| /* |
| * Copyright 2019-2021 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <string.h> |
| #include <openssl/core_names.h> |
| #include <openssl/core_dispatch.h> |
| #include <openssl/rand.h> |
| #include <openssl/params.h> |
| /* For TLS1_3_VERSION */ |
| #include <openssl/ssl.h> |
| #include "internal/nelem.h" |
| |
| static OSSL_FUNC_keymgmt_import_fn xor_import; |
| static OSSL_FUNC_keymgmt_import_types_fn xor_import_types; |
| static OSSL_FUNC_keymgmt_export_fn xor_export; |
| static OSSL_FUNC_keymgmt_export_types_fn xor_export_types; |
| |
| int tls_provider_init(const OSSL_CORE_HANDLE *handle, |
| const OSSL_DISPATCH *in, |
| const OSSL_DISPATCH **out, |
| void **provctx); |
| |
| #define XOR_KEY_SIZE 32 |
| |
| /* |
| * Top secret. This algorithm only works if no one knows what this number is. |
| * Please don't tell anyone what it is. |
| * |
| * This algorithm is for testing only - don't really use it! |
| */ |
| static const unsigned char private_constant[XOR_KEY_SIZE] = { |
| 0xd3, 0x6b, 0x54, 0xec, 0x5b, 0xac, 0x89, 0x96, 0x8c, 0x2c, 0x66, 0xa5, |
| 0x67, 0x0d, 0xe3, 0xdd, 0x43, 0x69, 0xbc, 0x83, 0x3d, 0x60, 0xc7, 0xb8, |
| 0x2b, 0x1c, 0x5a, 0xfd, 0xb5, 0xcd, 0xd0, 0xf8 |
| }; |
| |
| typedef struct xorkey_st { |
| unsigned char privkey[XOR_KEY_SIZE]; |
| unsigned char pubkey[XOR_KEY_SIZE]; |
| int hasprivkey; |
| int haspubkey; |
| } XORKEY; |
| |
| |
| /* Key Management for the dummy XOR KEX and KEM algorithms */ |
| |
| static OSSL_FUNC_keymgmt_new_fn xor_newdata; |
| static OSSL_FUNC_keymgmt_free_fn xor_freedata; |
| static OSSL_FUNC_keymgmt_has_fn xor_has; |
| static OSSL_FUNC_keymgmt_dup_fn xor_dup; |
| static OSSL_FUNC_keymgmt_gen_init_fn xor_gen_init; |
| static OSSL_FUNC_keymgmt_gen_set_params_fn xor_gen_set_params; |
| static OSSL_FUNC_keymgmt_gen_settable_params_fn xor_gen_settable_params; |
| static OSSL_FUNC_keymgmt_gen_fn xor_gen; |
| static OSSL_FUNC_keymgmt_gen_cleanup_fn xor_gen_cleanup; |
| static OSSL_FUNC_keymgmt_get_params_fn xor_get_params; |
| static OSSL_FUNC_keymgmt_gettable_params_fn xor_gettable_params; |
| static OSSL_FUNC_keymgmt_set_params_fn xor_set_params; |
| static OSSL_FUNC_keymgmt_settable_params_fn xor_settable_params; |
| |
| /* |
| * Dummy "XOR" Key Exchange algorithm. We just xor the private and public keys |
| * together. Don't use this! |
| */ |
| |
| static OSSL_FUNC_keyexch_newctx_fn xor_newctx; |
| static OSSL_FUNC_keyexch_init_fn xor_init; |
| static OSSL_FUNC_keyexch_set_peer_fn xor_set_peer; |
| static OSSL_FUNC_keyexch_derive_fn xor_derive; |
| static OSSL_FUNC_keyexch_freectx_fn xor_freectx; |
| static OSSL_FUNC_keyexch_dupctx_fn xor_dupctx; |
| |
| /* |
| * Dummy "XOR" Key Encapsulation Method. We just build a KEM over the xor KEX. |
| * Don't use this! |
| */ |
| |
| static OSSL_FUNC_kem_newctx_fn xor_newctx; |
| static OSSL_FUNC_kem_freectx_fn xor_freectx; |
| static OSSL_FUNC_kem_dupctx_fn xor_dupctx; |
| static OSSL_FUNC_kem_encapsulate_init_fn xor_init; |
| static OSSL_FUNC_kem_encapsulate_fn xor_encapsulate; |
| static OSSL_FUNC_kem_decapsulate_init_fn xor_init; |
| static OSSL_FUNC_kem_decapsulate_fn xor_decapsulate; |
| |
| |
| /* |
