| /* crypto/evp/e_des3.c */ |
| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| |
| #include <stdio.h> |
| #include "cryptlib.h" |
| #ifndef OPENSSL_NO_DES |
| # include <openssl/evp.h> |
| # include <openssl/objects.h> |
| # include "evp_locl.h" |
| # include <openssl/des.h> |
| # include <openssl/rand.h> |
| |
| typedef struct { |
| union { |
| double align; |
| DES_key_schedule ks[3]; |
| } ks; |
| union { |
| void (*cbc) (const void *, void *, size_t, const void *, void *); |
| } stream; |
| } DES_EDE_KEY; |
| # define ks1 ks.ks[0] |
| # define ks2 ks.ks[1] |
| # define ks3 ks.ks[2] |
| |
| # if defined(AES_ASM) && (defined(__sparc) || defined(__sparc__)) |
| /* ---------^^^ this is not a typo, just a way to detect that |
| * assembler support was in general requested... */ |
| # include "sparc_arch.h" |
| |
| extern unsigned int OPENSSL_sparcv9cap_P[]; |
| |
| # define SPARC_DES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_DES) |
| |
| void des_t4_key_expand(const void *key, DES_key_schedule *ks); |
| void des_t4_ede3_cbc_encrypt(const void *inp, void *out, size_t len, |
| DES_key_schedule *ks, unsigned char iv[8]); |
| void des_t4_ede3_cbc_decrypt(const void *inp, void *out, size_t len, |
| DES_key_schedule *ks, unsigned char iv[8]); |
| # endif |
| |
| static int des_ede_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc); |
| |
| static int des_ede3_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc); |
| |
| static int des3_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr); |
| |
| # define data(ctx) ((DES_EDE_KEY *)(ctx)->cipher_data) |
| |
| /* |
| * Because of various casts and different args can't use |
| * IMPLEMENT_BLOCK_CIPHER |
| */ |
| |
| static int des_ede_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t inl) |
| { |
| BLOCK_CIPHER_ecb_loop() |
| DES_ecb3_encrypt((const_DES_cblock *)(in + i), |
| (DES_cblock *)(out + i), |
| &data(ctx)->ks1, &data(ctx)->ks2, |
| &data(ctx)->ks3, ctx->encrypt); |
| return 1; |
| } |
| |
| static int des_ede_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t inl) |
| { |
| while (inl >= EVP_MAXCHUNK) { |
| DES_ede3_ofb64_encrypt(in, out, (long)EVP_MAXCHUNK, |
| &data(ctx)->ks1, &data(ctx)->ks2, |
| &data(ctx)->ks3, (DES_cblock *)ctx->iv, |
| &ctx->num); |
| inl -= EVP_MAXCHUNK; |
| in += EVP_MAXCHUNK; |
| out += EVP_MAXCHUNK; |
| } |
| if (inl) |
| DES_ede3_ofb64_encrypt(in, out, (long)inl, |
| &data(ctx)->ks1, &data(ctx)->ks2, |
| &data(ctx)->ks3, (DES_cblock *)ctx->iv, |
| &ctx->num); |
| |
| return 1; |
| } |
| |
| static int des_ede_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t inl) |
| { |
| DES_EDE_KEY *dat = data(ctx); |
| |
| # ifdef KSSL_DEBUG |
| { |
| int i; |
| fprintf(stderr, "des_ede_cbc_cipher(ctx=%p, buflen=%d)\n", ctx, |
| ctx->buf_len); |
| fprintf(stderr, "\t iv= "); |
| for (i = 0; i < 8; i++) |
| fprintf(stderr, "%02X", ctx->iv[i]); |
| fprintf(stderr, "\n"); |
| } |
| # endif /* KSSL_DEBUG */ |
| if (dat->stream.cbc) { |
| (*dat->stream.cbc) (in, out, inl, &dat->ks, ctx->iv); |
| return 1; |
| } |
| |
