| /* |
| * Copyright 2020-2021 The OpenSSL Project Authors. All Rights Reserved. |
| * Copyright (c) 2020, Intel Corporation. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| * |
| * |
| * Originally written by Ilya Albrekht, Sergey Kirillov and Andrey Matyukov |
| * Intel Corporation |
| * |
| */ |
| |
| #include <openssl/opensslconf.h> |
| #include "rsaz_exp.h" |
| |
| #ifndef RSAZ_ENABLED |
| NON_EMPTY_TRANSLATION_UNIT |
| #else |
| # include <assert.h> |
| # include <string.h> |
| |
| # if defined(__GNUC__) |
| # define ALIGN64 __attribute__((aligned(64))) |
| # elif defined(_MSC_VER) |
| # define ALIGN64 __declspec(align(64)) |
| # else |
| # define ALIGN64 |
| # endif |
| |
| # define ALIGN_OF(ptr, boundary) \ |
| ((unsigned char *)(ptr) + (boundary - (((size_t)(ptr)) & (boundary - 1)))) |
| |
| /* Internal radix */ |
| # define DIGIT_SIZE (52) |
| /* 52-bit mask */ |
| # define DIGIT_MASK ((uint64_t)0xFFFFFFFFFFFFF) |
| |
| # define BITS2WORD8_SIZE(x) (((x) + 7) >> 3) |
| # define BITS2WORD64_SIZE(x) (((x) + 63) >> 6) |
| |
| static ossl_inline uint64_t get_digit52(const uint8_t *in, int in_len); |
| static ossl_inline void put_digit52(uint8_t *out, int out_len, uint64_t digit); |
| static void to_words52(BN_ULONG *out, int out_len, const BN_ULONG *in, |
| int in_bitsize); |
| static void from_words52(BN_ULONG *bn_out, int out_bitsize, const BN_ULONG *in); |
| static ossl_inline void set_bit(BN_ULONG *a, int idx); |
| |
| /* Number of |digit_size|-bit digits in |bitsize|-bit value */ |
| static ossl_inline int number_of_digits(int bitsize, int digit_size) |
| { |
| return (bitsize + digit_size - 1) / digit_size; |
| } |
| |
| typedef void (*AMM52)(BN_ULONG *res, const BN_ULONG *base, |
| const BN_ULONG *exp, const BN_ULONG *m, BN_ULONG k0); |
| typedef void (*EXP52_x2)(BN_ULONG *res, const BN_ULONG *base, |
| const BN_ULONG *exp[2], const BN_ULONG *m, |
| const BN_ULONG *rr, const BN_ULONG k0[2]); |
| |
| /* |
| * For details of the methods declared below please refer to |
| * crypto/bn/asm/rsaz-avx512.pl |
| * |
| * Naming notes: |
| * amm = Almost Montgomery Multiplication |
| * ams = Almost Montgomery Squaring |
| * 52x20 - data represented as array of 20 digits in 52-bit radix |
| * _x1_/_x2_ - 1 or 2 independent inputs/outputs |
| * _256 suffix - uses 256-bit (AVX512VL) registers |
| */ |
| |
| /*AMM = Almost Montgomery Multiplication. */ |
| void ossl_rsaz_amm52x20_x1_256(BN_ULONG *res, const BN_ULONG *base, |
| const BN_ULONG *exp, const BN_ULONG *m, |
| BN_ULONG k0); |
| static void RSAZ_exp52x20_x2_256(BN_ULONG *res, const BN_ULONG *base, |
| const BN_ULONG *exp[2], const BN_ULONG *m, |
| const BN_ULONG *rr, const BN_ULONG k0[2]); |
| void ossl_rsaz_amm52x20_x2_256(BN_ULONG *out, const BN_ULONG *a, |
| const BN_ULONG *b, const BN_ULONG *m, |
| const BN_ULONG k0[2]); |
| void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y, |
| const BN_ULONG *red_table, |
| int red_table_idx, int tbl_idx); |
| |
| /* |
| * Dual Montgomery modular exponentiation using prime moduli of the |
| * same bit size, optimized with AVX512 ISA. |
| * |
| * Input and output parameters for each exponentiation are independent and |
| * denoted here by index |i|, i = 1..2. |
| * |
| * Input and output are all in regular 2^64 radix. |
| * |
| * Each moduli shall be |factor_size| bit size. |
| * |
| * NOTE: currently only 2x1024 case is supported. |
| * |
