| /* |
| * Copyright 2008-2021 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <string.h> |
| #include <openssl/crypto.h> |
| #include "crypto/modes.h" |
| |
| #if defined(__GNUC__) && !defined(STRICT_ALIGNMENT) |
| typedef size_t size_t_aX __attribute((__aligned__(1))); |
| #else |
| typedef size_t size_t_aX; |
| #endif |
| |
| /* |
| * The input and output encrypted as though 128bit cfb mode is being used. |
| * The extra state information to record how much of the 128bit block we have |
| * used is contained in *num; |
| */ |
| void CRYPTO_cfb128_encrypt(const unsigned char *in, unsigned char *out, |
| size_t len, const void *key, |
| unsigned char ivec[16], int *num, |
| int enc, block128_f block) |
| { |
| unsigned int n; |
| size_t l = 0; |
| |
| if (*num < 0) { |
| /* There is no good way to signal an error return from here */ |
| *num = -1; |
| return; |
| } |
| n = *num; |
| |
| if (enc) { |
| #if !defined(OPENSSL_SMALL_FOOTPRINT) |
| if (16 % sizeof(size_t) == 0) { /* always true actually */ |
| do { |
| while (n && len) { |
| *(out++) = ivec[n] ^= *(in++); |
| --len; |
| n = (n + 1) % 16; |
| } |
| # if defined(STRICT_ALIGNMENT) |
| if (((size_t)in | (size_t)out | (size_t)ivec) % |
| sizeof(size_t) != 0) |
| break; |
| # endif |
| while (len >= 16) { |
| (*block) (ivec, ivec, key); |
| for (; n < 16; n += sizeof(size_t)) { |
| *(size_t_aX *)(out + n) = |
| *(size_t_aX *)(ivec + n) |
| ^= *(size_t_aX *)(in + n); |
| } |
| len -= 16; |
| out += 16; |
| in += 16; |
| n = 0; |
| } |
| if (len) { |
| (*block) (ivec, ivec, key); |
| while (len--) { |
| out[n] = ivec[n] ^= in[n]; |
| ++n; |
| } |
| } |
| *num = n; |
| return; |
| } while (0); |
| } |
| /* the rest would be commonly eliminated by x86* compiler */ |
| #endif |
| while (l < len) { |
| if (n == 0) { |
| (*block) (ivec, ivec, key); |
| } |
| out[l] = ivec[n] ^= in[l]; |
| ++l; |
| n = (n + 1) % 16; |
| } |
| *num = n; |
| } else { |
| #if !defined(OPENSSL_SMALL_FOOTPRINT) |
| if (16 % sizeof(size_t) == 0) { /* always true actually */ |
| do { |
| while (n && len) { |
| unsigned char c; |
| *(out++) = ivec[n] ^ (c = *(in++)); |
| ivec[n] = c; |
| --len; |
| n = (n + 1) % 16; |
| } |
| # if defined(STRICT_ALIGNMENT) |
| if (((size_t)in | (size_t)out | (size_t)ivec) % |
| sizeof(size_t) != 0) |
| break; |
| # endif |
| while (len >= 16) { |
| (*block) (ivec, ivec, key); |
| for (; n < 16; n += sizeof(size_t)) { |
| size_t t = *(size_t_aX *)(in + n); |
| *(size_t_aX *)(out + n) |
| = *(size_t_aX *)(ivec + n) ^ t; |
| *(size_t_aX *)(ivec + n) = t; |
| } |
| len -= 16; |
| out += 16; |
| in += 16; |
| n = 0; |
| } |
| if (len) { |
| (*block) (ivec, ivec, key); |
| while (len--) { |
| unsigned char c; |
| out[n] = ivec[n] ^ (c = in[n]); |
| ivec[n] = c; |
| ++n; |
| } |
| } |
| *num = n; |
| return; |
| } while (0); |
| } |
| /* the rest would be commonly eliminated by x86* compiler */ |
| #endif |
| while (l < len) { |
| unsigned char c; |
| if (n == 0) { |
| (*block) (ivec, ivec, key); |
| } |
| out[l] = ivec[n] ^ (c = in[l]); |
| ivec[n] = c; |
| ++l; |
| n = (n + 1) % 16; |
| } |
| *num = n; |
| } |
| } |
| |
| /* |
| * This expects a single block of size nbits for both in and out. Note that |
| * it corrupts any extra bits in the last byte of out |
| */ |
| static void cfbr_encrypt_block(const unsigned char *in, unsigned char *out, |
| int nbits, const void *key, |
| unsigned char ivec[16], int enc, |
| block128_f block) |
| { |
| int n, rem, num; |
| unsigned char ovec[16 * 2 + 1]; /* +1 because we dereference (but don't |
| * use) one byte off the end */ |
| |
| if (nbits <= 0 || nbits > 128) |
| return; |
| |
| /* fill in the first half of the new IV with the current IV */ |
| memcpy(ovec, ivec, 16); |
| /* construct the new IV */ |
| (*block) (ivec, ivec, key); |
| num = (nbits + 7) / 8; |
| if (enc) /* encrypt the input */ |
| for (n = 0; n < num; ++n) |
| out[n] = (ovec[16 + n] = in[n] ^ ivec[n]); |
| else /* decrypt the input */ |
| for (n = 0; n < num; ++n) |
| out[n] = (ovec[16 + n] = in[n]) ^ ivec[n]; |
| /* shift ovec left... */ |
| rem = nbits % 8; |
| num = nbits / 8; |
| if (rem == 0) |
| memcpy(ivec, ovec + num, 16); |
| else |
| for (n = 0; n < 16; ++n) |
| ivec[n] = ovec[n + num] << rem | ovec[n + num + 1] >> (8 - rem); |
| |
| /* it is not necessary to cleanse ovec, since the IV is not secret */ |
| } |
| |
| /* N.B. This expects the input to be packed, MS bit first */ |
| void CRYPTO_cfb128_1_encrypt(const unsigned char *in, unsigned char *out, |
| size_t bits, const void *key, |
| unsigned char ivec[16], int *num, |
| int enc, block128_f block) |
| { |
| size_t n; |
| unsigned char c[1], d[1]; |
| |
| for (n = 0; n < bits; ++n) { |
| c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0; |
| cfbr_encrypt_block(c, d, 1, key, ivec, enc, block); |
| out[n / 8] = (out[n / 8] & ~(1 << (unsigned int)(7 - n % 8))) | |
| ((d[0] & 0x80) >> (unsigned int)(n % 8)); |
| } |
| } |
| |
| void CRYPTO_cfb128_8_encrypt(const unsigned char *in, unsigned char *out, |
| size_t length, const void *key, |
| unsigned char ivec[16], int *num, |
| int enc, block128_f block) |
| { |
| size_t n; |
| |
| for (n = 0; n < length; ++n) |
| cfbr_encrypt_block(&in[n], &out[n], 8, key, ivec, enc, block); |
| } |