |
| static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey) |
| { |
| unsigned char comp_id; |
| size_t i; |
| int point_conv; |
| |
| /* If not an EC key nothing to check */ |
| if (!EVP_PKEY_is_a(pkey, "EC")) |
| return 1; |
| |
| |
| /* Get required compression id */ |
| point_conv = EVP_PKEY_get_ec_point_conv_form(pkey); |
| if (point_conv == 0) |
| return 0; |
| if (point_conv == POINT_CONVERSION_UNCOMPRESSED) { |
| comp_id = TLSEXT_ECPOINTFORMAT_uncompressed; |
| } else if (SSL_IS_TLS13(s)) { |
| /* |
| * ec_point_formats extension is not used in TLSv1.3 so we ignore |
| * this check. |
| */ |
| return 1; |
| } else { |
| int field_type = EVP_PKEY_get_field_type(pkey); |
| |
| if (field_type == NID_X9_62_prime_field) |
| comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime; |
| else if (field_type == NID_X9_62_characteristic_two_field) |
| comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2; |
| else |
| return 0; |
| } |
| /* |
| * If point formats extension present check it, otherwise everything is |
| * supported (see RFC4492). |
| */ |
| if (s->ext.peer_ecpointformats == NULL) |
| return 1; |
| |
| for (i = 0; i < s->ext.peer_ecpointformats_len; i++) { |
| if (s->ext.peer_ecpointformats[i] == comp_id) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Return group id of a key */ |
| static uint16_t tls1_get_group_id(EVP_PKEY *pkey) |
| { |
| int curve_nid = ssl_get_EC_curve_nid(pkey); |
| |
| if (curve_nid == NID_undef) |
| return 0; |
| return tls1_nid2group_id(curve_nid); |
| } |
| |
| /* |
| * Check cert parameters compatible with extensions: currently just checks EC |
| * certificates have compatible curves and compression. |
| */ |
| static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md) |
| { |
| uint16_t group_id; |
| EVP_PKEY *pkey; |
| pkey = X509_get0_pubkey(x); |
| if (pkey == NULL) |
| return 0; |
| /* If not EC nothing to do */ |
| if (!EVP_PKEY_is_a(pkey, "EC")) |
| return 1; |
| /* Check compression */ |
| if (!tls1_check_pkey_comp(s, pkey)) |
| return 0; |
| group_id = tls1_get_group_id(pkey); |
| /* |
| * For a server we allow the certificate to not be in our list of supported |
| * groups. |
| */ |
| if (!tls1_check_group_id(s, group_id, !s->server)) |
| return 0; |
| /* |
| * Special case for suite B. We *MUST* sign using SHA256+P-256 or |
| * SHA384+P-384. |
| */ |
| if (check_ee_md && tls1_suiteb(s)) { |
| int check_md; |
| size_t i; |
| |
| /* Check to see we have necessary signing algorithm */ |
| if (group_id == OSSL_TLS_GROUP_ID_secp256r1) |
| check_md = NID_ecdsa_with_SHA256; |
| else if (group_id == OSSL_TLS_GROUP_ID_secp384r1) |
| check_md = NID_ecdsa_with_SHA384; |
| else |
| return 0; /* Should never happen */ |
| for (i = 0; i < s->shared_sigalgslen; i++) { |
| if (check_md == s->shared_sigalgs[i]->sigandhash) |
| return 1; |
| } |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| * tls1_check_ec_tmp_key - Check EC temporary key compatibility |
| * @s: SSL connection |
| * @cid: Cipher ID we're considering using |
| * |
| * Checks that the kECDHE cipher suite we're considering using |
| * is compatible with the client extensions. |
| * |
| * Returns 0 when the cipher can't be used or 1 when it can. |
| */ |
| int tls1_check_ec_tmp_key(SSL *s, unsigned long cid) |
| { |
| /* If not Suite B just need a shared group */ |
| if (!tls1_suiteb(s)) |
| return tls1_shared_group(s, 0) != 0; |
| /* |
| * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other |
| * curves permitted. |
| */ |
| if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) |
| return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1); |
| if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) |
| return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1); |
| |
| return 0; |
| } |
| |
| /* Default sigalg schemes */ |
| static const uint16_t tls12_sigalgs[] = { |
| TLSEXT_SIGALG_ecdsa_secp256r1_sha256, |
| TLSEXT_SIGALG_ecdsa_secp384r1_sha384, |
| TLSEXT_SIGALG_ecdsa_secp521r1_sha512, |
| TLSEXT_SIGALG_ed25519, |
| TLSEXT_SIGALG_ed448, |
| TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256, |
| TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384, |
| TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512, |
| |
| TLSEXT_SIGALG_rsa_pss_pss_sha256, |
| TLSEXT_SIGALG_rsa_pss_pss_sha384, |
| TLSEXT_SIGALG_rsa_pss_pss_sha512, |
| TLSEXT_SIGALG_rsa_pss_rsae_sha256, |
| TLSEXT_SIGALG_rsa_pss_rsae_sha384, |
| TLSEXT_SIGALG_rsa_pss_rsae_sha512, |
| |
| TLSEXT_SIGALG_rsa_pkcs1_sha256, |
| TLSEXT_SIGALG_rsa_pkcs1_sha384, |
| TLSEXT_SIGALG_rsa_pkcs1_sha512, |
| |
| TLSEXT_SIGALG_ecdsa_sha224, |
| TLSEXT_SIGALG_ecdsa_sha1, |
| |
| TLSEXT_SIGALG_rsa_pkcs1_sha224, |
| TLSEXT_SIGALG_rsa_pkcs1_sha1, |
| |
| TLSEXT_SIGALG_dsa_sha224, |
| TLSEXT_SIGALG_dsa_sha1, |
| |
| TLSEXT_SIGALG_dsa_sha256, |
| TLSEXT_SIGALG_dsa_sha384, |
| TLSEXT_SIGALG_dsa_sha512, |
| |
| #ifndef OPENSSL_NO_GOST |
| TLSEXT_SIGALG_gostr34102012_256_intrinsic, |
| TLSEXT_SIGALG_gostr34102012_512_intrinsic, |
| TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, |
| TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, |
| TLSEXT_SIGALG_gostr34102001_gostr3411, |
| #endif |
| }; |
| |
| |
| static const uint16_t suiteb_sigalgs[] = { |
| TLSEXT_SIGALG_ecdsa_secp256r1_sha256, |
| TLSEXT_SIGALG_ecdsa_secp384r1_sha384 |
| }; |
| |
| static const SIGALG_LOOKUP sigalg_lookup_tbl[] = { |
| {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256, |
| NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, |
| NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1}, |
| {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384, |
| NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, |
| NID_ecdsa_with_SHA384, NID_secp384r1, 1}, |
| {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512, |
| NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, |
| NID_ecdsa_with_SHA512, NID_secp521r1, 1}, |
| {"ed25519", TLSEXT_SIGALG_ed25519, |
| NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519, |
| NID_undef, NID_undef, 1}, |
| {"ed448", TLSEXT_SIGALG_ed448, |
| NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448, |
| NID_undef, NID_undef, 1}, |
| {NULL, TLSEXT_SIGALG_ecdsa_sha224, |
| NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, |
| NID_ecdsa_with_SHA224, NID_undef, 1}, |
| {NULL, TLSEXT_SIGALG_ecdsa_sha1, |
| NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, |
| NID_ecdsa_with_SHA1, NID_undef, 1}, |
| {"ecdsa_brainpoolP256r1_sha256", TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256, |
| NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, |
| NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1}, |
| {"ecdsa_brainpoolP384r1_sha384", TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384, |
| NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, |
| NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1}, |
| {"ecdsa_brainpoolP512r1_sha512", TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512, |
| NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, |
| NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1}, |
| {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256, |
| NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, |
| NID_undef, NID_undef, 1}, |
| {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384, |
| NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, |
| NID_undef, NID_undef, 1}, |
| {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512, |
| NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, |
| NID_undef, NID_undef, 1}, |
| {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256, |
| NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, |
| NID_undef, NID_undef, 1}, |
| {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384, |
| NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, |
| NID_undef, NID_undef, 1}, |
| {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512, |
| NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, |
| NID_undef, NID_undef, 1}, |
| {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256, |
| NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, |
| NID_sha256WithRSAEncryption, NID_undef, 1}, |
| {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384, |
| NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, |
| NID_sha384WithRSAEncryption, NID_undef, 1}, |
| {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512, |
| NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, |
| NID_sha512WithRSAEncryption, NID_undef, 1}, |
| {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224, |
| NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, |
| NID_sha224WithRSAEncryption, NID_undef, 1}, |
| {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1, |
| NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, |
| NID_sha1WithRSAEncryption, NID_undef, 1}, |
| {NULL, TLSEXT_SIGALG_dsa_sha256, |
| NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, |
| NID_dsa_with_SHA256, NID_undef, 1}, |
| {NULL, TLSEXT_SIGALG_dsa_sha384, |
| NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, |
| NID_undef, NID_undef, 1}, |
| {NULL, TLSEXT_SIGALG_dsa_sha512, |
| NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, |
| NID_undef, NID_undef, 1}, |
| {NULL, TLSEXT_SIGALG_dsa_sha224, |
| NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, |
| NID_undef, NID_undef, 1}, |
| {NULL, TLSEXT_SIGALG_dsa_sha1, |
| NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, |
| NID_dsaWithSHA1, NID_undef, 1}, |
| #ifndef OPENSSL_NO_GOST |
| {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic, |
| NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX, |
| NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256, |
| NID_undef, NID_undef, 1}, |
| {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic, |
| NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX, |
| NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512, |
| NID_undef, NID_undef, 1}, |
| {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, |
| NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX, |
| NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256, |
| NID_undef, NID_undef, 1}, |
| {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, |
| NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX, |
| NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512, |
| NID_undef, NID_undef, 1}, |
| {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411, |
| NID_id_GostR3411_94, SSL_MD_GOST94_IDX, |
| NID_id_GostR3410_2001, SSL_PKEY_GOST01, |
| NID_undef, NID_undef, 1} |
| #endif |
| }; |
| /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */ |
| static const SIGALG_LOOKUP legacy_rsa_sigalg = { |
| "rsa_pkcs1_md5_sha1", 0, |
| NID_md5_sha1, SSL_MD_MD5_SHA1_IDX, |
| EVP_PKEY_RSA, SSL_PKEY_RSA, |
| NID_undef, NID_undef, 1 |
| }; |
| |
| /* |
| * Default signature algorithm values used if signature algorithms not present. |
| * From RFC5246. Note: order must match certificate index order. |
| */ |
| static const uint16_t tls_default_sigalg[] = { |
| TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */ |
| 0, /* SSL_PKEY_RSA_PSS_SIGN */ |
| TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */ |
| TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */ |
| TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */ |
| TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */ |
| TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */ |
| 0, /* SSL_PKEY_ED25519 */ |
| 0, /* SSL_PKEY_ED448 */ |
| }; |
| |
| int ssl_setup_sig_algs(SSL_CTX *ctx) |
| { |
| size_t i; |
| const SIGALG_LOOKUP *lu; |
| SIGALG_LOOKUP *cache |
| = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl)); |
| EVP_PKEY *tmpkey = EVP_PKEY_new(); |
| int ret = 0; |
| |
| if (cache == NULL || tmpkey == NULL) |
| goto err; |
| |
| ERR_set_mark(); |
| for (i = 0, lu = sigalg_lookup_tbl; |
| i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) { |
| EVP_PKEY_CTX *pctx; |
| |
| cache[i] = *lu; |
| |
| /* |
| * Check hash is available. |
| * This test is not perfect. A provider could have support |
| * for a signature scheme, but not a particular hash. However the hash |
| * could be available from some other loaded provider. In that case it |
| * could be that the signature is available, and the hash is available |
| * independently - but not as a combination. We ignore this for now. |
| */ |
| if (lu->hash != NID_undef |
| && ctx->ssl_digest_methods[lu->hash_idx] == NULL) { |
| cache[i].enabled = 0; |
| continue; |
| } |
| |
| if (!EVP_PKEY_set_type(tmpkey, lu->sig)) { |
| cache[i].enabled = 0; |
| continue; |
| } |
| pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq); |
| /* If unable to create pctx we assume the sig algorithm is unavailable */ |
| if (pctx == NULL) |
| cache[i].enabled = 0; |
| EVP_PKEY_CTX_free(pctx); |
| } |
| ERR_pop_to_mark(); |
| ctx->sigalg_lookup_cache = cache; |
| cache = NULL; |
| |
| ret = 1; |
| err: |
| OPENSSL_free(cache); |
| EVP_PKEY_free(tmpkey); |
| return ret; |
| } |
| |
| /* Lookup TLS signature algorithm */ |
| static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg) |
| { |
| size_t i; |
| const SIGALG_LOOKUP *lu; |
| |
| for (i = 0, lu = s->ctx->sigalg_lookup_cache; |
| /* cache should have the same number of elements as sigalg_lookup_tbl */ |
| i < OSSL_NELEM(sigalg_lookup_tbl); |
| lu++, i++) { |
| if (lu->sigalg == sigalg) { |
| if (!lu->enabled) |
| return NULL; |
| return lu; |
| } |
| } |
| return NULL; |
| } |
| /* Lookup hash: return 0 if invalid or not enabled */ |
| int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd) |
| { |
| const EVP_MD *md; |
| if (lu == NULL) |
| return 0; |
| /* lu->hash == NID_undef means no associated digest */ |
| if (lu->hash == NID_undef) { |
| md = NULL; |
| } else { |
| md = ssl_md(ctx, lu->hash_idx); |
| if (md == NULL) |
| return 0; |
| } |
| if (pmd) |
| *pmd = md; |
| return 1; |
| } |
| |
| /* |
| * Check if key is large enough to generate RSA-PSS signature. |
| * |
| * The key must greater than or equal to 2 * hash length + 2. |
| * SHA512 has a hash length of 64 bytes, which is incompatible |
| * with a 128 byte (1024 bit) key. |
| */ |
| #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2) |
| static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey, |
| const SIGALG_LOOKUP *lu) |
| { |
| const EVP_MD *md; |
| |
| if (pkey == NULL) |
| return 0; |
| if (!tls1_lookup_md(ctx, lu, &md) || md == NULL) |
| return 0; |
| if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md)) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * Returns a signature algorithm when the peer did not send a list of supported |
| * signature algorithms. The signature algorithm is fixed for the certificate |
| * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the |
| * certificate type from |s| will be used. |
| * Returns the signature algorithm to use, or NULL on error. |
| */ |
| static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx) |
| { |
| if (idx == -1) { |
| if (s->server) { |
| size_t i; |
| |
| /* Work out index corresponding to ciphersuite */ |
| for (i = 0; i < SSL_PKEY_NUM; i++) { |
| const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i); |
| |
| if (clu == NULL) |
| continue; |
| if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) { |
| idx = i; |
| break; |
| } |
| } |
| |
| /* |
| * Some GOST ciphersuites allow more than one signature algorithms |
| * */ |
| if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) { |
| int real_idx; |
| |
| for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01; |
| real_idx--) { |
| if (s->cert->pkeys[real_idx].privatekey != NULL) { |
| idx = real_idx; |
| break; |
| } |
| } |
| } |
| /* |
| * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used |
| * with new (aGOST12-only) ciphersuites, we should find out which one is available really. |
| */ |
| else if (idx == SSL_PKEY_GOST12_256) { |
| int real_idx; |
| |
| for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256; |
| real_idx--) { |
| if (s->cert->pkeys[real_idx].privatekey != NULL) { |
| idx = real_idx; |
| break; |
| } |
| } |
| } |
| } else { |
| idx = s->cert->key - s->cert->pkeys; |
| } |
| } |
| if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg)) |
| return NULL; |
| if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) { |
| const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]); |
| |
| if (lu == NULL) |
| return NULL; |
| if (!tls1_lookup_md(s->ctx, lu, NULL)) |
| return NULL; |
| if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu)) |
| return NULL; |
| return lu; |
| } |
| if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg)) |
| return NULL; |
| return &legacy_rsa_sigalg; |
| } |
| /* Set peer sigalg based key type */ |
| int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey) |
| { |
| size_t idx; |
| const SIGALG_LOOKUP *lu; |
| |
| if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL) |
| return 0; |
| lu = tls1_get_legacy_sigalg(s, idx); |
| if (lu == NULL) |
| return 0; |
| s->s3.tmp.peer_sigalg = lu; |
| return 1; |
| } |
| |
| size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs) |
| { |
| /* |
| * If Suite B mode use Suite B sigalgs only, ignore any other |
| * preferences. |
| */ |
| switch (tls1_suiteb(s)) { |
| case SSL_CERT_FLAG_SUITEB_128_LOS: |
| *psigs = suiteb_sigalgs; |
| return OSSL_NELEM(suiteb_sigalgs); |
| |
| case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: |
| *psigs = suiteb_sigalgs; |
| return 1; |
| |
| case SSL_CERT_FLAG_SUITEB_192_LOS: |
| *psigs = suiteb_sigalgs + 1; |
| return 1; |
| } |
| /* |
| * We use client_sigalgs (if not NULL) if we're a server |
| * and sending a certificate request or if we're a client and |
| * determining which shared algorithm to use. |
| */ |
| if ((s->server == sent) && s->cert->client_sigalgs != NULL) { |
| *psigs = s->cert->client_sigalgs; |
| return s->cert->client_sigalgslen; |
| } else if (s->cert->conf_sigalgs) { |
| *psigs = s->cert->conf_sigalgs; |
| return s->cert->conf_sigalgslen; |
| } else { |
| *psigs = tls12_sigalgs; |
| return OSSL_NELEM(tls12_sigalgs); |
| } |
| } |
| |
| /* |
| * Called by servers only. Checks that we have a sig alg that supports the |
| * specified EC curve. |
| */ |
| int tls_check_sigalg_curve(const SSL *s, int curve) |
| { |
| const uint16_t *sigs; |
| size_t siglen, i; |
| |
| if (s->cert->conf_sigalgs) { |
| sigs = s->cert->conf_sigalgs; |
| siglen = s->cert->conf_sigalgslen; |
| } else { |
| sigs = tls12_sigalgs; |
| siglen = OSSL_NELEM(tls12_sigalgs); |
| } |
| |
| for (i = 0; i < siglen; i++) { |
| const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]); |
| |
| if (lu == NULL) |
| continue; |
| if (lu->sig == EVP_PKEY_EC |
| && lu->curve != NID_undef |
| && curve == lu->curve) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Return the number of security bits for the signature algorithm, or 0 on |
| * error. |
| */ |
| static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu) |
| { |
| const EVP_MD *md = NULL; |
| int secbits = 0; |
| |
| if (!tls1_lookup_md(ctx, lu, &md)) |
| return 0; |
| if (md != NULL) |
| { |
| int md_type = EVP_MD_get_type(md); |
| |
| /* Security bits: half digest bits */ |
| secbits = EVP_MD_get_size(md) * 4; |
| /* |
| * SHA1 and MD5 are known to be broken. Reduce security bits so that |
| * they're no longer accepted at security level 1. The real values don't |
| * really matter as long as they're lower than 80, which is our |
| * security level 1. |
| * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for |
| * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2 |
| * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf |
| * puts a chosen-prefix attack for MD5 at 2^39. |