| * We define 2 dummy TLS groups called "xorgroup" and "xorkemgroup" for test |
| * purposes |
| */ |
| struct tls_group_st { |
| unsigned int group_id; /* for "tls-group-id", see provider-base(7) */ |
| unsigned int secbits; |
| unsigned int mintls; |
| unsigned int maxtls; |
| unsigned int mindtls; |
| unsigned int maxdtls; |
| unsigned int is_kem; /* boolean */ |
| }; |
| |
| #define XORGROUP_NAME "xorgroup" |
| #define XORGROUP_NAME_INTERNAL "xorgroup-int" |
| static struct tls_group_st xor_group = { |
| 0, /* group_id, set by randomize_tls_group_id() */ |
| 128, /* secbits */ |
| TLS1_3_VERSION, /* mintls */ |
| 0, /* maxtls */ |
| -1, /* mindtls */ |
| -1, /* maxdtls */ |
| 0 /* is_kem */ |
| }; |
| |
| #define XORKEMGROUP_NAME "xorkemgroup" |
| #define XORKEMGROUP_NAME_INTERNAL "xorkemgroup-int" |
| static struct tls_group_st xor_kemgroup = { |
| 0, /* group_id, set by randomize_tls_group_id() */ |
| 128, /* secbits */ |
| TLS1_3_VERSION, /* mintls */ |
| 0, /* maxtls */ |
| -1, /* mindtls */ |
| -1, /* maxdtls */ |
| 1 /* is_kem */ |
| }; |
| |
| #define ALGORITHM "XOR" |
| |
| static const OSSL_PARAM xor_group_params[] = { |
| OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME, |
| XORGROUP_NAME, sizeof(XORGROUP_NAME)), |
| OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL, |
| XORGROUP_NAME_INTERNAL, |
| sizeof(XORGROUP_NAME_INTERNAL)), |
| OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_ALG, ALGORITHM, |
| sizeof(ALGORITHM)), |
| OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_ID, &xor_group.group_id), |
| OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS, |
| &xor_group.secbits), |
| OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_TLS, &xor_group.mintls), |
| OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_TLS, &xor_group.maxtls), |
| OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS, &xor_group.mindtls), |
| OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS, &xor_group.maxdtls), |
| OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_IS_KEM, &xor_group.is_kem), |
| OSSL_PARAM_END |
| }; |
| |
| static const OSSL_PARAM xor_kemgroup_params[] = { |
| OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME, |
| XORKEMGROUP_NAME, sizeof(XORKEMGROUP_NAME)), |
| OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL, |
| XORKEMGROUP_NAME_INTERNAL, |
| sizeof(XORKEMGROUP_NAME_INTERNAL)), |
| OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_ALG, ALGORITHM, |
| sizeof(ALGORITHM)), |
| OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_ID, &xor_kemgroup.group_id), |
| OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS, |
| &xor_kemgroup.secbits), |
| OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_TLS, &xor_kemgroup.mintls), |
| OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_TLS, &xor_kemgroup.maxtls), |
| OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS, &xor_kemgroup.mindtls), |
| OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS, &xor_kemgroup.maxdtls), |
| OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_IS_KEM, &xor_kemgroup.is_kem), |
| OSSL_PARAM_END |
| }; |
| |
| #define NUM_DUMMY_GROUPS 50 |
| static char *dummy_group_names[NUM_DUMMY_GROUPS]; |