| while (inl >= EVP_MAXCHUNK) { |
| DES_ede3_cbc_encrypt(in, out, (long)EVP_MAXCHUNK, |
| &dat->ks1, &dat->ks2, &dat->ks3, |
| (DES_cblock *)ctx->iv, ctx->encrypt); |
| inl -= EVP_MAXCHUNK; |
| in += EVP_MAXCHUNK; |
| out += EVP_MAXCHUNK; |
| } |
| if (inl) |
| DES_ede3_cbc_encrypt(in, out, (long)inl, |
| &dat->ks1, &dat->ks2, &dat->ks3, |
| (DES_cblock *)ctx->iv, ctx->encrypt); |
| return 1; |
| } |
| |
| static int des_ede_cfb64_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t inl) |
| { |
| while (inl >= EVP_MAXCHUNK) { |
| DES_ede3_cfb64_encrypt(in, out, (long)EVP_MAXCHUNK, |
| &data(ctx)->ks1, &data(ctx)->ks2, |
| &data(ctx)->ks3, (DES_cblock *)ctx->iv, |
| &ctx->num, ctx->encrypt); |
| inl -= EVP_MAXCHUNK; |
| in += EVP_MAXCHUNK; |
| out += EVP_MAXCHUNK; |
| } |
| if (inl) |
| DES_ede3_cfb64_encrypt(in, out, (long)inl, |
| &data(ctx)->ks1, &data(ctx)->ks2, |
| &data(ctx)->ks3, (DES_cblock *)ctx->iv, |
| &ctx->num, ctx->encrypt); |
| return 1; |
| } |
| |
| /* |
| * Although we have a CFB-r implementation for 3-DES, it doesn't pack the |
| * right way, so wrap it here |
| */ |
| static int des_ede3_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t inl) |
| { |
| size_t n; |
| unsigned char c[1], d[1]; |
| |
| for (n = 0; n < inl; ++n) { |
| c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0; |
| DES_ede3_cfb_encrypt(c, d, 1, 1, |
| &data(ctx)->ks1, &data(ctx)->ks2, |
| &data(ctx)->ks3, (DES_cblock *)ctx->iv, |
| ctx->encrypt); |
| out[n / 8] = (out[n / 8] & ~(0x80 >> (unsigned int)(n % 8))) |
| | ((d[0] & 0x80) >> (unsigned int)(n % 8)); |
| } |
| |
| return 1; |
| } |
| |
| static int des_ede3_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t inl) |
| { |
| while (inl >= EVP_MAXCHUNK) { |
| DES_ede3_cfb_encrypt(in, out, 8, (long)EVP_MAXCHUNK, |
| &data(ctx)->ks1, &data(ctx)->ks2, |
| &data(ctx)->ks3, (DES_cblock *)ctx->iv, |
| ctx->encrypt); |
| inl -= EVP_MAXCHUNK; |
| in += EVP_MAXCHUNK; |
| out += EVP_MAXCHUNK; |
| } |
| if (inl) |
| DES_ede3_cfb_encrypt(in, out, 8, (long)inl, |
| &data(ctx)->ks1, &data(ctx)->ks2, |
| &data(ctx)->ks3, (DES_cblock *)ctx->iv, |
| ctx->encrypt); |
| return 1; |
| } |
| |
| BLOCK_CIPHER_defs(des_ede, DES_EDE_KEY, NID_des_ede, 8, 16, 8, 64, |
| EVP_CIPH_RAND_KEY | EVP_CIPH_FLAG_DEFAULT_ASN1, |
| des_ede_init_key, NULL, NULL, NULL, des3_ctrl) |
| # define des_ede3_cfb64_cipher des_ede_cfb64_cipher |
| # define des_ede3_ofb_cipher des_ede_ofb_cipher |
| # define des_ede3_cbc_cipher des_ede_cbc_cipher |
| # define des_ede3_ecb_cipher des_ede_ecb_cipher |
| BLOCK_CIPHER_defs(des_ede3, DES_EDE_KEY, NID_des_ede3, 8, 24, 8, 64, |
| EVP_CIPH_RAND_KEY | EVP_CIPH_FLAG_DEFAULT_ASN1, |
| des_ede3_init_key, NULL, NULL, NULL, des3_ctrl) |
| |
| BLOCK_CIPHER_def_cfb(des_ede3, DES_EDE_KEY, NID_des_ede3, 24, 8, 1, |
| EVP_CIPH_RAND_KEY | EVP_CIPH_FLAG_DEFAULT_ASN1, |
| des_ede3_init_key, NULL, NULL, NULL, des3_ctrl) |
| |
| BLOCK_CIPHER_def_cfb(des_ede3, DES_EDE_KEY, NID_des_ede3, 24, 8, 8, |
| EVP_CIPH_RAND_KEY | EVP_CIPH_FLAG_DEFAULT_ASN1, |
| des_ede3_init_key, NULL, NULL, NULL, des3_ctrl) |