| */ |
| if (md_type == NID_sha1) |
| secbits = 64; |
| else if (md_type == NID_md5_sha1) |
| secbits = 67; |
| else if (md_type == NID_md5) |
| secbits = 39; |
| } else { |
| /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */ |
| if (lu->sigalg == TLSEXT_SIGALG_ed25519) |
| secbits = 128; |
| else if (lu->sigalg == TLSEXT_SIGALG_ed448) |
| secbits = 224; |
| } |
| return secbits; |
| } |
| |
| /* |
| * Check signature algorithm is consistent with sent supported signature |
| * algorithms and if so set relevant digest and signature scheme in |
| * s. |
| */ |
| int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey) |
| { |
| const uint16_t *sent_sigs; |
| const EVP_MD *md = NULL; |
| char sigalgstr[2]; |
| size_t sent_sigslen, i, cidx; |
| int pkeyid = -1; |
| const SIGALG_LOOKUP *lu; |
| int secbits = 0; |
| |
| pkeyid = EVP_PKEY_get_id(pkey); |
| /* Should never happen */ |
| if (pkeyid == -1) |
| return -1; |
| if (SSL_IS_TLS13(s)) { |
| /* Disallow DSA for TLS 1.3 */ |
| if (pkeyid == EVP_PKEY_DSA) { |
| SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); |
| return 0; |
| } |
| /* Only allow PSS for TLS 1.3 */ |
| if (pkeyid == EVP_PKEY_RSA) |
| pkeyid = EVP_PKEY_RSA_PSS; |
| } |
| lu = tls1_lookup_sigalg(s, sig); |
| /* |
| * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type |
| * is consistent with signature: RSA keys can be used for RSA-PSS |
| */ |
| if (lu == NULL |
| || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224)) |
| || (pkeyid != lu->sig |
| && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) { |
| SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); |
| return 0; |
| } |
| /* Check the sigalg is consistent with the key OID */ |
| if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx) |
| || lu->sig_idx != (int)cidx) { |
| SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); |
| return 0; |
| } |
| |
| if (pkeyid == EVP_PKEY_EC) { |
| |
| /* Check point compression is permitted */ |
| if (!tls1_check_pkey_comp(s, pkey)) { |
| SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, |
| SSL_R_ILLEGAL_POINT_COMPRESSION); |
| return 0; |
| } |
| |
| /* For TLS 1.3 or Suite B check curve matches signature algorithm */ |
| if (SSL_IS_TLS13(s) || tls1_suiteb(s)) { |
| int curve = ssl_get_EC_curve_nid(pkey); |
| |
| if (lu->curve != NID_undef && curve != lu->curve) { |
| SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE); |
| return 0; |
| } |
| } |
| if (!SSL_IS_TLS13(s)) { |
| /* Check curve matches extensions */ |
| if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) { |
| SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE); |
| return 0; |
| } |
| if (tls1_suiteb(s)) { |
| /* Check sigalg matches a permissible Suite B value */ |
| if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256 |
| && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) { |
| SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, |
| SSL_R_WRONG_SIGNATURE_TYPE); |
| return 0; |
| } |
| } |
| } |
| } else if (tls1_suiteb(s)) { |
| SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE); |
| return 0; |
| } |
| |
| /* Check signature matches a type we sent */ |
| sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); |
| for (i = 0; i < sent_sigslen; i++, sent_sigs++) { |
| if (sig == *sent_sigs) |
| break; |
| } |
| /* Allow fallback to SHA1 if not strict mode */ |
| if (i == sent_sigslen && (lu->hash != NID_sha1 |
| || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { |
| SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE); |
| return 0; |
| } |
| if (!tls1_lookup_md(s->ctx, lu, &md)) { |
| SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST); |
| return 0; |
| } |
| /* |
| * Make sure security callback allows algorithm. For historical |
| * reasons we have to pass the sigalg as a two byte char array. |
| */ |
| sigalgstr[0] = (sig >> 8) & 0xff; |
| sigalgstr[1] = sig & 0xff; |
| secbits = sigalg_security_bits(s->ctx, lu); |
| if (secbits == 0 || |
| !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits, |
| md != NULL ? EVP_MD_get_type(md) : NID_undef, |
| (void *)sigalgstr)) { |
| SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE); |
| return 0; |
| } |
| /* Store the sigalg the peer uses */ |
| s->s3.tmp.peer_sigalg = lu; |
| return 1; |
| } |
| |
| int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid) |
| { |
| if (s->s3.tmp.peer_sigalg == NULL) |
| return 0; |
| *pnid = s->s3.tmp.peer_sigalg->sig; |
| return 1; |
| } |
| |
| int SSL_get_signature_type_nid(const SSL *s, int *pnid) |
| { |
| if (s->s3.tmp.sigalg == NULL) |
| return 0; |
| *pnid = s->s3.tmp.sigalg->sig; |
| return 1; |
| } |
| |
| /* |
| * Set a mask of disabled algorithms: an algorithm is disabled if it isn't |
| * supported, doesn't appear in supported signature algorithms, isn't supported |
| * by the enabled protocol versions or by the security level. |
| * |
| * This function should only be used for checking which ciphers are supported |
| * by the client. |
| * |
| * Call ssl_cipher_disabled() to check that it's enabled or not. |
| */ |
| int ssl_set_client_disabled(SSL *s) |
| { |
| s->s3.tmp.mask_a = 0; |
| s->s3.tmp.mask_k = 0; |
| ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK); |
| if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver, |
| &s->s3.tmp.max_ver, NULL) != 0) |
| return 0; |
| #ifndef OPENSSL_NO_PSK |
| /* with PSK there must be client callback set */ |
| if (!s->psk_client_callback) { |
| s->s3.tmp.mask_a |= SSL_aPSK; |
| s->s3.tmp.mask_k |= SSL_PSK; |
| } |
| #endif /* OPENSSL_NO_PSK */ |
| #ifndef OPENSSL_NO_SRP |
| if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) { |
| s->s3.tmp.mask_a |= SSL_aSRP; |
| s->s3.tmp.mask_k |= SSL_kSRP; |
| } |
| #endif |
| return 1; |
| } |
| |
| /* |
| * ssl_cipher_disabled - check that a cipher is disabled or not |
| * @s: SSL connection that you want to use the cipher on |
| * @c: cipher to check |
| * @op: Security check that you want to do |
| * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3 |
| * |
| * Returns 1 when it's disabled, 0 when enabled. |
| */ |
| int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe) |
| { |
| if (c->algorithm_mkey & s->s3.tmp.mask_k |
| || c->algorithm_auth & s->s3.tmp.mask_a) |
| return 1; |
| if (s->s3.tmp.max_ver == 0) |
| return 1; |
| if (!SSL_IS_DTLS(s)) { |
| int min_tls = c->min_tls; |
| |
| /* |
| * For historical reasons we will allow ECHDE to be selected by a server |
| * in SSLv3 if we are a client |
| */ |
| if (min_tls == TLS1_VERSION && ecdhe |
| && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0) |
| min_tls = SSL3_VERSION; |
| |
| if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver)) |
| return 1; |
| } |
| if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver) |
| || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver))) |
| return 1; |
| |
| return !ssl_security(s, op, c->strength_bits, 0, (void *)c); |
| } |
| |
| int tls_use_ticket(SSL *s) |
| { |
| if ((s->options & SSL_OP_NO_TICKET)) |
| return 0; |
| return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL); |
| } |
| |
| int tls1_set_server_sigalgs(SSL *s) |
| { |
| size_t i; |
| |
| /* Clear any shared signature algorithms */ |
| OPENSSL_free(s->shared_sigalgs); |
| s->shared_sigalgs = NULL; |
| s->shared_sigalgslen = 0; |
| /* Clear certificate validity flags */ |
| for (i = 0; i < SSL_PKEY_NUM; i++) |
| s->s3.tmp.valid_flags[i] = 0; |
| /* |
| * If peer sent no signature algorithms check to see if we support |
| * the default algorithm for each certificate type |
| */ |
| if (s->s3.tmp.peer_cert_sigalgs == NULL |
| && s->s3.tmp.peer_sigalgs == NULL) { |
| const uint16_t *sent_sigs; |
| size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); |
| |
| for (i = 0; i < SSL_PKEY_NUM; i++) { |
| const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i); |
| size_t j; |
| |
| if (lu == NULL) |
| continue; |
| /* Check default matches a type we sent */ |
| for (j = 0; j < sent_sigslen; j++) { |
| if (lu->sigalg == sent_sigs[j]) { |
| s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN; |
| break; |
| } |
| } |
| } |
| return 1; |
| } |
| |
| if (!tls1_process_sigalgs(s)) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| if (s->shared_sigalgs != NULL) |
| return 1; |
| |
| /* Fatal error if no shared signature algorithms */ |
| SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, |
| SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS); |
| return 0; |
| } |
| |
| /*- |
| * Gets the ticket information supplied by the client if any. |
| * |
| * hello: The parsed ClientHello data |
| * ret: (output) on return, if a ticket was decrypted, then this is set to |
| * point to the resulting session. |
| */ |
| SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello, |
| SSL_SESSION **ret) |
| { |
| size_t size; |
| RAW_EXTENSION *ticketext; |
| |
| *ret = NULL; |
| s->ext.ticket_expected = 0; |
| |
| /* |
| * If tickets disabled or not supported by the protocol version |
| * (e.g. TLSv1.3) behave as if no ticket present to permit stateful |
| * resumption. |
| */ |
| if (s->version <= SSL3_VERSION || !tls_use_ticket(s)) |
| return SSL_TICKET_NONE; |
| |
| ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket]; |
| if (!ticketext->present) |
| return SSL_TICKET_NONE; |
| |
| size = PACKET_remaining(&ticketext->data); |
| |
| return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size, |
| hello->session_id, hello->session_id_len, ret); |
| } |
| |
| /*- |
| * tls_decrypt_ticket attempts to decrypt a session ticket. |
| * |
| * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are |
| * expecting a pre-shared key ciphersuite, in which case we have no use for |
| * session tickets and one will never be decrypted, nor will |
| * s->ext.ticket_expected be set to 1. |
| * |
| * Side effects: |