| * [out] res|i| - result of modular exponentiation: array of qword values |
| * in regular (2^64) radix. Size of array shall be enough |
| * to hold |factor_size| bits. |
| * [in] base|i| - base |
| * [in] exp|i| - exponent |
| * [in] m|i| - moduli |
| * [in] rr|i| - Montgomery parameter RR = R^2 mod m|i| |
| * [in] k0_|i| - Montgomery parameter k0 = -1/m|i| mod 2^64 |
| * [in] factor_size - moduli bit size |
| * |
| * \return 0 in case of failure, |
| * 1 in case of success. |
| */ |
| int ossl_rsaz_mod_exp_avx512_x2(BN_ULONG *res1, |
| const BN_ULONG *base1, |
| const BN_ULONG *exp1, |
| const BN_ULONG *m1, |
| const BN_ULONG *rr1, |
| BN_ULONG k0_1, |
| BN_ULONG *res2, |
| const BN_ULONG *base2, |
| const BN_ULONG *exp2, |
| const BN_ULONG *m2, |
| const BN_ULONG *rr2, |
| BN_ULONG k0_2, |
| int factor_size) |
| { |
| int ret = 0; |
| |
| /* |
| * Number of word-size (BN_ULONG) digits to store exponent in redundant |
| * representation. |
| */ |
| int exp_digits = number_of_digits(factor_size + 2, DIGIT_SIZE); |
| int coeff_pow = 4 * (DIGIT_SIZE * exp_digits - factor_size); |
| BN_ULONG *base1_red, *m1_red, *rr1_red; |
| BN_ULONG *base2_red, *m2_red, *rr2_red; |
| BN_ULONG *coeff_red; |
| BN_ULONG *storage = NULL; |
| BN_ULONG *storage_aligned = NULL; |
| BN_ULONG storage_len_bytes = 7 * exp_digits * sizeof(BN_ULONG); |
| |
| /* AMM = Almost Montgomery Multiplication */ |
| AMM52 amm = NULL; |
| /* Dual (2-exps in parallel) exponentiation */ |
| EXP52_x2 exp_x2 = NULL; |
| |
| const BN_ULONG *exp[2] = {0}; |
| BN_ULONG k0[2] = {0}; |
| |
| /* Only 1024-bit factor size is supported now */ |
| switch (factor_size) { |
| case 1024: |
| amm = ossl_rsaz_amm52x20_x1_256; |
| exp_x2 = RSAZ_exp52x20_x2_256; |
| break; |
| default: |
| goto err; |
| } |
| |
| storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes + 64); |
| if (storage == NULL) |
| goto err; |
| storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64); |
| |
| /* Memory layout for red(undant) representations */ |
| base1_red = storage_aligned; |
| base2_red = storage_aligned + 1 * exp_digits; |
| m1_red = storage_aligned + 2 * exp_digits; |
| m2_red = storage_aligned + 3 * exp_digits; |
| rr1_red = storage_aligned + 4 * exp_digits; |
| rr2_red = storage_aligned + 5 * exp_digits; |
| coeff_red = storage_aligned + 6 * exp_digits; |
| |
| /* Convert base_i, m_i, rr_i, from regular to 52-bit radix */ |
| to_words52(base1_red, exp_digits, base1, factor_size); |
| to_words52(base2_red, exp_digits, base2, factor_size); |
| to_words52(m1_red, exp_digits, m1, factor_size); |
| to_words52(m2_red, exp_digits, m2, factor_size); |
| to_words52(rr1_red, exp_digits, rr1, factor_size); |
| to_words52(rr2_red, exp_digits, rr2, factor_size); |
| |
| /* |
| * Compute target domain Montgomery converters RR' for each modulus |
| * based on precomputed original domain's RR. |
| * |
| * RR -> RR' transformation steps: |
| * (1) coeff = 2^k |
| * (2) t = AMM(RR,RR) = RR^2 / R' mod m |
| * (3) RR' = AMM(t, coeff) = RR^2 * 2^k / R'^2 mod m |
| * where |
| * k = 4 * (52 * digits52 - modlen) |
| * R = 2^(64 * ceil(modlen/64)) mod m |
| * RR = R^2 mod M |
| * R' = 2^(52 * ceil(modlen/52)) mod m |
| * |
| * modlen = 1024: k = 64, RR = 2^2048 mod m, RR' = 2^2080 mod m |
| */ |
| memset(coeff_red, 0, exp_digits * sizeof(BN_ULONG)); |
| /* (1) in reduced domain representation */ |
| set_bit(coeff_red, 64 * (int)(coeff_pow / 52) + coeff_pow % 52); |
