| /* |
| * Copyright 2021 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <stdio.h> |
| #include <openssl/core_names.h> |
| #include <openssl/crypto.h> |
| #include <openssl/kdf.h> |
| #include <openssl/obj_mac.h> |
| #include <openssl/params.h> |
| |
| /* |
| * test vector from |
| * https://datatracker.ietf.org/doc/html/rfc7914 |
| */ |
| |
| /* |
| * Hard coding a password into an application is very bad. |
| * It is done here solely for educational purposes. |
| */ |
| static unsigned char password[] = { |
| 'p', 'a', 's', 's', 'w', 'o', 'r', 'd' |
| }; |
| |
| /* |
| * The salt is better not being hard coded too. Each password should have a |
| * different salt if possible. The salt is not considered secret information |
| * and is safe to store with an encrypted password. |
| */ |
| static unsigned char scrypt_salt[] = { |
| 'N', 'a', 'C', 'l' |
| }; |
| |
| /* |
| * The SCRYPT parameters can be variable or hard coded. The disadvantage with |
| * hard coding them is that they cannot easily be adjusted for future |
| * technological improvements appear. |
| */ |
| static unsigned int scrypt_n = 1024; |
| static unsigned int scrypt_r = 8; |
| static unsigned int scrypt_p = 16; |
| |
| static const unsigned char expected_output[] = { |
| |
| 0xfd, 0xba, 0xbe, 0x1c, 0x9d, 0x34, 0x72, 0x00, |
| 0x78, 0x56, 0xe7, 0x19, 0x0d, 0x01, 0xe9, 0xfe, |
| 0x7c, 0x6a, 0xd7, 0xcb, 0xc8, 0x23, 0x78, 0x30, |
| 0xe7, 0x73, 0x76, 0x63, 0x4b, 0x37, 0x31, 0x62, |
| 0x2e, 0xaf, 0x30, 0xd9, 0x2e, 0x22, 0xa3, 0x88, |
| 0x6f, 0xf1, 0x09, 0x27, 0x9d, 0x98, 0x30, 0xda, |
| 0xc7, 0x27, 0xaf, 0xb9, 0x4a, 0x83, 0xee, 0x6d, |
| 0x83, 0x60, 0xcb, 0xdf, 0xa2, 0xcc, 0x06, 0x40 |
| }; |
| |
| int main(int argc, char **argv) |
| { |
| int rv = 1; |
| EVP_KDF *kdf = NULL; |
| EVP_KDF_CTX *kctx = NULL; |
| unsigned char out[64]; |
| OSSL_PARAM params[6], *p = params; |
| OSSL_LIB_CTX *library_context = NULL; |
| |
| library_context = OSSL_LIB_CTX_new(); |
| if (library_context == NULL) { |
| fprintf(stderr, "OSSL_LIB_CTX_new() returned NULL\n"); |
| goto end; |
| } |
| |
| /* Fetch the key derivation function implementation */ |
| kdf = EVP_KDF_fetch(library_context, "SCRYPT", NULL); |
| if (kdf == NULL) { |
| fprintf(stderr, "EVP_KDF_fetch() returned NULL\n"); |
| goto end; |
| } |
| |
| /* Create a context for the key derivation operation */ |
| kctx = EVP_KDF_CTX_new(kdf); |
| if (kctx == NULL) { |
| fprintf(stderr, "EVP_KDF_CTX_new() returned NULL\n"); |
| goto end; |
| } |
| |
| /* Set password */ |
| *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_PASSWORD, password, |
| sizeof(password)); |
| /* Set salt */ |
| *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SALT, scrypt_salt, |
| sizeof(scrypt_salt)); |
| /* Set N (default 1048576) */ |
| *p++ = OSSL_PARAM_construct_uint(OSSL_KDF_PARAM_SCRYPT_N, &scrypt_n); |
| /* Set R (default 8) */ |
| *p++ = OSSL_PARAM_construct_uint(OSSL_KDF_PARAM_SCRYPT_R, &scrypt_r); |
| /* Set P (default 1) */ |
| *p++ = OSSL_PARAM_construct_uint(OSSL_KDF_PARAM_SCRYPT_P, &scrypt_p); |
| *p = OSSL_PARAM_construct_end(); |
| |
| /* Derive the key */ |
| if (EVP_KDF_derive(kctx, out, sizeof(out), params) != 1) { |
| fprintf(stderr, "EVP_KDF_derive() failed\n"); |
| goto end; |
| } |
| |
| if (CRYPTO_memcmp(expected_output, out, sizeof(expected_output)) != 0) { |
| fprintf(stderr, "Generated key does not match expected value\n"); |
| goto end; |
| } |
| |
| rv = 0; |
| end: |
| EVP_KDF_CTX_free(kctx); |
| EVP_KDF_free(kdf); |
| OSSL_LIB_CTX_free(library_context); |
| return rv; |
| } |