| * Sets s->ext.ticket_expected to 1 if the server will have to issue |
| * a new session ticket to the client because the client indicated support |
| * (and s->tls_session_secret_cb is NULL) but the client either doesn't have |
| * a session ticket or we couldn't use the one it gave us, or if |
| * s->ctx->ext.ticket_key_cb asked to renew the client's ticket. |
| * Otherwise, s->ext.ticket_expected is set to 0. |
| * |
| * etick: points to the body of the session ticket extension. |
| * eticklen: the length of the session tickets extension. |
| * sess_id: points at the session ID. |
| * sesslen: the length of the session ID. |
| * psess: (output) on return, if a ticket was decrypted, then this is set to |
| * point to the resulting session. |
| */ |
| SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, |
| size_t eticklen, const unsigned char *sess_id, |
| size_t sesslen, SSL_SESSION **psess) |
| { |
| SSL_SESSION *sess = NULL; |
| unsigned char *sdec; |
| const unsigned char *p; |
| int slen, renew_ticket = 0, declen; |
| SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER; |
| size_t mlen; |
| unsigned char tick_hmac[EVP_MAX_MD_SIZE]; |
| SSL_HMAC *hctx = NULL; |
| EVP_CIPHER_CTX *ctx = NULL; |
| SSL_CTX *tctx = s->session_ctx; |
| |
| if (eticklen == 0) { |
| /* |
| * The client will accept a ticket but doesn't currently have |
| * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3 |
| */ |
| ret = SSL_TICKET_EMPTY; |
| goto end; |
| } |
| if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) { |
| /* |
| * Indicate that the ticket couldn't be decrypted rather than |
| * generating the session from ticket now, trigger |
| * abbreviated handshake based on external mechanism to |
| * calculate the master secret later. |
| */ |
| ret = SSL_TICKET_NO_DECRYPT; |
| goto end; |
| } |
| |
| /* Need at least keyname + iv */ |
| if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) { |
| ret = SSL_TICKET_NO_DECRYPT; |
| goto end; |
| } |
| |
| /* Initialize session ticket encryption and HMAC contexts */ |
| hctx = ssl_hmac_new(tctx); |
| if (hctx == NULL) { |
| ret = SSL_TICKET_FATAL_ERR_MALLOC; |
| goto end; |
| } |
| ctx = EVP_CIPHER_CTX_new(); |
| if (ctx == NULL) { |
| ret = SSL_TICKET_FATAL_ERR_MALLOC; |
| goto end; |
| } |
| #ifndef OPENSSL_NO_DEPRECATED_3_0 |
| if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL) |
| #else |
| if (tctx->ext.ticket_key_evp_cb != NULL) |
| #endif |
| { |
| unsigned char *nctick = (unsigned char *)etick; |
| int rv = 0; |
| |
| if (tctx->ext.ticket_key_evp_cb != NULL) |
| rv = tctx->ext.ticket_key_evp_cb(s, nctick, |
| nctick + TLSEXT_KEYNAME_LENGTH, |
| ctx, |
| ssl_hmac_get0_EVP_MAC_CTX(hctx), |
| 0); |
| #ifndef OPENSSL_NO_DEPRECATED_3_0 |
| else if (tctx->ext.ticket_key_cb != NULL) |
| /* if 0 is returned, write an empty ticket */ |
| rv = tctx->ext.ticket_key_cb(s, nctick, |
| nctick + TLSEXT_KEYNAME_LENGTH, |
| ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0); |
| #endif |
| if (rv < 0) { |
| ret = SSL_TICKET_FATAL_ERR_OTHER; |
| goto end; |
| } |
| if (rv == 0) { |
| ret = SSL_TICKET_NO_DECRYPT; |
| goto end; |
| } |
| if (rv == 2) |
| renew_ticket = 1; |
| } else { |
| EVP_CIPHER *aes256cbc = NULL; |
| |
| /* Check key name matches */ |
| if (memcmp(etick, tctx->ext.tick_key_name, |
| TLSEXT_KEYNAME_LENGTH) != 0) { |
| ret = SSL_TICKET_NO_DECRYPT; |
| goto end; |
| } |
| |
| aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC", |
| s->ctx->propq); |
| if (aes256cbc == NULL |
| || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key, |
| sizeof(tctx->ext.secure->tick_hmac_key), |
| "SHA256") <= 0 |
| || EVP_DecryptInit_ex(ctx, aes256cbc, NULL, |
| tctx->ext.secure->tick_aes_key, |
| etick + TLSEXT_KEYNAME_LENGTH) <= 0) { |
| EVP_CIPHER_free(aes256cbc); |
| ret = SSL_TICKET_FATAL_ERR_OTHER; |
| goto end; |
| } |
| EVP_CIPHER_free(aes256cbc); |
| if (SSL_IS_TLS13(s)) |
| renew_ticket = 1; |
| } |
| /* |
| * Attempt to process session ticket, first conduct sanity and integrity |
| * checks on ticket. |
| */ |
| mlen = ssl_hmac_size(hctx); |
| if (mlen == 0) { |
| ret = SSL_TICKET_FATAL_ERR_OTHER; |
| goto end; |
| } |
| |
| /* Sanity check ticket length: must exceed keyname + IV + HMAC */ |
| if (eticklen <= |
| TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_get_iv_length(ctx) + mlen) { |
| ret = SSL_TICKET_NO_DECRYPT; |
| goto end; |
| } |
| eticklen -= mlen; |
| /* Check HMAC of encrypted ticket */ |
| if (ssl_hmac_update(hctx, etick, eticklen) <= 0 |
| || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) { |
| ret = SSL_TICKET_FATAL_ERR_OTHER; |
| goto end; |
| } |
| |
| if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) { |
| ret = SSL_TICKET_NO_DECRYPT; |
| goto end; |
| } |
| /* Attempt to decrypt session data */ |
| /* Move p after IV to start of encrypted ticket, update length */ |
| p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_get_iv_length(ctx); |
| eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_get_iv_length(ctx); |
| sdec = OPENSSL_malloc(eticklen); |
| if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, |
| (int)eticklen) <= 0) { |
| OPENSSL_free(sdec); |
| ret = SSL_TICKET_FATAL_ERR_OTHER; |
| goto end; |
| } |
| if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) { |
| OPENSSL_free(sdec); |
| ret = SSL_TICKET_NO_DECRYPT; |
| goto end; |
| } |
| slen += declen; |
| p = sdec; |
| |
| sess = d2i_SSL_SESSION(NULL, &p, slen); |
| slen -= p - sdec; |
| OPENSSL_free(sdec); |
| if (sess) { |
| /* Some additional consistency checks */ |
| if (slen != 0) { |
| SSL_SESSION_free(sess); |
| sess = NULL; |
| ret = SSL_TICKET_NO_DECRYPT; |
| goto end; |
| } |
| /* |
| * The session ID, if non-empty, is used by some clients to detect |
| * that the ticket has been accepted. So we copy it to the session |
| * structure. If it is empty set length to zero as required by |
| * standard. |
| */ |
| if (sesslen) { |
| memcpy(sess->session_id, sess_id, sesslen); |
| sess->session_id_length = sesslen; |
| } |
| if (renew_ticket) |
| ret = SSL_TICKET_SUCCESS_RENEW; |
| else |
| ret = SSL_TICKET_SUCCESS; |
| goto end; |
| } |
| ERR_clear_error(); |
| /* |
| * For session parse failure, indicate that we need to send a new ticket. |
| */ |
| ret = SSL_TICKET_NO_DECRYPT; |
| |
| end: |
| EVP_CIPHER_CTX_free(ctx); |
| ssl_hmac_free(hctx); |
| |
| /* |
| * If set, the decrypt_ticket_cb() is called unless a fatal error was |
| * detected above. The callback is responsible for checking |ret| before it |
| * performs any action |
| */ |
| if (s->session_ctx->decrypt_ticket_cb != NULL |
| && (ret == SSL_TICKET_EMPTY |
| || ret == SSL_TICKET_NO_DECRYPT |
| || ret == SSL_TICKET_SUCCESS |
| || ret == SSL_TICKET_SUCCESS_RENEW)) { |
| size_t keyname_len = eticklen; |
| int retcb; |
| |
| if (keyname_len > TLSEXT_KEYNAME_LENGTH) |
| keyname_len = TLSEXT_KEYNAME_LENGTH; |
| retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len, |
| ret, |
| s->session_ctx->ticket_cb_data); |
| switch (retcb) { |
| case SSL_TICKET_RETURN_ABORT: |
| ret = SSL_TICKET_FATAL_ERR_OTHER; |
| break; |
| |
| case SSL_TICKET_RETURN_IGNORE: |
| ret = SSL_TICKET_NONE; |
| SSL_SESSION_free(sess); |
| sess = NULL; |
| break; |
| |
| case SSL_TICKET_RETURN_IGNORE_RENEW: |
| if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT) |
| ret = SSL_TICKET_NO_DECRYPT; |
| /* else the value of |ret| will already do the right thing */ |
| SSL_SESSION_free(sess); |
| sess = NULL; |
| break; |
| |
| case SSL_TICKET_RETURN_USE: |
| case SSL_TICKET_RETURN_USE_RENEW: |
| if (ret != SSL_TICKET_SUCCESS |
| && ret != SSL_TICKET_SUCCESS_RENEW) |
| ret = SSL_TICKET_FATAL_ERR_OTHER; |
| else if (retcb == SSL_TICKET_RETURN_USE) |
| ret = SSL_TICKET_SUCCESS; |
| else |
| ret = SSL_TICKET_SUCCESS_RENEW; |
| break; |
| |
| default: |
| ret = SSL_TICKET_FATAL_ERR_OTHER; |
| } |
| } |
| |
| if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) { |
| switch (ret) { |
| case SSL_TICKET_NO_DECRYPT: |
| case SSL_TICKET_SUCCESS_RENEW: |
| case SSL_TICKET_EMPTY: |
| s->ext.ticket_expected = 1; |
| } |
| } |
| |
| *psess = sess; |
| |
| return ret; |
| } |
| |
| /* Check to see if a signature algorithm is allowed */ |
| static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu) |
| { |
| unsigned char sigalgstr[2]; |
| int secbits; |
| |
| if (lu == NULL || !lu->enabled) |
| return 0; |
| /* DSA is not allowed in TLS 1.3 */ |
| if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA) |
| return 0; |
| /* |
| * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3 |
| * spec |
| */ |
| if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION |
| && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX |
| || lu->hash_idx == SSL_MD_MD5_IDX |
| || lu->hash_idx == SSL_MD_SHA224_IDX)) |
| return 0; |
| |
| /* See if public key algorithm allowed */ |
| if (ssl_cert_is_disabled(s->ctx, lu->sig_idx)) |
| return 0; |
| |
| if (lu->sig == NID_id_GostR3410_2012_256 |
| || lu->sig == NID_id_GostR3410_2012_512 |
| || lu->sig == NID_id_GostR3410_2001) { |
| /* We never allow GOST sig algs on the server with TLSv1.3 */ |
| if (s->server && SSL_IS_TLS13(s)) |
| return 0; |
| if (!s->server |
| && s->method->version == TLS_ANY_VERSION |
| && s->s3.tmp.max_ver >= TLS1_3_VERSION) { |
| int i, num; |
| STACK_OF(SSL_CIPHER) *sk; |
| |
| /* |
| * We're a client that could negotiate TLSv1.3. We only allow GOST |
| * sig algs if we could negotiate TLSv1.2 or below and we have GOST |
| * ciphersuites enabled. |
| */ |
| |
| if (s->s3.tmp.min_ver >= TLS1_3_VERSION) |
| return 0; |
| |
| sk = SSL_get_ciphers(s); |
| num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0; |
| for (i = 0; i < num; i++) { |
| const SSL_CIPHER *c; |
| |
| c = sk_SSL_CIPHER_value(sk, i); |
| /* Skip disabled ciphers */ |
| if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) |
| continue; |
| |