| |
| static int des_ede_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| DES_cblock *deskey = (DES_cblock *)key; |
| DES_EDE_KEY *dat = data(ctx); |
| |
| dat->stream.cbc = NULL; |
| # if defined(SPARC_DES_CAPABLE) |
| if (SPARC_DES_CAPABLE) { |
| int mode = ctx->cipher->flags & EVP_CIPH_MODE; |
| |
| if (mode == EVP_CIPH_CBC_MODE) { |
| des_t4_key_expand(&deskey[0], &dat->ks1); |
| des_t4_key_expand(&deskey[1], &dat->ks2); |
| memcpy(&dat->ks3, &dat->ks1, sizeof(dat->ks1)); |
| dat->stream.cbc = enc ? des_t4_ede3_cbc_encrypt : |
| des_t4_ede3_cbc_decrypt; |
| return 1; |
| } |
| } |
| # endif |
| # ifdef EVP_CHECK_DES_KEY |
| if (DES_set_key_checked(&deskey[0], &dat->ks1) |
| ! !DES_set_key_checked(&deskey[1], &dat->ks2)) |
| return 0; |
| # else |
| DES_set_key_unchecked(&deskey[0], &dat->ks1); |
| DES_set_key_unchecked(&deskey[1], &dat->ks2); |
| # endif |
| memcpy(&dat->ks3, &dat->ks1, sizeof(dat->ks1)); |
| return 1; |
| } |
| |
| static int des_ede3_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| DES_cblock *deskey = (DES_cblock *)key; |
| DES_EDE_KEY *dat = data(ctx); |
| |
| # ifdef KSSL_DEBUG |
| { |
| int i; |
| fprintf(stderr, "des_ede3_init_key(ctx=%p)\n", ctx); |
| fprintf(stderr, "\tKEY= "); |
| for (i = 0; i < 24; i++) |
| fprintf(stderr, "%02X", key[i]); |
| fprintf(stderr, "\n"); |
| if (iv) { |
| fprintf(stderr, "\t IV= "); |
| for (i = 0; i < 8; i++) |
| fprintf(stderr, "%02X", iv[i]); |
| fprintf(stderr, "\n"); |
| } |
| } |
| # endif /* KSSL_DEBUG */ |
| |
| dat->stream.cbc = NULL; |
| # if defined(SPARC_DES_CAPABLE) |
| if (SPARC_DES_CAPABLE) { |
| int mode = ctx->cipher->flags & EVP_CIPH_MODE; |
| |
| if (mode == EVP_CIPH_CBC_MODE) { |
| des_t4_key_expand(&deskey[0], &dat->ks1); |
| des_t4_key_expand(&deskey[1], &dat->ks2); |
| des_t4_key_expand(&deskey[2], &dat->ks3); |
| dat->stream.cbc = enc ? des_t4_ede3_cbc_encrypt : |
| des_t4_ede3_cbc_decrypt; |
| return 1; |
| } |
| } |
| # endif |
| # ifdef EVP_CHECK_DES_KEY |
| if (DES_set_key_checked(&deskey[0], &dat->ks1) |
| || DES_set_key_checked(&deskey[1], &dat->ks2) |
| || DES_set_key_checked(&deskey[2], &dat->ks3)) |
| return 0; |
| # else |
| DES_set_key_unchecked(&deskey[0], &dat->ks1); |
| DES_set_key_unchecked(&deskey[1], &dat->ks2); |
| DES_set_key_unchecked(&deskey[2], &dat->ks3); |
| # endif |
| return 1; |
| } |
| |
| static int des3_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
| { |
| |
| DES_cblock *deskey = ptr; |
| |
| switch (type) { |
| case EVP_CTRL_RAND_KEY: |
| if (RAND_bytes(ptr, c->key_len) <= 0) |
| return 0; |
| DES_set_odd_parity(deskey); |
| if (c->key_len >= 16) |
| DES_set_odd_parity(deskey + 1); |
| if (c->key_len >= 24) |
| DES_set_odd_parity(deskey + 2); |
| return 1; |
| |
| default: |
| return -1; |
| } |
| } |
| |
| const EVP_CIPHER *EVP_des_ede(void) |
| { |
| return &des_ede_ecb; |
| } |
| |
| const EVP_CIPHER *EVP_des_ede3(void) |
| { |
| return &des_ede3_ecb; |
| } |
| |
| # ifndef OPENSSL_NO_SHA |
| |
| # include <openssl/sha.h> |
| |
| static const unsigned char wrap_iv[8] = |