| |
| static int tls_prov_get_capabilities(void *provctx, const char *capability, |
| OSSL_CALLBACK *cb, void *arg) |
| { |
| int ret; |
| int i; |
| const char *dummy_base = "dummy"; |
| const size_t dummy_name_max_size = strlen(dummy_base) + 3; |
| |
| if (strcmp(capability, "TLS-GROUP") != 0) { |
| /* We don't support this capability */ |
| return 0; |
| } |
| |
| /* Register our 2 groups */ |
| ret = cb(xor_group_params, arg); |
| ret &= cb(xor_kemgroup_params, arg); |
| |
| /* |
| * Now register some dummy groups > GROUPLIST_INCREMENT (== 40) as defined |
| * in ssl/t1_lib.c, to make sure we exercise the code paths for registering |
| * large numbers of groups. |
| */ |
| |
| for (i = 0; i < NUM_DUMMY_GROUPS; i++) { |
| OSSL_PARAM dummygroup[OSSL_NELEM(xor_group_params)]; |
| |
| memcpy(dummygroup, xor_group_params, sizeof(xor_group_params)); |
| |
| /* Give the dummy group a unique name */ |
| if (dummy_group_names[i] == NULL) { |
| dummy_group_names[i] = OPENSSL_zalloc(dummy_name_max_size); |
| if (dummy_group_names[i] == NULL) |
| return 0; |
| BIO_snprintf(dummy_group_names[i], |
| dummy_name_max_size, |
| "%s%d", dummy_base, i); |
| } |
| dummygroup[0].data = dummy_group_names[i]; |
| dummygroup[0].data_size = strlen(dummy_group_names[i]) + 1; |
| ret &= cb(dummygroup, arg); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Dummy "XOR" Key Exchange algorithm. We just xor the private and public keys |
| * together. Don't use this! |
| */ |
| |
| typedef struct { |
| XORKEY *key; |
| XORKEY *peerkey; |
| void *provctx; |
| } PROV_XOR_CTX; |
| |
| static void *xor_newctx(void *provctx) |
| { |
| PROV_XOR_CTX *pxorctx = OPENSSL_zalloc(sizeof(PROV_XOR_CTX)); |
| |
| if (pxorctx == NULL) |
| return NULL; |
| |
| pxorctx->provctx = provctx; |
| |
| return pxorctx; |
| } |
| |
| static int xor_init(void *vpxorctx, void *vkey, |
| ossl_unused const OSSL_PARAM params[]) |
| { |
| PROV_XOR_CTX *pxorctx = (PROV_XOR_CTX *)vpxorctx; |
| |
| if (pxorctx == NULL || vkey == NULL) |
| return 0; |
| pxorctx->key = vkey; |
| return 1; |
| } |
| |
| static int xor_set_peer(void *vpxorctx, void *vpeerkey) |
| { |
| PROV_XOR_CTX *pxorctx = (PROV_XOR_CTX *)vpxorctx; |
| |
| if (pxorctx == NULL || vpeerkey == NULL) |
| return 0; |
| pxorctx->peerkey = vpeerkey; |
| return 1; |
| } |
| |
| static int xor_derive(void *vpxorctx, unsigned char *secret, size_t *secretlen, |
| size_t outlen) |
| { |
| PROV_XOR_CTX *pxorctx = (PROV_XOR_CTX *)vpxorctx; |
| int i; |
| |
| if (pxorctx->key == NULL || pxorctx->peerkey == NULL) |
| return 0; |
| |
| *secretlen = XOR_KEY_SIZE; |
| if (secret == NULL) |
| return 1; |
| |
| if (outlen < XOR_KEY_SIZE) |
| return 0; |
| |
| for (i = 0; i < XOR_KEY_SIZE; i++) |
| secret[i] = pxorctx->key->privkey[i] ^ pxorctx->peerkey->pubkey[i]; |
| |
| return 1; |
| } |
| |
| static void xor_freectx(void *pxorctx) |
| { |
| OPENSSL_free(pxorctx); |
| } |
| |
| static void *xor_dupctx(void *vpxorctx) |
| { |
| PROV_XOR_CTX *srcctx = (PROV_XOR_CTX *)vpxorctx; |
| PROV_XOR_CTX *dstctx; |
| |
| dstctx = OPENSSL_zalloc(sizeof(*srcctx)); |
| if (dstctx == NULL) |
| return NULL; |
| |
| *dstctx = *srcctx; |
| |
| return dstctx; |
| } |
| |