| if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0) |
| break; |
| } |
| if (i == num) |
| return 0; |
| } |
| } |
| |
| /* Finally see if security callback allows it */ |
| secbits = sigalg_security_bits(s->ctx, lu); |
| sigalgstr[0] = (lu->sigalg >> 8) & 0xff; |
| sigalgstr[1] = lu->sigalg & 0xff; |
| return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr); |
| } |
| |
| /* |
| * Get a mask of disabled public key algorithms based on supported signature |
| * algorithms. For example if no signature algorithm supports RSA then RSA is |
| * disabled. |
| */ |
| |
| void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op) |
| { |
| const uint16_t *sigalgs; |
| size_t i, sigalgslen; |
| uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA; |
| /* |
| * Go through all signature algorithms seeing if we support any |
| * in disabled_mask. |
| */ |
| sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs); |
| for (i = 0; i < sigalgslen; i++, sigalgs++) { |
| const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs); |
| const SSL_CERT_LOOKUP *clu; |
| |
| if (lu == NULL) |
| continue; |
| |
| clu = ssl_cert_lookup_by_idx(lu->sig_idx); |
| if (clu == NULL) |
| continue; |
| |
| /* If algorithm is disabled see if we can enable it */ |
| if ((clu->amask & disabled_mask) != 0 |
| && tls12_sigalg_allowed(s, op, lu)) |
| disabled_mask &= ~clu->amask; |
| } |
| *pmask_a |= disabled_mask; |
| } |
| |
| int tls12_copy_sigalgs(SSL *s, WPACKET *pkt, |
| const uint16_t *psig, size_t psiglen) |
| { |
| size_t i; |
| int rv = 0; |
| |
| for (i = 0; i < psiglen; i++, psig++) { |
| const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig); |
| |
| if (lu == NULL |
| || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu)) |
| continue; |
| if (!WPACKET_put_bytes_u16(pkt, *psig)) |
| return 0; |
| /* |
| * If TLS 1.3 must have at least one valid TLS 1.3 message |
| * signing algorithm: i.e. neither RSA nor SHA1/SHA224 |
| */ |
| if (rv == 0 && (!SSL_IS_TLS13(s) |
| || (lu->sig != EVP_PKEY_RSA |
| && lu->hash != NID_sha1 |
| && lu->hash != NID_sha224))) |
| rv = 1; |
| } |
| if (rv == 0) |
| ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); |
| return rv; |
| } |
| |
| /* Given preference and allowed sigalgs set shared sigalgs */ |
| static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig, |
| const uint16_t *pref, size_t preflen, |
| const uint16_t *allow, size_t allowlen) |
| { |
| const uint16_t *ptmp, *atmp; |
| size_t i, j, nmatch = 0; |
| for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) { |
| const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp); |
| |
| /* Skip disabled hashes or signature algorithms */ |
| if (lu == NULL |
| || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu)) |
| continue; |
| for (j = 0, atmp = allow; j < allowlen; j++, atmp++) { |
| if (*ptmp == *atmp) { |
| nmatch++; |
| if (shsig) |
| *shsig++ = lu; |
| break; |
| } |
| } |
| } |
| return nmatch; |
| } |
| |
| /* Set shared signature algorithms for SSL structures */ |
| static int tls1_set_shared_sigalgs(SSL *s) |
| { |
| const uint16_t *pref, *allow, *conf; |
| size_t preflen, allowlen, conflen; |
| size_t nmatch; |
| const SIGALG_LOOKUP **salgs = NULL; |
| CERT *c = s->cert; |
| unsigned int is_suiteb = tls1_suiteb(s); |
| |
| OPENSSL_free(s->shared_sigalgs); |
| s->shared_sigalgs = NULL; |
| s->shared_sigalgslen = 0; |
| /* If client use client signature algorithms if not NULL */ |
| if (!s->server && c->client_sigalgs && !is_suiteb) { |
| conf = c->client_sigalgs; |
| conflen = c->client_sigalgslen; |
| } else if (c->conf_sigalgs && !is_suiteb) { |
| conf = c->conf_sigalgs; |
| conflen = c->conf_sigalgslen; |
| } else |
| conflen = tls12_get_psigalgs(s, 0, &conf); |
| if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) { |
| pref = conf; |
| preflen = conflen; |
| allow = s->s3.tmp.peer_sigalgs; |
| allowlen = s->s3.tmp.peer_sigalgslen; |
| } else { |
| allow = conf; |
| allowlen = conflen; |
| pref = s->s3.tmp.peer_sigalgs; |
| preflen = s->s3.tmp.peer_sigalgslen; |
| } |
| nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen); |
| if (nmatch) { |
| if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen); |
| } else { |
| salgs = NULL; |
| } |
| s->shared_sigalgs = salgs; |
| s->shared_sigalgslen = nmatch; |
| return 1; |
| } |
| |
| int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen) |
| { |
| unsigned int stmp; |
| size_t size, i; |
| uint16_t *buf; |
| |
| size = PACKET_remaining(pkt); |
| |
| /* Invalid data length */ |
| if (size == 0 || (size & 1) != 0) |
| return 0; |
| |
| size >>= 1; |
| |
| if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++) |
| buf[i] = stmp; |
| |
| if (i != size) { |
| OPENSSL_free(buf); |
| return 0; |
| } |
| |
| OPENSSL_free(*pdest); |
| *pdest = buf; |
| *pdestlen = size; |
| |
| return 1; |
| } |
| |
| int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert) |
| { |
| /* Extension ignored for inappropriate versions */ |
| if (!SSL_USE_SIGALGS(s)) |
| return 1; |
| /* Should never happen */ |
| if (s->cert == NULL) |
| return 0; |
| |
| if (cert) |
| return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs, |
| &s->s3.tmp.peer_cert_sigalgslen); |
| else |
| return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs, |
| &s->s3.tmp.peer_sigalgslen); |
| |
| } |
| |
| /* Set preferred digest for each key type */ |
| |
| int tls1_process_sigalgs(SSL *s) |
| { |
| size_t i; |
| uint32_t *pvalid = s->s3.tmp.valid_flags; |
| |
| if (!tls1_set_shared_sigalgs(s)) |
| return 0; |
| |
| for (i = 0; i < SSL_PKEY_NUM; i++) |
| pvalid[i] = 0; |
| |
| for (i = 0; i < s->shared_sigalgslen; i++) { |
| const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i]; |
| int idx = sigptr->sig_idx; |
| |
| /* Ignore PKCS1 based sig algs in TLSv1.3 */ |
| if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA) |
| continue; |
| /* If not disabled indicate we can explicitly sign */ |
| if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx)) |
| pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; |
| } |
| return 1; |
| } |
| |
| int SSL_get_sigalgs(SSL *s, int idx, |
| int *psign, int *phash, int *psignhash, |
| unsigned char *rsig, unsigned char *rhash) |
| { |
| uint16_t *psig = s->s3.tmp.peer_sigalgs; |
| size_t numsigalgs = s->s3.tmp.peer_sigalgslen; |
| if (psig == NULL || numsigalgs > INT_MAX) |
| return 0; |
| if (idx >= 0) { |
| const SIGALG_LOOKUP *lu; |
| |
| if (idx >= (int)numsigalgs) |
| return 0; |
| psig += idx; |
| if (rhash != NULL) |
| *rhash = (unsigned char)((*psig >> 8) & 0xff); |
| if (rsig != NULL) |
| *rsig = (unsigned char)(*psig & 0xff); |
| lu = tls1_lookup_sigalg(s, *psig); |
| if (psign != NULL) |
| *psign = lu != NULL ? lu->sig : NID_undef; |
| if (phash != NULL) |
| *phash = lu != NULL ? lu->hash : NID_undef; |
| if (psignhash != NULL) |
| *psignhash = lu != NULL ? lu->sigandhash : NID_undef; |
| } |
| return (int)numsigalgs; |
| } |
| |
| int SSL_get_shared_sigalgs(SSL *s, int idx, |
| int *psign, int *phash, int *psignhash, |
| unsigned char *rsig, unsigned char *rhash) |
| { |
| const SIGALG_LOOKUP *shsigalgs; |
| if (s->shared_sigalgs == NULL |
| || idx < 0 |
| || idx >= (int)s->shared_sigalgslen |
| || s->shared_sigalgslen > INT_MAX) |
| return 0; |
| shsigalgs = s->shared_sigalgs[idx]; |
| if (phash != NULL) |
| *phash = shsigalgs->hash; |
| if (psign != NULL) |
| *psign = shsigalgs->sig; |
| if (psignhash != NULL) |
| *psignhash = shsigalgs->sigandhash; |
| if (rsig != NULL) |
| *rsig = (unsigned char)(shsigalgs->sigalg & 0xff); |
| if (rhash != NULL) |
| *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff); |
| return (int)s->shared_sigalgslen; |
| } |
| |
| /* Maximum possible number of unique entries in sigalgs array */ |
| #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2) |
| |
| typedef struct { |
| size_t sigalgcnt; |
| /* TLSEXT_SIGALG_XXX values */ |
| uint16_t sigalgs[TLS_MAX_SIGALGCNT]; |
| } sig_cb_st; |
| |
| static void get_sigorhash(int *psig, int *phash, const char *str) |
| { |
| if (strcmp(str, "RSA") == 0) { |
| *psig = EVP_PKEY_RSA; |
| } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) { |
| *psig = EVP_PKEY_RSA_PSS; |
| } else if (strcmp(str, "DSA") == 0) { |
| *psig = EVP_PKEY_DSA; |
| } else if (strcmp(str, "ECDSA") == 0) { |
| *psig = EVP_PKEY_EC; |
| } else { |
| *phash = OBJ_sn2nid(str); |
| if (*phash == NID_undef) |
| *phash = OBJ_ln2nid(str); |
| } |
| } |
| /* Maximum length of a signature algorithm string component */ |
| #define TLS_MAX_SIGSTRING_LEN 40 |
| |
| static int sig_cb(const char *elem, int len, void *arg) |
| { |
| sig_cb_st *sarg = arg; |
| size_t i; |
| const SIGALG_LOOKUP *s; |
| char etmp[TLS_MAX_SIGSTRING_LEN], *p; |
| int sig_alg = NID_undef, hash_alg = NID_undef; |
| if (elem == NULL) |
| return 0; |
| if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT) |
| return 0; |
| if (len > (int)(sizeof(etmp) - 1)) |
| return 0; |
| memcpy(etmp, elem, len); |
| etmp[len] = 0; |
| p = strchr(etmp, '+'); |
| /* |
| * We only allow SignatureSchemes listed in the sigalg_lookup_tbl; |
| * if there's no '+' in the provided name, look for the new-style combined |
| * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP. |
| * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and |
| * rsa_pss_rsae_* that differ only by public key OID; in such cases |
| * we will pick the _rsae_ variant, by virtue of them appearing earlier |
| * in the table. |
| */ |
| if (p == NULL) { |
| for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); |
| i++, s++) { |
| if (s->name != NULL && strcmp(etmp, s->name) == 0) { |
| sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; |
| break; |
| } |
| } |
| if (i == OSSL_NELEM(sigalg_lookup_tbl)) |
| return 0; |
| } else { |
| *p = 0; |
| p++; |
| if (*p == 0) |
| return 0; |
| get_sigorhash(&sig_alg, &hash_alg, etmp); |