| { 0x4a, 0xdd, 0xa2, 0x2c, 0x79, 0xe8, 0x21, 0x05 }; |
| |
| static int des_ede3_unwrap(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t inl) |
| { |
| unsigned char icv[8], iv[8], sha1tmp[SHA_DIGEST_LENGTH]; |
| int rv = -1; |
| if (inl < 24) |
| return -1; |
| if (!out) |
| return inl - 16; |
| memcpy(ctx->iv, wrap_iv, 8); |
| /* Decrypt first block which will end up as icv */ |
| des_ede_cbc_cipher(ctx, icv, in, 8); |
| /* Decrypt central blocks */ |
| /* |
| * If decrypting in place move whole output along a block so the next |
| * des_ede_cbc_cipher is in place. |
| */ |
| if (out == in) { |
| memmove(out, out + 8, inl - 8); |
| in -= 8; |
| } |
| des_ede_cbc_cipher(ctx, out, in + 8, inl - 16); |
| /* Decrypt final block which will be IV */ |
| des_ede_cbc_cipher(ctx, iv, in + inl - 8, 8); |
| /* Reverse order of everything */ |
| BUF_reverse(icv, NULL, 8); |
| BUF_reverse(out, NULL, inl - 16); |
| BUF_reverse(ctx->iv, iv, 8); |
| /* Decrypt again using new IV */ |
| des_ede_cbc_cipher(ctx, out, out, inl - 16); |
| des_ede_cbc_cipher(ctx, icv, icv, 8); |
| /* Work out SHA1 hash of first portion */ |
| SHA1(out, inl - 16, sha1tmp); |
| |
| if (!CRYPTO_memcmp(sha1tmp, icv, 8)) |
| rv = inl - 16; |
| OPENSSL_cleanse(icv, 8); |
| OPENSSL_cleanse(sha1tmp, SHA_DIGEST_LENGTH); |
| OPENSSL_cleanse(iv, 8); |
| OPENSSL_cleanse(ctx->iv, 8); |
| if (rv == -1) |
| OPENSSL_cleanse(out, inl - 16); |
| |
| return rv; |
| } |
| |
| static int des_ede3_wrap(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t inl) |
| { |
| unsigned char sha1tmp[SHA_DIGEST_LENGTH]; |
| if (!out) |
| return inl + 16; |
| /* Copy input to output buffer + 8 so we have space for IV */ |
| memmove(out + 8, in, inl); |
| /* Work out ICV */ |
| SHA1(in, inl, sha1tmp); |
| memcpy(out + inl + 8, sha1tmp, 8); |
| OPENSSL_cleanse(sha1tmp, SHA_DIGEST_LENGTH); |
| /* Generate random IV */ |
| RAND_bytes(ctx->iv, 8); |
| memcpy(out, ctx->iv, 8); |
| /* Encrypt everything after IV in place */ |
| des_ede_cbc_cipher(ctx, out + 8, out + 8, inl + 8); |
| BUF_reverse(out, NULL, inl + 16); |
| memcpy(ctx->iv, wrap_iv, 8); |
| des_ede_cbc_cipher(ctx, out, out, inl + 16); |
| return inl + 16; |
| } |
| |
| static int des_ede3_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t inl) |
| { |
| /* |
| * Sanity check input length: we typically only wrap keys so EVP_MAXCHUNK |
| * is more than will ever be needed. Also input length must be a multiple |
| * of 8 bits. |
| */ |
| if (inl >= EVP_MAXCHUNK || inl % 8) |
| return -1; |
| if (ctx->encrypt) |
| return des_ede3_wrap(ctx, out, in, inl); |
| else |
| return des_ede3_unwrap(ctx, out, in, inl); |
| } |
| |
| static const EVP_CIPHER des3_wrap = { |
| NID_id_smime_alg_CMS3DESwrap, |
| 8, 24, 0, |
| EVP_CIPH_WRAP_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER |
| | EVP_CIPH_FLAG_DEFAULT_ASN1, |
| des_ede3_init_key, des_ede3_wrap_cipher, |
| NULL, |
| sizeof(DES_EDE_KEY), |
| NULL, NULL, NULL, NULL |
| }; |
| |
| const EVP_CIPHER *EVP_des_ede3_wrap(void) |
| { |
| return &des3_wrap; |
| } |
| |
| # endif |
| #endif |