| |
| amm(rr1_red, rr1_red, rr1_red, m1_red, k0_1); /* (2) for m1 */ |
| amm(rr1_red, rr1_red, coeff_red, m1_red, k0_1); /* (3) for m1 */ |
| |
| amm(rr2_red, rr2_red, rr2_red, m2_red, k0_2); /* (2) for m2 */ |
| amm(rr2_red, rr2_red, coeff_red, m2_red, k0_2); /* (3) for m2 */ |
| |
| exp[0] = exp1; |
| exp[1] = exp2; |
| |
| k0[0] = k0_1; |
| k0[1] = k0_2; |
| |
| exp_x2(rr1_red, base1_red, exp, m1_red, rr1_red, k0); |
| |
| /* Convert rr_i back to regular radix */ |
| from_words52(res1, factor_size, rr1_red); |
| from_words52(res2, factor_size, rr2_red); |
| |
| ret = 1; |
| err: |
| if (storage != NULL) { |
| OPENSSL_cleanse(storage, storage_len_bytes); |
| OPENSSL_free(storage); |
| } |
| return ret; |
| } |
| |
| /* |
| * Dual 1024-bit w-ary modular exponentiation using prime moduli of the same |
| * bit size using Almost Montgomery Multiplication, optimized with AVX512_IFMA |
| * ISA. |
| * |
| * The parameter w (window size) = 5. |
| * |
| * [out] res - result of modular exponentiation: 2x20 qword |
| * values in 2^52 radix. |
| * [in] base - base (2x20 qword values in 2^52 radix) |
| * [in] exp - array of 2 pointers to 16 qword values in 2^64 radix. |
| * Exponent is not converted to redundant representation. |
| * [in] m - moduli (2x20 qword values in 2^52 radix) |
| * [in] rr - Montgomery parameter for 2 moduli: RR = 2^2080 mod m. |
| * (2x20 qword values in 2^52 radix) |
| * [in] k0 - Montgomery parameter for 2 moduli: k0 = -1/m mod 2^64 |
| * |
| * \return (void). |
| */ |
| static void RSAZ_exp52x20_x2_256(BN_ULONG *out, /* [2][20] */ |
| const BN_ULONG *base, /* [2][20] */ |
| const BN_ULONG *exp[2], /* 2x16 */ |
| const BN_ULONG *m, /* [2][20] */ |
| const BN_ULONG *rr, /* [2][20] */ |
| const BN_ULONG k0[2]) |
| { |
| # define BITSIZE_MODULUS (1024) |
| # define EXP_WIN_SIZE (5) |
| # define EXP_WIN_MASK ((1U << EXP_WIN_SIZE) - 1) |
| /* |
| * Number of digits (64-bit words) in redundant representation to handle |
| * modulus bits |
| */ |
| # define RED_DIGITS (20) |
| # define EXP_DIGITS (16) |
| # define DAMM ossl_rsaz_amm52x20_x2_256 |
| /* |
| * Squaring is done using multiplication now. That can be a subject of |
| * optimization in future. |
| */ |
| # define DAMS(r,a,m,k0) \ |
| ossl_rsaz_amm52x20_x2_256((r),(a),(a),(m),(k0)) |
| |
| /* Allocate stack for red(undant) result Y and multiplier X */ |
| ALIGN64 BN_ULONG red_Y[2][RED_DIGITS]; |
| ALIGN64 BN_ULONG red_X[2][RED_DIGITS]; |
| |
| /* Allocate expanded exponent */ |
| ALIGN64 BN_ULONG expz[2][EXP_DIGITS + 1]; |
| |
| /* Pre-computed table of base powers */ |
| ALIGN64 BN_ULONG red_table[1U << EXP_WIN_SIZE][2][RED_DIGITS]; |
| |
| int idx; |
| |
| memset(red_Y, 0, sizeof(red_Y)); |
| memset(red_table, 0, sizeof(red_table)); |
| memset(red_X, 0, sizeof(red_X)); |
| |
| /* |
| * Compute table of powers base^i, i = 0, ..., (2^EXP_WIN_SIZE) - 1 |
| * table[0] = mont(x^0) = mont(1) |
| * table[1] = mont(x^1) = mont(x) |
| */ |
| red_X[0][0] = 1; |
| red_X[1][0] = 1; |
| DAMM(red_table[0][0], (const BN_ULONG*)red_X, rr, m, k0); |
| DAMM(red_table[1][0], base, rr, m, k0); |
| |
| for (idx = 1; idx < (int)((1U << EXP_WIN_SIZE) / 2); idx++) { |
| DAMS(red_table[2 * idx + 0][0], red_table[1 * idx][0], m, k0); |
| DAMM(red_table[2 * idx + 1][0], red_table[2 * idx][0], red_table[1][0], m, k0); |
| } |
| |
| /* Copy and expand exponents */ |