| static const OSSL_DISPATCH xor_keyexch_functions[] = { |
| { OSSL_FUNC_KEYEXCH_NEWCTX, (void (*)(void))xor_newctx }, |
| { OSSL_FUNC_KEYEXCH_INIT, (void (*)(void))xor_init }, |
| { OSSL_FUNC_KEYEXCH_DERIVE, (void (*)(void))xor_derive }, |
| { OSSL_FUNC_KEYEXCH_SET_PEER, (void (*)(void))xor_set_peer }, |
| { OSSL_FUNC_KEYEXCH_FREECTX, (void (*)(void))xor_freectx }, |
| { OSSL_FUNC_KEYEXCH_DUPCTX, (void (*)(void))xor_dupctx }, |
| { 0, NULL } |
| }; |
| |
| static const OSSL_ALGORITHM tls_prov_keyexch[] = { |
| /* |
| * Obviously this is not FIPS approved, but in order to test in conjuction |
| * with the FIPS provider we pretend that it is. |
| */ |
| { "XOR", "provider=tls-provider,fips=yes", xor_keyexch_functions }, |
| { NULL, NULL, NULL } |
| }; |
| |
| /* |
| * Dummy "XOR" Key Encapsulation Method. We just build a KEM over the xor KEX. |
| * Don't use this! |
| */ |
| |
| static int xor_encapsulate(void *vpxorctx, |
| unsigned char *ct, size_t *ctlen, |
| unsigned char *ss, size_t *sslen) |
| { |
| /* |
| * We are building this around a KEX: |
| * |
| * 1. we generate ephemeral keypair |
| * 2. we encode our ephemeral pubkey as the outgoing ct |
| * 3. we derive using our ephemeral privkey in combination with the peer |
| * pubkey from the ctx; the result is our ss. |
| */ |
| int rv = 0; |
| void *genctx = NULL, *derivectx = NULL; |
| XORKEY *ourkey = NULL; |
| PROV_XOR_CTX *pxorctx = vpxorctx; |
| |
| if (ct == NULL || ss == NULL) { |
| /* Just return sizes */ |
| |
| if (ctlen == NULL && sslen == NULL) |
| return 0; |
| if (ctlen != NULL) |
| *ctlen = XOR_KEY_SIZE; |
| if (sslen != NULL) |
| *sslen = XOR_KEY_SIZE; |
| return 1; |
| } |
| |
| /* 1. Generate keypair */ |
| genctx = xor_gen_init(pxorctx->provctx, OSSL_KEYMGMT_SELECT_KEYPAIR, NULL); |
| if (genctx == NULL) |
| goto end; |
| ourkey = xor_gen(genctx, NULL, NULL); |
| if (ourkey == NULL) |
| goto end; |
| |
| /* 2. Encode ephemeral pubkey as ct */ |
| memcpy(ct, ourkey->pubkey, XOR_KEY_SIZE); |
| *ctlen = XOR_KEY_SIZE; |
| |
| /* 3. Derive ss via KEX */ |
| derivectx = xor_newctx(pxorctx->provctx); |
| if (derivectx == NULL |
| || !xor_init(derivectx, ourkey, NULL) |
| || !xor_set_peer(derivectx, pxorctx->key) |
| || !xor_derive(derivectx, ss, sslen, XOR_KEY_SIZE)) |
| goto end; |
| |
| rv = 1; |
| |
| end: |
| xor_gen_cleanup(genctx); |
| xor_freedata(ourkey); |
| xor_freectx(derivectx); |
| return rv; |
| } |
| |
| static int xor_decapsulate(void *vpxorctx, |
| unsigned char *ss, size_t *sslen, |
| const unsigned char *ct, size_t ctlen) |
| { |
| /* |
| * We are building this around a KEX: |
| * |
| * - ct is our peer's pubkey |
| * - decapsulate is just derive. |
| */ |
| int rv = 0; |
| void *derivectx = NULL; |
| XORKEY *peerkey = NULL; |
| PROV_XOR_CTX *pxorctx = vpxorctx; |
| |
| if (ss == NULL) { |
| /* Just return size */ |
| if (sslen == NULL) |
| return 0; |
| *sslen = XOR_KEY_SIZE; |
| return 1; |
| } |
| |
| if (ctlen != XOR_KEY_SIZE) |
| return 0; |
| peerkey = xor_newdata(pxorctx->provctx); |
| if (peerkey == NULL) |
| goto end; |
| memcpy(peerkey->pubkey, ct, XOR_KEY_SIZE); |
| |
| /* Derive ss via KEX */ |
| derivectx = xor_newctx(pxorctx->provctx); |