| get_sigorhash(&sig_alg, &hash_alg, p); |
| if (sig_alg == NID_undef || hash_alg == NID_undef) |
| return 0; |
| for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); |
| i++, s++) { |
| if (s->hash == hash_alg && s->sig == sig_alg) { |
| sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; |
| break; |
| } |
| } |
| if (i == OSSL_NELEM(sigalg_lookup_tbl)) |
| return 0; |
| } |
| |
| /* Reject duplicates */ |
| for (i = 0; i < sarg->sigalgcnt - 1; i++) { |
| if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) { |
| sarg->sigalgcnt--; |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| /* |
| * Set supported signature algorithms based on a colon separated list of the |
| * form sig+hash e.g. RSA+SHA512:DSA+SHA512 |
| */ |
| int tls1_set_sigalgs_list(CERT *c, const char *str, int client) |
| { |
| sig_cb_st sig; |
| sig.sigalgcnt = 0; |
| if (!CONF_parse_list(str, ':', 1, sig_cb, &sig)) |
| return 0; |
| if (c == NULL) |
| return 1; |
| return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client); |
| } |
| |
| int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen, |
| int client) |
| { |
| uint16_t *sigalgs; |
| |
| if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs)); |
| |
| if (client) { |
| OPENSSL_free(c->client_sigalgs); |
| c->client_sigalgs = sigalgs; |
| c->client_sigalgslen = salglen; |
| } else { |
| OPENSSL_free(c->conf_sigalgs); |
| c->conf_sigalgs = sigalgs; |
| c->conf_sigalgslen = salglen; |
| } |
| |
| return 1; |
| } |
| |
| int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client) |
| { |
| uint16_t *sigalgs, *sptr; |
| size_t i; |
| |
| if (salglen & 1) |
| return 0; |
| if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) { |
| ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| for (i = 0, sptr = sigalgs; i < salglen; i += 2) { |
| size_t j; |
| const SIGALG_LOOKUP *curr; |
| int md_id = *psig_nids++; |
| int sig_id = *psig_nids++; |
| |
| for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl); |
| j++, curr++) { |
| if (curr->hash == md_id && curr->sig == sig_id) { |
| *sptr++ = curr->sigalg; |
| break; |
| } |
| } |
| |
| if (j == OSSL_NELEM(sigalg_lookup_tbl)) |
| goto err; |
| } |
| |
| if (client) { |
| OPENSSL_free(c->client_sigalgs); |
| c->client_sigalgs = sigalgs; |
| c->client_sigalgslen = salglen / 2; |
| } else { |
| OPENSSL_free(c->conf_sigalgs); |
| c->conf_sigalgs = sigalgs; |
| c->conf_sigalgslen = salglen / 2; |
| } |
| |
| return 1; |
| |
| err: |
| OPENSSL_free(sigalgs); |
| return 0; |
| } |
| |
| static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid) |
| { |
| int sig_nid, use_pc_sigalgs = 0; |
| size_t i; |
| const SIGALG_LOOKUP *sigalg; |
| size_t sigalgslen; |
| if (default_nid == -1) |
| return 1; |
| sig_nid = X509_get_signature_nid(x); |
| if (default_nid) |
| return sig_nid == default_nid ? 1 : 0; |
| |
| if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) { |
| /* |
| * If we're in TLSv1.3 then we only get here if we're checking the |
| * chain. If the peer has specified peer_cert_sigalgs then we use them |
| * otherwise we default to normal sigalgs. |
| */ |
| sigalgslen = s->s3.tmp.peer_cert_sigalgslen; |
| use_pc_sigalgs = 1; |
| } else { |
| sigalgslen = s->shared_sigalgslen; |
| } |
| for (i = 0; i < sigalgslen; i++) { |
| sigalg = use_pc_sigalgs |
| ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]) |
| : s->shared_sigalgs[i]; |
| if (sigalg != NULL && sig_nid == sigalg->sigandhash) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Check to see if a certificate issuer name matches list of CA names */ |
| static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x) |
| { |
| const X509_NAME *nm; |
| int i; |
| nm = X509_get_issuer_name(x); |
| for (i = 0; i < sk_X509_NAME_num(names); i++) { |
| if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i))) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Check certificate chain is consistent with TLS extensions and is usable by |
| * server. This servers two purposes: it allows users to check chains before |
| * passing them to the server and it allows the server to check chains before |
| * attempting to use them. |
| */ |
| |
| /* Flags which need to be set for a certificate when strict mode not set */ |
| |
| #define CERT_PKEY_VALID_FLAGS \ |
| (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM) |
| /* Strict mode flags */ |
| #define CERT_PKEY_STRICT_FLAGS \ |
| (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \ |
| | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE) |
| |
| int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, |
| int idx) |
| { |
| int i; |
| int rv = 0; |
| int check_flags = 0, strict_mode; |
| CERT_PKEY *cpk = NULL; |
| CERT *c = s->cert; |
| uint32_t *pvalid; |
| unsigned int suiteb_flags = tls1_suiteb(s); |
| /* idx == -1 means checking server chains */ |
| if (idx != -1) { |
| /* idx == -2 means checking client certificate chains */ |
| if (idx == -2) { |
| cpk = c->key; |
| idx = (int)(cpk - c->pkeys); |
| } else |
| cpk = c->pkeys + idx; |
| pvalid = s->s3.tmp.valid_flags + idx; |
| x = cpk->x509; |
| pk = cpk->privatekey; |
| chain = cpk->chain; |
| strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT; |
| /* If no cert or key, forget it */ |
| if (!x || !pk) |
| goto end; |
| } else { |
| size_t certidx; |
| |
| if (!x || !pk) |
| return 0; |
| |
| if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL) |
| return 0; |
| idx = certidx; |
| pvalid = s->s3.tmp.valid_flags + idx; |
| |
| if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT) |
| check_flags = CERT_PKEY_STRICT_FLAGS; |
| else |
| check_flags = CERT_PKEY_VALID_FLAGS; |
| strict_mode = 1; |
| } |
| |
| if (suiteb_flags) { |
| int ok; |
| if (check_flags) |
| check_flags |= CERT_PKEY_SUITEB; |
| ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags); |
| if (ok == X509_V_OK) |
| rv |= CERT_PKEY_SUITEB; |
| else if (!check_flags) |
| goto end; |
| } |
| |
| /* |
| * Check all signature algorithms are consistent with signature |
| * algorithms extension if TLS 1.2 or later and strict mode. |
| */ |
| if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) { |
| int default_nid; |
| int rsign = 0; |
| if (s->s3.tmp.peer_cert_sigalgs != NULL |
| || s->s3.tmp.peer_sigalgs != NULL) { |
| default_nid = 0; |
| /* If no sigalgs extension use defaults from RFC5246 */ |
| } else { |
| switch (idx) { |
| case SSL_PKEY_RSA: |
| rsign = EVP_PKEY_RSA; |
| default_nid = NID_sha1WithRSAEncryption; |
| break; |
| |
| case SSL_PKEY_DSA_SIGN: |
| rsign = EVP_PKEY_DSA; |
| default_nid = NID_dsaWithSHA1; |
| break; |
| |
| case SSL_PKEY_ECC: |
| rsign = EVP_PKEY_EC; |
| default_nid = NID_ecdsa_with_SHA1; |
| break; |
| |
| case SSL_PKEY_GOST01: |
| rsign = NID_id_GostR3410_2001; |
| default_nid = NID_id_GostR3411_94_with_GostR3410_2001; |
| break; |
| |
| case SSL_PKEY_GOST12_256: |
| rsign = NID_id_GostR3410_2012_256; |
| default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256; |
| break; |
| |
| case SSL_PKEY_GOST12_512: |
| rsign = NID_id_GostR3410_2012_512; |
| default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512; |
| break; |
| |
| default: |
| default_nid = -1; |
| break; |
| } |
| } |
| /* |
| * If peer sent no signature algorithms extension and we have set |
| * preferred signature algorithms check we support sha1. |
| */ |
| if (default_nid > 0 && c->conf_sigalgs) { |
| size_t j; |
| const uint16_t *p = c->conf_sigalgs; |
| for (j = 0; j < c->conf_sigalgslen; j++, p++) { |
| const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p); |
| |
| if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign) |
| break; |
| } |
| if (j == c->conf_sigalgslen) { |
| if (check_flags) |
| goto skip_sigs; |
| else |
| goto end; |
| } |
| } |
| /* Check signature algorithm of each cert in chain */ |
| if (SSL_IS_TLS13(s)) { |
| /* |
| * We only get here if the application has called SSL_check_chain(), |
| * so check_flags is always set. |
| */ |
| if (find_sig_alg(s, x, pk) != NULL) |
| rv |= CERT_PKEY_EE_SIGNATURE; |
| } else if (!tls1_check_sig_alg(s, x, default_nid)) { |
| if (!check_flags) |
| goto end; |
| } else |
| rv |= CERT_PKEY_EE_SIGNATURE; |
| rv |= CERT_PKEY_CA_SIGNATURE; |
| for (i = 0; i < sk_X509_num(chain); i++) { |
| if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) { |
| if (check_flags) { |
| rv &= ~CERT_PKEY_CA_SIGNATURE; |
| break; |
| } else |
| goto end; |
| } |
| } |
| } |
| /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */ |
| else if (check_flags) |
| rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE; |
| skip_sigs: |
| /* Check cert parameters are consistent */ |
| if (tls1_check_cert_param(s, x, 1)) |
| rv |= CERT_PKEY_EE_PARAM; |
| else if (!check_flags) |
| goto end; |
| if (!s->server) |
| rv |= CERT_PKEY_CA_PARAM; |
| /* In strict mode check rest of chain too */ |
| else if (strict_mode) { |
| rv |= CERT_PKEY_CA_PARAM; |
| for (i = 0; i < sk_X509_num(chain); i++) { |
| X509 *ca = sk_X509_value(chain, i); |
| if (!tls1_check_cert_param(s, ca, 0)) { |
| if (check_flags) { |
| rv &= ~CERT_PKEY_CA_PARAM; |
| break; |
| } else |
| goto end; |
| } |
| } |
| } |
| if (!s->server && strict_mode) { |
| STACK_OF(X509_NAME) *ca_dn; |
| int check_type = 0; |
| |
| if (EVP_PKEY_is_a(pk, "RSA")) |
| check_type = TLS_CT_RSA_SIGN; |
| else if (EVP_PKEY_is_a(pk, "DSA")) |
| check_type = TLS_CT_DSS_SIGN; |
| else if (EVP_PKEY_is_a(pk, "EC")) |
| check_type = TLS_CT_ECDSA_SIGN; |
| |
| if (check_type) { |
| const uint8_t *ctypes = s->s3.tmp.ctype; |
| size_t j; |
| |
| for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) { |
| if (*ctypes == check_type) { |
| rv |= CERT_PKEY_CERT_TYPE; |
| break; |
| } |
| } |
| if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags) |
| goto end; |
| } else { |
| rv |= CERT_PKEY_CERT_TYPE; |
| } |
| |