| memcpy(expz[0], exp[0], EXP_DIGITS * sizeof(BN_ULONG)); |
| expz[0][EXP_DIGITS] = 0; |
| memcpy(expz[1], exp[1], EXP_DIGITS * sizeof(BN_ULONG)); |
| expz[1][EXP_DIGITS] = 0; |
| |
| /* Exponentiation */ |
| { |
| int rem = BITSIZE_MODULUS % EXP_WIN_SIZE; |
| int delta = rem ? rem : EXP_WIN_SIZE; |
| BN_ULONG table_idx_mask = EXP_WIN_MASK; |
| |
| int exp_bit_no = BITSIZE_MODULUS - delta; |
| int exp_chunk_no = exp_bit_no / 64; |
| int exp_chunk_shift = exp_bit_no % 64; |
| |
| /* Process 1-st exp window - just init result */ |
| BN_ULONG red_table_idx_0 = expz[0][exp_chunk_no]; |
| BN_ULONG red_table_idx_1 = expz[1][exp_chunk_no]; |
| /* |
| * The function operates with fixed moduli sizes divisible by 64, |
| * thus table index here is always in supported range [0, EXP_WIN_SIZE). |
| */ |
| red_table_idx_0 >>= exp_chunk_shift; |
| red_table_idx_1 >>= exp_chunk_shift; |
| |
| ossl_extract_multiplier_2x20_win5(red_Y[0], (const BN_ULONG*)red_table, |
| (int)red_table_idx_0, 0); |
| ossl_extract_multiplier_2x20_win5(red_Y[1], (const BN_ULONG*)red_table, |
| (int)red_table_idx_1, 1); |
| |
| /* Process other exp windows */ |
| for (exp_bit_no -= EXP_WIN_SIZE; exp_bit_no >= 0; exp_bit_no -= EXP_WIN_SIZE) { |
| /* Extract pre-computed multiplier from the table */ |
| { |
| BN_ULONG T; |
| |
| exp_chunk_no = exp_bit_no / 64; |
| exp_chunk_shift = exp_bit_no % 64; |
| { |
| red_table_idx_0 = expz[0][exp_chunk_no]; |
| T = expz[0][exp_chunk_no + 1]; |
| |
| red_table_idx_0 >>= exp_chunk_shift; |
| /* |
| * Get additional bits from then next quadword |
| * when 64-bit boundaries are crossed. |
| */ |
| if (exp_chunk_shift > 64 - EXP_WIN_SIZE) { |
| T <<= (64 - exp_chunk_shift); |
| red_table_idx_0 ^= T; |
| } |
| red_table_idx_0 &= table_idx_mask; |
| |
| ossl_extract_multiplier_2x20_win5(red_X[0], |
| (const BN_ULONG*)red_table, |
| (int)red_table_idx_0, 0); |
| } |
| { |
| red_table_idx_1 = expz[1][exp_chunk_no]; |
| T = expz[1][exp_chunk_no + 1]; |
| |
| red_table_idx_1 >>= exp_chunk_shift; |
| /* |
| * Get additional bits from then next quadword |
| * when 64-bit boundaries are crossed. |
| */ |
| if (exp_chunk_shift > 64 - EXP_WIN_SIZE) { |
| T <<= (64 - exp_chunk_shift); |
| red_table_idx_1 ^= T; |
| } |
| red_table_idx_1 &= table_idx_mask; |
| |
| ossl_extract_multiplier_2x20_win5(red_X[1], |
| (const BN_ULONG*)red_table, |
| (int)red_table_idx_1, 1); |
| } |
| } |
| |
| /* Series of squaring */ |
| DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0); |
| DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0); |
| DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0); |
| DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0); |
| DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0); |
| |
| DAMM((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0); |
| } |
| } |
| |
| /* |
| * |
| * NB: After the last AMM of exponentiation in Montgomery domain, the result |
| * may be 1025-bit, but the conversion out of Montgomery domain performs an |
| * AMM(x,1) which guarantees that the final result is less than |m|, so no |
| * conditional subtraction is needed here. See "Efficient Software |
| * Implementations of Modular Exponentiation" (by Shay Gueron) paper for details. |
| */ |
| |
| /* Convert result back in regular 2^52 domain */ |
| memset(red_X, 0, sizeof(red_X)); |
| red_X[0][0] = 1; |
| red_X[1][0] = 1; |
| DAMM(out, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0); |