| if (derivectx == NULL |
| || !xor_init(derivectx, pxorctx->key, NULL) |
| || !xor_set_peer(derivectx, peerkey) |
| || !xor_derive(derivectx, ss, sslen, XOR_KEY_SIZE)) |
| goto end; |
| |
| rv = 1; |
| |
| end: |
| xor_freedata(peerkey); |
| xor_freectx(derivectx); |
| return rv; |
| } |
| |
| static const OSSL_DISPATCH xor_kem_functions[] = { |
| { OSSL_FUNC_KEM_NEWCTX, (void (*)(void))xor_newctx }, |
| { OSSL_FUNC_KEM_FREECTX, (void (*)(void))xor_freectx }, |
| { OSSL_FUNC_KEM_DUPCTX, (void (*)(void))xor_dupctx }, |
| { OSSL_FUNC_KEM_ENCAPSULATE_INIT, (void (*)(void))xor_init }, |
| { OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))xor_encapsulate }, |
| { OSSL_FUNC_KEM_DECAPSULATE_INIT, (void (*)(void))xor_init }, |
| { OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))xor_decapsulate }, |
| { 0, NULL } |
| }; |
| |
| static const OSSL_ALGORITHM tls_prov_kem[] = { |
| /* |
| * Obviously this is not FIPS approved, but in order to test in conjuction |
| * with the FIPS provider we pretend that it is. |
| */ |
| { "XOR", "provider=tls-provider,fips=yes", xor_kem_functions }, |
| { NULL, NULL, NULL } |
| }; |
| |
| /* Key Management for the dummy XOR key exchange algorithm */ |
| |
| static void *xor_newdata(void *provctx) |
| { |
| return OPENSSL_zalloc(sizeof(XORKEY)); |
| } |
| |
| static void xor_freedata(void *keydata) |
| { |
| OPENSSL_free(keydata); |
| } |
| |
| static int xor_has(const void *vkey, int selection) |
| { |
| const XORKEY *key = vkey; |
| int ok = 0; |
| |
| if (key != NULL) { |
| ok = 1; |
| |
| if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) |
| ok = ok && key->haspubkey; |
| if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) |
| ok = ok && key->hasprivkey; |
| } |
| return ok; |
| } |
| |
| static void *xor_dup(const void *vfromkey, int selection) |
| { |
| XORKEY *tokey = xor_newdata(NULL); |
| const XORKEY *fromkey = vfromkey; |
| int ok = 0; |
| |
| if (tokey != NULL && fromkey != NULL) { |
| ok = 1; |
| |
| if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) { |
| if (fromkey->haspubkey) { |
| memcpy(tokey->pubkey, fromkey->pubkey, XOR_KEY_SIZE); |
| tokey->haspubkey = 1; |
| } else { |
| tokey->haspubkey = 0; |
| } |
| } |
| if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) { |
| if (fromkey->hasprivkey) { |
| memcpy(tokey->privkey, fromkey->privkey, XOR_KEY_SIZE); |
| tokey->hasprivkey = 1; |
| } else { |
| tokey->hasprivkey = 0; |
| } |
| } |
| } |
| if (!ok) { |
| xor_freedata(tokey); |
| tokey = NULL; |
| } |
| return tokey; |
| } |
| |
| static ossl_inline int xor_get_params(void *vkey, OSSL_PARAM params[]) |
| { |
| XORKEY *key = vkey; |
| OSSL_PARAM *p; |
| |
| if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_BITS)) != NULL |
| && !OSSL_PARAM_set_int(p, XOR_KEY_SIZE)) |
| return 0; |
| |
| if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_SECURITY_BITS)) != NULL |
| && !OSSL_PARAM_set_int(p, xor_group.secbits)) |
| return 0; |
| |
| if ((p = OSSL_PARAM_locate(params, |
| OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY)) != NULL) { |
| if (p->data_type != OSSL_PARAM_OCTET_STRING) |
| return 0; |
| p->return_size = XOR_KEY_SIZE; |