| ca_dn = s->s3.tmp.peer_ca_names; |
| |
| if (!sk_X509_NAME_num(ca_dn)) |
| rv |= CERT_PKEY_ISSUER_NAME; |
| |
| if (!(rv & CERT_PKEY_ISSUER_NAME)) { |
| if (ssl_check_ca_name(ca_dn, x)) |
| rv |= CERT_PKEY_ISSUER_NAME; |
| } |
| if (!(rv & CERT_PKEY_ISSUER_NAME)) { |
| for (i = 0; i < sk_X509_num(chain); i++) { |
| X509 *xtmp = sk_X509_value(chain, i); |
| if (ssl_check_ca_name(ca_dn, xtmp)) { |
| rv |= CERT_PKEY_ISSUER_NAME; |
| break; |
| } |
| } |
| } |
| if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME)) |
| goto end; |
| } else |
| rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE; |
| |
| if (!check_flags || (rv & check_flags) == check_flags) |
| rv |= CERT_PKEY_VALID; |
| |
| end: |
| |
| if (TLS1_get_version(s) >= TLS1_2_VERSION) |
| rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN); |
| else |
| rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN; |
| |
| /* |
| * When checking a CERT_PKEY structure all flags are irrelevant if the |
| * chain is invalid. |
| */ |
| if (!check_flags) { |
| if (rv & CERT_PKEY_VALID) { |
| *pvalid = rv; |
| } else { |
| /* Preserve sign and explicit sign flag, clear rest */ |
| *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; |
| return 0; |
| } |
| } |
| return rv; |
| } |
| |
| /* Set validity of certificates in an SSL structure */ |
| void tls1_set_cert_validity(SSL *s) |
| { |
| tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA); |
| tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN); |
| tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN); |
| tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC); |
| tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01); |
| tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256); |
| tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512); |
| tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519); |
| tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448); |
| } |
| |
| /* User level utility function to check a chain is suitable */ |
| int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain) |
| { |
| return tls1_check_chain(s, x, pk, chain, -1); |
| } |
| |
| EVP_PKEY *ssl_get_auto_dh(SSL *s) |
| { |
| EVP_PKEY *dhp = NULL; |
| BIGNUM *p; |
| int dh_secbits = 80, sec_level_bits; |
| EVP_PKEY_CTX *pctx = NULL; |
| OSSL_PARAM_BLD *tmpl = NULL; |
| OSSL_PARAM *params = NULL; |
| |
| if (s->cert->dh_tmp_auto != 2) { |
| if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) { |
| if (s->s3.tmp.new_cipher->strength_bits == 256) |
| dh_secbits = 128; |
| else |
| dh_secbits = 80; |
| } else { |
| if (s->s3.tmp.cert == NULL) |
| return NULL; |
| dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey); |
| } |
| } |
| |
| /* Do not pick a prime that is too weak for the current security level */ |
| sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL); |
| if (dh_secbits < sec_level_bits) |
| dh_secbits = sec_level_bits; |
| |
| if (dh_secbits >= 192) |
| p = BN_get_rfc3526_prime_8192(NULL); |
| else if (dh_secbits >= 152) |
| p = BN_get_rfc3526_prime_4096(NULL); |
| else if (dh_secbits >= 128) |
| p = BN_get_rfc3526_prime_3072(NULL); |
| else if (dh_secbits >= 112) |
| p = BN_get_rfc3526_prime_2048(NULL); |
| else |
| p = BN_get_rfc2409_prime_1024(NULL); |
| if (p == NULL) |
| goto err; |
| |
| pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq); |
| if (pctx == NULL |
| || EVP_PKEY_fromdata_init(pctx) != 1) |
| goto err; |
| |
| tmpl = OSSL_PARAM_BLD_new(); |
| if (tmpl == NULL |
| || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p) |
| || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2)) |
| goto err; |
| |
| params = OSSL_PARAM_BLD_to_param(tmpl); |
| if (params == NULL |
| || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1) |
| goto err; |
| |
| err: |
| OSSL_PARAM_free(params); |
| OSSL_PARAM_BLD_free(tmpl); |
| EVP_PKEY_CTX_free(pctx); |
| BN_free(p); |
| return dhp; |
| } |
| |
| static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op) |
| { |
| int secbits = -1; |
| EVP_PKEY *pkey = X509_get0_pubkey(x); |
| if (pkey) { |
| /* |
| * If no parameters this will return -1 and fail using the default |
| * security callback for any non-zero security level. This will |
| * reject keys which omit parameters but this only affects DSA and |
| * omission of parameters is never (?) done in practice. |
| */ |
| secbits = EVP_PKEY_get_security_bits(pkey); |
| } |
| if (s) |
| return ssl_security(s, op, secbits, 0, x); |
| else |
| return ssl_ctx_security(ctx, op, secbits, 0, x); |
| } |
| |
| static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op) |
| { |
| /* Lookup signature algorithm digest */ |
| int secbits, nid, pknid; |
| /* Don't check signature if self signed */ |
| if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0) |
| return 1; |
| if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL)) |
| secbits = -1; |
| /* If digest NID not defined use signature NID */ |
| if (nid == NID_undef) |
| nid = pknid; |
| if (s) |
| return ssl_security(s, op, secbits, nid, x); |
| else |
| return ssl_ctx_security(ctx, op, secbits, nid, x); |
| } |
| |
| int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee) |
| { |
| if (vfy) |
| vfy = SSL_SECOP_PEER; |
| if (is_ee) { |
| if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy)) |
| return SSL_R_EE_KEY_TOO_SMALL; |
| } else { |
| if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy)) |
| return SSL_R_CA_KEY_TOO_SMALL; |
| } |
| if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy)) |
| return SSL_R_CA_MD_TOO_WEAK; |
| return 1; |
| } |
| |
| /* |
| * Check security of a chain, if |sk| includes the end entity certificate then |
| * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending |
| * one to the peer. Return values: 1 if ok otherwise error code to use |
| */ |
| |
| int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy) |
| { |
| int rv, start_idx, i; |
| if (x == NULL) { |
| x = sk_X509_value(sk, 0); |
| start_idx = 1; |
| } else |
| start_idx = 0; |
| |
| rv = ssl_security_cert(s, NULL, x, vfy, 1); |
| if (rv != 1) |
| return rv; |
| |
| for (i = start_idx; i < sk_X509_num(sk); i++) { |
| x = sk_X509_value(sk, i); |
| rv = ssl_security_cert(s, NULL, x, vfy, 0); |
| if (rv != 1) |
| return rv; |
| } |
| return 1; |
| } |
| |
| /* |
| * For TLS 1.2 servers check if we have a certificate which can be used |
| * with the signature algorithm "lu" and return index of certificate. |
| */ |
| |
| static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu) |
| { |
| int sig_idx = lu->sig_idx; |
| const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx); |
| |
| /* If not recognised or not supported by cipher mask it is not suitable */ |
| if (clu == NULL |
| || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0 |
| || (clu->nid == EVP_PKEY_RSA_PSS |
| && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0)) |
| return -1; |
| |
| return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1; |
| } |
| |
| /* |
| * Checks the given cert against signature_algorithm_cert restrictions sent by |
| * the peer (if any) as well as whether the hash from the sigalg is usable with |
| * the key. |
| * Returns true if the cert is usable and false otherwise. |
| */ |
| static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, |
| EVP_PKEY *pkey) |
| { |
| const SIGALG_LOOKUP *lu; |
| int mdnid, pknid, supported; |
| size_t i; |
| const char *mdname = NULL; |
| |
| /* |
| * If the given EVP_PKEY cannot support signing with this digest, |
| * the answer is simply 'no'. |
| */ |
| if (sig->hash != NID_undef) |
| mdname = OBJ_nid2sn(sig->hash); |
| supported = EVP_PKEY_digestsign_supports_digest(pkey, s->ctx->libctx, |
| mdname, |
| s->ctx->propq); |
| if (supported <= 0) |
| return 0; |
| |
| /* |
| * The TLS 1.3 signature_algorithms_cert extension places restrictions |
| * on the sigalg with which the certificate was signed (by its issuer). |
| */ |
| if (s->s3.tmp.peer_cert_sigalgs != NULL) { |
| if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL)) |
| return 0; |
| for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) { |
| lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]); |
| if (lu == NULL) |
| continue; |
| |
| /* |
| * This does not differentiate between the |
| * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not |
| * have a chain here that lets us look at the key OID in the |
| * signing certificate. |
| */ |
| if (mdnid == lu->hash && pknid == lu->sig) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Without signat_algorithms_cert, any certificate for which we have |
| * a viable public key is permitted. |
| */ |
| return 1; |
| } |
| |
| /* |
| * Returns true if |s| has a usable certificate configured for use |
| * with signature scheme |sig|. |
| * "Usable" includes a check for presence as well as applying |
| * the signature_algorithm_cert restrictions sent by the peer (if any). |
| * Returns false if no usable certificate is found. |
| */ |
| static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx) |
| { |
| /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */ |
| if (idx == -1) |
| idx = sig->sig_idx; |
| if (!ssl_has_cert(s, idx)) |
| return 0; |
| |
| return check_cert_usable(s, sig, s->cert->pkeys[idx].x509, |
| s->cert->pkeys[idx].privatekey); |
| } |
| |
| /* |
| * Returns true if the supplied cert |x| and key |pkey| is usable with the |
| * specified signature scheme |sig|, or false otherwise. |
| */ |
| static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, |
| EVP_PKEY *pkey) |
| { |
| size_t idx; |
| |
| if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL) |
| return 0; |
| |
| /* Check the key is consistent with the sig alg */ |
| if ((int)idx != sig->sig_idx) |
| return 0; |
| |
| return check_cert_usable(s, sig, x, pkey); |
| } |
| |
| /* |
| * Find a signature scheme that works with the supplied certificate |x| and key |
| * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our |
| * available certs/keys to find one that works. |
| */ |
| static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey) |
| { |
| const SIGALG_LOOKUP *lu = NULL; |
| size_t i; |
| int curve = -1; |
| EVP_PKEY *tmppkey; |
| |
| /* Look for a shared sigalgs matching possible certificates */ |
| for (i = 0; i < s->shared_sigalgslen; i++) { |
| lu = s->shared_sigalgs[i]; |
| |
| /* Skip SHA1, SHA224, DSA and RSA if not PSS */ |
| if (lu->hash == NID_sha1 |
| || lu->hash == NID_sha224 |
| || lu->sig == EVP_PKEY_DSA |
| || lu->sig == EVP_PKEY_RSA) |
| continue; |
| /* Check that we have a cert, and signature_algorithms_cert */ |
| if (!tls1_lookup_md(s->ctx, lu, NULL)) |
| continue; |
| if ((pkey == NULL && !has_usable_cert(s, lu, -1)) |
| || (pkey != NULL && !is_cert_usable(s, lu, x, pkey))) |
| continue; |
| |
| tmppkey = (pkey != NULL) ? pkey |
| : s->cert->pkeys[lu->sig_idx].privatekey; |
| |
| if (lu->sig == EVP_PKEY_EC) { |
| if (curve == -1) |
| curve = ssl_get_EC_curve_nid(tmppkey); |
| if (lu->curve != NID_undef && curve != lu->curve) |
| continue; |
| } else if (lu->sig == EVP_PKEY_RSA_PSS) { |
| /* validate that key is large enough for the signature algorithm */ |
| if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu)) |
| continue; |
| } |
| break; |
| } |
| |
| if (i == s->shared_sigalgslen) |
| return NULL; |
| |
| return lu; |
| } |
| |
| /* |
| * Choose an appropriate signature algorithm based on available certificates |
| * Sets chosen certificate and signature algorithm. |
| * |
| * For servers if we fail to find a required certificate it is a fatal error, |
| * an appropriate error code is set and a TLS alert is sent. |
| * |
| * For clients fatalerrs is set to 0. If a certificate is not suitable it is not |
| * a fatal error: we will either try another certificate or not present one |
| * to the server. In this case no error is set. |
| */ |
| int tls_choose_sigalg(SSL *s, int fatalerrs) |
| { |
| const SIGALG_LOOKUP *lu = NULL; |
| int sig_idx = -1; |
| |
| s->s3.tmp.cert = NULL; |
| s->s3.tmp.sigalg = NULL; |
| |
| if (SSL_IS_TLS13(s)) { |
| lu = find_sig_alg(s, NULL, NULL); |
| if (lu == NULL) { |
| if (!fatalerrs) |
| return 1; |
| SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, |
| SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); |
| return 0; |
| } |
| } else { |
| /* If ciphersuite doesn't require a cert nothing to do */ |
| if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT)) |
| return 1; |
| if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys)) |
| return 1; |
| |
| if (SSL_USE_SIGALGS(s)) { |
| size_t i; |
| if (s->s3.tmp.peer_sigalgs != NULL) { |
| int curve = -1; |
| |
| /* For Suite B need to match signature algorithm to curve */ |
| if (tls1_suiteb(s)) |
| curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC] |
| .privatekey); |
| |
| /* |
| * Find highest preference signature algorithm matching |
| * cert type |
| */ |
| for (i = 0; i < s->shared_sigalgslen; i++) { |
| lu = s->shared_sigalgs[i]; |
| |
| if (s->server) { |
| if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1) |
| continue; |
| } else { |
| int cc_idx = s->cert->key - s->cert->pkeys; |
| |
| sig_idx = lu->sig_idx; |
| if (cc_idx != sig_idx) |
| continue; |
| } |
| /* Check that we have a cert, and sig_algs_cert */ |
| if (!has_usable_cert(s, lu, sig_idx)) |
| continue; |
| if (lu->sig == EVP_PKEY_RSA_PSS) { |
| /* validate that key is large enough for the signature algorithm */ |
| EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey; |
| |
| if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu)) |
| continue; |
| } |
| if (curve == -1 || lu->curve == curve) |
| break; |
| } |
| #ifndef OPENSSL_NO_GOST |
| /* |
| * Some Windows-based implementations do not send GOST algorithms indication |
| * in supported_algorithms extension, so when we have GOST-based ciphersuite, |
| * we have to assume GOST support. |
| */ |
| if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) { |
| if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { |
| if (!fatalerrs) |
| return 1; |
| SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, |
| SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); |
| return 0; |
| } else { |
| i = 0; |
| sig_idx = lu->sig_idx; |
| } |
| } |
| #endif |
| if (i == s->shared_sigalgslen) { |
| if (!fatalerrs) |
| return 1; |
| SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, |
| SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); |
| return 0; |
| } |
| } else { |
| /* |
| * If we have no sigalg use defaults |
| */ |
| const uint16_t *sent_sigs; |
| size_t sent_sigslen; |
| |
| if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { |
| if (!fatalerrs) |
| return 1; |
| SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, |
| SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); |
| return 0; |
| } |
| |
| /* Check signature matches a type we sent */ |
| sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); |
| for (i = 0; i < sent_sigslen; i++, sent_sigs++) { |
| if (lu->sigalg == *sent_sigs |
| && has_usable_cert(s, lu, lu->sig_idx)) |
| break; |
| } |
| if (i == sent_sigslen) { |
| if (!fatalerrs) |
| return 1; |
| SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, |
| SSL_R_WRONG_SIGNATURE_TYPE); |
| return 0; |
| } |
| } |
| } else { |
| if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { |
| if (!fatalerrs) |
| return 1; |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, |
| SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); |
| return 0; |
| } |
| } |
| } |
| if (sig_idx == -1) |
| sig_idx = lu->sig_idx; |
| s->s3.tmp.cert = &s->cert->pkeys[sig_idx]; |
| s->cert->key = s->s3.tmp.cert; |
| s->s3.tmp.sigalg = lu; |
| return 1; |
| } |
| |
| int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode) |
| { |
| if (mode != TLSEXT_max_fragment_length_DISABLED |
| && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { |
| ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); |
| return 0; |
| } |
| |
| ctx->ext.max_fragment_len_mode = mode; |
| return 1; |
| } |
| |
| int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode) |
| { |
| if (mode != TLSEXT_max_fragment_length_DISABLED |
| && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { |
| ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); |
| return 0; |
| } |
| |
| ssl->ext.max_fragment_len_mode = mode; |
| return 1; |
| } |
| |
| uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session) |
| { |
| return session->ext.max_fragment_len_mode; |
| } |
| |
| /* |
| * Helper functions for HMAC access with legacy support included. |
| */ |
| SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx) |
| { |
| SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret)); |
| EVP_MAC *mac = NULL; |
| |
| if (ret == NULL) |
| return NULL; |
| #ifndef OPENSSL_NO_DEPRECATED_3_0 |
| if (ctx->ext.ticket_key_evp_cb == NULL |
| && ctx->ext.ticket_key_cb != NULL) { |
| if (!ssl_hmac_old_new(ret)) |
| goto err; |
| return ret; |
| } |
| #endif |
| mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq); |
| if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL) |
| goto err; |
| EVP_MAC_free(mac); |
| return ret; |
| err: |
| EVP_MAC_CTX_free(ret->ctx); |
| EVP_MAC_free(mac); |
| OPENSSL_free(ret); |
| return NULL; |
| } |
| |
| void ssl_hmac_free(SSL_HMAC *ctx) |
| { |
| if (ctx != NULL) { |
| EVP_MAC_CTX_free(ctx->ctx); |
| #ifndef OPENSSL_NO_DEPRECATED_3_0 |
| ssl_hmac_old_free(ctx); |
| #endif |
| OPENSSL_free(ctx); |
| } |
| } |
| |
| EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx) |
| { |
| return ctx->ctx; |
| } |
| |
| int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md) |
| { |
| OSSL_PARAM params[2], *p = params; |
| |
| if (ctx->ctx != NULL) { |
| *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0); |
| *p = OSSL_PARAM_construct_end(); |
| if (EVP_MAC_init(ctx->ctx, key, len, params)) |
| return 1; |
| } |
| #ifndef OPENSSL_NO_DEPRECATED_3_0 |
| if (ctx->old_ctx != NULL) |
| return ssl_hmac_old_init(ctx, key, len, md); |
| #endif |
| return 0; |
| } |
| |
| int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len) |
| { |
| if (ctx->ctx != NULL) |
| return EVP_MAC_update(ctx->ctx, data, len); |
| #ifndef OPENSSL_NO_DEPRECATED_3_0 |
| if (ctx->old_ctx != NULL) |
| return ssl_hmac_old_update(ctx, data, len); |
| #endif |
| return 0; |
| } |
| |
| int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len, |
| size_t max_size) |
| { |
| if (ctx->ctx != NULL) |
| return EVP_MAC_final(ctx->ctx, md, len, max_size); |
| #ifndef OPENSSL_NO_DEPRECATED_3_0 |
| if (ctx->old_ctx != NULL) |
| return ssl_hmac_old_final(ctx, md, len); |
| #endif |
| return 0; |
| } |
| |
| size_t ssl_hmac_size(const SSL_HMAC *ctx) |
| { |
| if (ctx->ctx != NULL) |
| return EVP_MAC_CTX_get_mac_size(ctx->ctx); |
| #ifndef OPENSSL_NO_DEPRECATED_3_0 |
| if (ctx->old_ctx != NULL) |
| return ssl_hmac_old_size(ctx); |
| #endif |
| return 0; |
| } |
| |
| int ssl_get_EC_curve_nid(const EVP_PKEY *pkey) |
| { |
| char gname[OSSL_MAX_NAME_SIZE]; |
| |
| if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0) |
| return OBJ_txt2nid(gname); |
| |
| return NID_undef; |
| } |
| |
| __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey, |
| const unsigned char *enckey, |
| size_t enckeylen) |
| { |
| if (EVP_PKEY_is_a(pkey, "DH")) { |
| int bits = EVP_PKEY_get_bits(pkey); |
| |
| if (bits <= 0 || enckeylen != (size_t)bits / 8) |
| /* the encoded key must be padded to the length of the p */ |
| return 0; |
| } else if (EVP_PKEY_is_a(pkey, "EC")) { |
| if (enckeylen < 3 /* point format and at least 1 byte for x and y */ |
| || enckey[0] != 0x04) |
| return 0; |
| } |
| |
| return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen); |
| } |