| |
| /* Clear exponents */ |
| OPENSSL_cleanse(expz, sizeof(expz)); |
| OPENSSL_cleanse(red_Y, sizeof(red_Y)); |
| |
| # undef DAMS |
| # undef DAMM |
| # undef EXP_DIGITS |
| # undef RED_DIGITS |
| # undef EXP_WIN_MASK |
| # undef EXP_WIN_SIZE |
| # undef BITSIZE_MODULUS |
| } |
| |
| static ossl_inline uint64_t get_digit52(const uint8_t *in, int in_len) |
| { |
| uint64_t digit = 0; |
| |
| assert(in != NULL); |
| |
| for (; in_len > 0; in_len--) { |
| digit <<= 8; |
| digit += (uint64_t)(in[in_len - 1]); |
| } |
| return digit; |
| } |
| |
| /* |
| * Convert array of words in regular (base=2^64) representation to array of |
| * words in redundant (base=2^52) one. |
| */ |
| static void to_words52(BN_ULONG *out, int out_len, |
| const BN_ULONG *in, int in_bitsize) |
| { |
| uint8_t *in_str = NULL; |
| |
| assert(out != NULL); |
| assert(in != NULL); |
| /* Check destination buffer capacity */ |
| assert(out_len >= number_of_digits(in_bitsize, DIGIT_SIZE)); |
| |
| in_str = (uint8_t *)in; |
| |
| for (; in_bitsize >= (2 * DIGIT_SIZE); in_bitsize -= (2 * DIGIT_SIZE), out += 2) { |
| out[0] = (*(uint64_t *)in_str) & DIGIT_MASK; |
| in_str += 6; |
| out[1] = ((*(uint64_t *)in_str) >> 4) & DIGIT_MASK; |
| in_str += 7; |
| out_len -= 2; |
| } |
| |
| if (in_bitsize > DIGIT_SIZE) { |
| uint64_t digit = get_digit52(in_str, 7); |
| |
| out[0] = digit & DIGIT_MASK; |
| in_str += 6; |
| in_bitsize -= DIGIT_SIZE; |
| digit = get_digit52(in_str, BITS2WORD8_SIZE(in_bitsize)); |
| out[1] = digit >> 4; |
| out += 2; |
| out_len -= 2; |
| } else if (in_bitsize > 0) { |
| out[0] = get_digit52(in_str, BITS2WORD8_SIZE(in_bitsize)); |
| out++; |
| out_len--; |
| } |
| |
| while (out_len > 0) { |
| *out = 0; |
| out_len--; |
| out++; |
| } |
| } |
| |
| static ossl_inline void put_digit52(uint8_t *pStr, int strLen, uint64_t digit) |
| { |
| assert(pStr != NULL); |
| |
| for (; strLen > 0; strLen--) { |
| *pStr++ = (uint8_t)(digit & 0xFF); |
| digit >>= 8; |
| } |
| } |
| |
| /* |
| * Convert array of words in redundant (base=2^52) representation to array of |
| * words in regular (base=2^64) one. |
| */ |
| static void from_words52(BN_ULONG *out, int out_bitsize, const BN_ULONG *in) |
| { |
| int i; |
| int out_len = BITS2WORD64_SIZE(out_bitsize); |
| |
| assert(out != NULL); |
| assert(in != NULL); |
| |
| for (i = 0; i < out_len; i++) |
| out[i] = 0; |
| |
| { |
| uint8_t *out_str = (uint8_t *)out; |
| |
| for (; out_bitsize >= (2 * DIGIT_SIZE); out_bitsize -= (2 * DIGIT_SIZE), in += 2) { |
| (*(uint64_t *)out_str) = in[0]; |
| out_str += 6; |
| (*(uint64_t *)out_str) ^= in[1] << 4; |
| out_str += 7; |
| } |
| |
| if (out_bitsize > DIGIT_SIZE) { |
| put_digit52(out_str, 7, in[0]); |
| out_str += 6; |
| out_bitsize -= DIGIT_SIZE; |
| put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize), |
| (in[1] << 4 | in[0] >> 48)); |
| } else if (out_bitsize) { |
| put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize), in[0]); |
| } |
| } |
| } |
| |
| /* |
| * Set bit at index |idx| in the words array |a|. |
| * It does not do any boundaries checks, make sure the index is valid before |
| * calling the function. |
| */ |
| static ossl_inline void set_bit(BN_ULONG *a, int idx) |
| { |
| assert(a != NULL); |
| |
| { |
| int i, j; |
| |
| i = idx / BN_BITS2; |
| j = idx % BN_BITS2; |
| a[i] |= (((BN_ULONG)1) << j); |
| } |
| } |
| |
| #endif |