| if (p->data != NULL && p->data_size >= XOR_KEY_SIZE) |
| memcpy(p->data, key->pubkey, XOR_KEY_SIZE); |
| } |
| |
| return 1; |
| } |
| |
| static const OSSL_PARAM xor_params[] = { |
| OSSL_PARAM_int(OSSL_PKEY_PARAM_BITS, NULL), |
| OSSL_PARAM_int(OSSL_PKEY_PARAM_SECURITY_BITS, NULL), |
| OSSL_PARAM_octet_string(OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY, NULL, 0), |
| OSSL_PARAM_END |
| }; |
| |
| static const OSSL_PARAM *xor_gettable_params(void *provctx) |
| { |
| return xor_params; |
| } |
| |
| static int xor_set_params(void *vkey, const OSSL_PARAM params[]) |
| { |
| XORKEY *key = vkey; |
| const OSSL_PARAM *p; |
| |
| p = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY); |
| if (p != NULL) { |
| if (p->data_type != OSSL_PARAM_OCTET_STRING |
| || p->data_size != XOR_KEY_SIZE) |
| return 0; |
| memcpy(key->pubkey, p->data, XOR_KEY_SIZE); |
| key->haspubkey = 1; |
| } |
| |
| return 1; |
| } |
| |
| static const OSSL_PARAM xor_known_settable_params[] = { |
| OSSL_PARAM_octet_string(OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY, NULL, 0), |
| OSSL_PARAM_END |
| }; |
| |
| static const OSSL_PARAM *xor_settable_params(void *provctx) |
| { |
| return xor_known_settable_params; |
| } |
| |
| struct xor_gen_ctx { |
| int selection; |
| OSSL_LIB_CTX *libctx; |
| }; |
| |
| static void *xor_gen_init(void *provctx, int selection, |
| const OSSL_PARAM params[]) |
| { |
| struct xor_gen_ctx *gctx = NULL; |
| |
| if ((selection & (OSSL_KEYMGMT_SELECT_KEYPAIR |
| | OSSL_KEYMGMT_SELECT_DOMAIN_PARAMETERS)) == 0) |
| return NULL; |
| |
| if ((gctx = OPENSSL_zalloc(sizeof(*gctx))) != NULL) |
| gctx->selection = selection; |
| |
| /* Our provctx is really just an OSSL_LIB_CTX */ |
| gctx->libctx = (OSSL_LIB_CTX *)provctx; |
| |
| if (!xor_gen_set_params(gctx, params)) { |
| OPENSSL_free(gctx); |
| return NULL; |
| } |
| return gctx; |
| } |
| |
| static int xor_gen_set_params(void *genctx, const OSSL_PARAM params[]) |
| { |
| struct xor_gen_ctx *gctx = genctx; |
| const OSSL_PARAM *p; |
| |
| if (gctx == NULL) |
| return 0; |
| |
| p = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_GROUP_NAME); |
| if (p != NULL) { |
| if (p->data_type != OSSL_PARAM_UTF8_STRING |
| || (strcmp(p->data, XORGROUP_NAME_INTERNAL) != 0 |
| && strcmp(p->data, XORKEMGROUP_NAME_INTERNAL) != 0)) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static const OSSL_PARAM *xor_gen_settable_params(ossl_unused void *genctx, |
| ossl_unused void *provctx) |
| { |
| static OSSL_PARAM settable[] = { |
| OSSL_PARAM_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME, NULL, 0), |
| OSSL_PARAM_END |
| }; |
| return settable; |
| } |
| |
| static void *xor_gen(void *genctx, OSSL_CALLBACK *osslcb, void *cbarg) |
| { |
| struct xor_gen_ctx *gctx = genctx; |
| XORKEY *key = OPENSSL_zalloc(sizeof(*key)); |
| size_t i; |
| |
| if (key == NULL) |
| return NULL; |
| |
| if ((gctx->selection & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0) { |
| if (RAND_bytes_ex(gctx->libctx, key->privkey, XOR_KEY_SIZE, 0) <= 0) { |
| OPENSSL_free(key); |
| return NULL; |
| } |
| for (i = 0; i < XOR_KEY_SIZE; i++) |
| key->pubkey[i] = key->privkey[i] ^ private_constant[i]; |
| key->hasprivkey = 1; |
| key->haspubkey = 1; |
| } |
| |
| return key; |
| } |
| |
| /* IMPORT + EXPORT */ |
| |
| static int xor_import(void *vkey, int select, const OSSL_PARAM params[]) |
| { |
| XORKEY *key = vkey; |
| const OSSL_PARAM *param_priv_key, *param_pub_key; |
| unsigned char privkey[XOR_KEY_SIZE]; |
| unsigned char pubkey[XOR_KEY_SIZE]; |
| void *pprivkey = privkey, *ppubkey = pubkey; |
| size_t priv_len = 0, pub_len = 0; |
| int res = 0; |
| |
| if (key == NULL || (select & OSSL_KEYMGMT_SELECT_KEYPAIR) == 0) |
| return 0; |
| |
| memset(privkey, 0, sizeof(privkey)); |
| memset(pubkey, 0, sizeof(pubkey)); |
| param_priv_key = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_PRIV_KEY); |
| param_pub_key = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_PUB_KEY); |
| |
| if ((param_priv_key != NULL |
| && !OSSL_PARAM_get_octet_string(param_priv_key, &pprivkey, |
| sizeof(privkey), &priv_len)) |
| || (param_pub_key != NULL |
| && !OSSL_PARAM_get_octet_string(param_pub_key, &ppubkey, |
| sizeof(pubkey), &pub_len))) |
| goto err; |
| |
| if (priv_len > 0) { |
| memcpy(key->privkey, privkey, priv_len); |
| key->hasprivkey = 1; |
| } |
| if (pub_len > 0) { |
| memcpy(key->pubkey, pubkey, pub_len); |
| key->haspubkey = 1; |
| } |
| res = 1; |
| err: |
| return res; |
| } |
| |
| static int xor_export(void *vkey, int select, OSSL_CALLBACK *param_cb, |
| void *cbarg) |
| { |
| XORKEY *key = vkey; |
| OSSL_PARAM params[3], *p = params; |
| |
| if (key == NULL || (select & OSSL_KEYMGMT_SELECT_KEYPAIR) == 0) |
| return 0; |
| |
| *p++ = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PRIV_KEY, |
| key->privkey, |
| sizeof(key->privkey)); |
| *p++ = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY, |
| key->pubkey, sizeof(key->pubkey)); |
| *p++ = OSSL_PARAM_construct_end(); |
| |
| return param_cb(params, cbarg); |
| } |
| |
| static const OSSL_PARAM xor_key_types[] = { |
| OSSL_PARAM_BN(OSSL_PKEY_PARAM_PUB_KEY, NULL, 0), |
| OSSL_PARAM_BN(OSSL_PKEY_PARAM_PRIV_KEY, NULL, 0), |
| OSSL_PARAM_END |
| }; |
| |
| static const OSSL_PARAM *xor_import_types(int select) |
| { |
| return (select & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0 ? xor_key_types : NULL; |
| } |
| |
| static const OSSL_PARAM *xor_export_types(int select) |
| { |
| return (select & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0 ? xor_key_types : NULL; |
| } |
| |
| static void xor_gen_cleanup(void *genctx) |
| { |
| OPENSSL_free(genctx); |
| } |
| |
| static const OSSL_DISPATCH xor_keymgmt_functions[] = { |
| { OSSL_FUNC_KEYMGMT_NEW, (void (*)(void))xor_newdata }, |
| { OSSL_FUNC_KEYMGMT_GEN_INIT, (void (*)(void))xor_gen_init }, |
| { OSSL_FUNC_KEYMGMT_GEN_SET_PARAMS, (void (*)(void))xor_gen_set_params }, |
| { OSSL_FUNC_KEYMGMT_GEN_SETTABLE_PARAMS, |
| (void (*)(void))xor_gen_settable_params }, |
| { OSSL_FUNC_KEYMGMT_GEN, (void (*)(void))xor_gen }, |
| { OSSL_FUNC_KEYMGMT_GEN_CLEANUP, (void (*)(void))xor_gen_cleanup }, |
| { OSSL_FUNC_KEYMGMT_GET_PARAMS, (void (*) (void))xor_get_params }, |
| { OSSL_FUNC_KEYMGMT_GETTABLE_PARAMS, (void (*) (void))xor_gettable_params }, |
| { OSSL_FUNC_KEYMGMT_SET_PARAMS, (void (*) (void))xor_set_params }, |
| { OSSL_FUNC_KEYMGMT_SETTABLE_PARAMS, (void (*) (void))xor_settable_params }, |
| { OSSL_FUNC_KEYMGMT_HAS, (void (*)(void))xor_has }, |
| { OSSL_FUNC_KEYMGMT_DUP, (void (*)(void))xor_dup }, |
| { OSSL_FUNC_KEYMGMT_FREE, (void (*)(void))xor_freedata }, |
| { OSSL_FUNC_KEYMGMT_IMPORT, (void (*)(void))xor_import }, |
| { OSSL_FUNC_KEYMGMT_IMPORT_TYPES, (void (*)(void))xor_import_types }, |
| { OSSL_FUNC_KEYMGMT_EXPORT, (void (*)(void))xor_export }, |
| { OSSL_FUNC_KEYMGMT_EXPORT_TYPES, (void (*)(void))xor_export_types }, |
| { 0, NULL } |
| }; |
| |
| static const OSSL_ALGORITHM tls_prov_keymgmt[] = { |
| /* |
| * Obviously this is not FIPS approved, but in order to test in conjuction |
| * with the FIPS provider we pretend that it is. |
| */ |
| { "XOR", "provider=tls-provider,fips=yes", xor_keymgmt_functions }, |
| { NULL, NULL, NULL } |
| }; |
| |
| static const OSSL_ALGORITHM *tls_prov_query(void *provctx, int operation_id, |
| int *no_cache) |
| { |
| *no_cache = 0; |
| switch (operation_id) { |
| case OSSL_OP_KEYMGMT: |
| return tls_prov_keymgmt; |
| case OSSL_OP_KEYEXCH: |
| return tls_prov_keyexch; |
| case OSSL_OP_KEM: |
| return tls_prov_kem; |
| } |
| return NULL; |
| } |
| |
| static void tls_prov_teardown(void *provctx) |
| { |
| int i; |
| |
| OSSL_LIB_CTX_free(provctx); |
| |
| for (i = 0; i < NUM_DUMMY_GROUPS; i++) { |
| OPENSSL_free(dummy_group_names[i]); |
| dummy_group_names[i] = NULL; |
| } |
| } |
| |
| /* Functions we provide to the core */ |
| static const OSSL_DISPATCH tls_prov_dispatch_table[] = { |
| { OSSL_FUNC_PROVIDER_TEARDOWN, (void (*)(void))tls_prov_teardown }, |
| { OSSL_FUNC_PROVIDER_QUERY_OPERATION, (void (*)(void))tls_prov_query }, |
| { OSSL_FUNC_PROVIDER_GET_CAPABILITIES, (void (*)(void))tls_prov_get_capabilities }, |
| { 0, NULL } |
| }; |
| |
| static |
| unsigned int randomize_tls_group_id(OSSL_LIB_CTX *libctx) |
| { |
| /* |
| * Randomise the group_id we're going to use to ensure we don't interoperate |
| * with anything but ourselves. |
| */ |
| unsigned int group_id; |
| static unsigned int mem[10] = { 0 }; |
| static int in_mem = 0; |
| int i; |
| |
| retry: |
| if (RAND_bytes_ex(libctx, (unsigned char *)&group_id, sizeof(group_id), 0) <= 0) |
| return 0; |
| /* |
| * Ensure group_id is within the IANA Reserved for private use range |
| * (65024-65279) |
| */ |
| group_id %= 65279 - 65024; |
| group_id += 65024; |
| |
| /* Ensure we did not already issue this group_id */ |
| for (i = 0; i < in_mem; i++) |
| if (mem[i] == group_id) |
| goto retry; |
| |
| /* Add this group_id to the list of ids issued by this function */ |
| mem[in_mem++] = group_id; |
| |
| return group_id; |
| } |
| |
| int tls_provider_init(const OSSL_CORE_HANDLE *handle, |
| const OSSL_DISPATCH *in, |
| const OSSL_DISPATCH **out, |
| void **provctx) |
| { |
| OSSL_LIB_CTX *libctx = OSSL_LIB_CTX_new(); |
| |
| *provctx = libctx; |
| |
| /* |
| * Randomise the group_id we're going to use to ensure we don't interoperate |
| * with anything but ourselves. |
| */ |
| xor_group.group_id = randomize_tls_group_id(libctx); |
| xor_kemgroup.group_id = randomize_tls_group_id(libctx); |
| |
| *out = tls_prov_dispatch_table; |
| return 1; |
| } |