| /* |
| * Support for VIA PadLock Advanced Cryptography Engine (ACE) |
| * Written by Michal Ludvig <michal@logix.cz> |
| * http://www.logix.cz/michal |
| * |
| * Big thanks to Andy Polyakov for a help with optimization, |
| * assembler fixes, port to MS Windows and a lot of other |
| * valuable work on this engine! |
| */ |
| |
| /* ==================================================================== |
| * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| |
| |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <openssl/opensslconf.h> |
| #include <openssl/crypto.h> |
| #include <openssl/dso.h> |
| #include <openssl/engine.h> |
| #include <openssl/evp.h> |
| #ifndef OPENSSL_NO_AES |
| #include <openssl/aes.h> |
| #endif |
| #include <openssl/rand.h> |
| #include <openssl/err.h> |
| #include <openssl/modes.h> |
| |
| #ifndef OPENSSL_NO_HW |
| #ifndef OPENSSL_NO_HW_PADLOCK |
| |
| /* Attempt to have a single source for both 0.9.7 and 0.9.8 :-) */ |
| #if (OPENSSL_VERSION_NUMBER >= 0x00908000L) |
| # ifndef OPENSSL_NO_DYNAMIC_ENGINE |
| # define DYNAMIC_ENGINE |
| # endif |
| #elif (OPENSSL_VERSION_NUMBER >= 0x00907000L) |
| # ifdef ENGINE_DYNAMIC_SUPPORT |
| # define DYNAMIC_ENGINE |
| # endif |
| #else |
| # error "Only OpenSSL >= 0.9.7 is supported" |
| #endif |
| |
| /* VIA PadLock AES is available *ONLY* on some x86 CPUs. |
| Not only that it doesn't exist elsewhere, but it |
| even can't be compiled on other platforms! */ |
| |
| #undef COMPILE_HW_PADLOCK |
| #if !defined(I386_ONLY) && !defined(OPENSSL_NO_ASM) |
| # if defined(__i386__) || defined(__i386) || \ |
| defined(__x86_64__) || defined(__x86_64) || \ |
| defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64) || \ |
| defined(__INTEL__) |
| # define COMPILE_HW_PADLOCK |
| # ifdef OPENSSL_NO_DYNAMIC_ENGINE |
| static ENGINE *ENGINE_padlock (void); |
| # endif |
| # endif |
| #endif |
| |
| #ifdef OPENSSL_NO_DYNAMIC_ENGINE |
| |
| void ENGINE_load_padlock (void) |
| { |
| /* On non-x86 CPUs it just returns. */ |
| #ifdef COMPILE_HW_PADLOCK |
| ENGINE *toadd = ENGINE_padlock (); |
| if (!toadd) return; |
| ENGINE_add (toadd); |
| ENGINE_free (toadd); |
| ERR_clear_error (); |
| #endif |
| } |
| |
| #endif |
| |
| #ifdef COMPILE_HW_PADLOCK |
| |
| /* Function for ENGINE detection and control */ |
| static int padlock_available(void); |
| static int padlock_init(ENGINE *e); |
| |
| /* RNG Stuff */ |
| static RAND_METHOD padlock_rand; |
| |
| /* Cipher Stuff */ |
| #ifndef OPENSSL_NO_AES |
| static int padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid); |
| #endif |
| |
| /* Engine names */ |
| static const char *padlock_id = "padlock"; |
| static char padlock_name[100]; |
| |
| /* Available features */ |
| static int padlock_use_ace = 0; /* Advanced Cryptography Engine */ |
| static int padlock_use_rng = 0; /* Random Number Generator */ |
| |
| /* ===== Engine "management" functions ===== */ |
| |
| /* Prepare the ENGINE structure for registration */ |
| static int |
| padlock_bind_helper(ENGINE *e) |
| { |
| /* Check available features */ |
| padlock_available(); |
| |
| #if 1 /* disable RNG for now, see commentary in vicinity of RNG code */ |
| padlock_use_rng=0; |
| #endif |
| |
| /* Generate a nice engine name with available features */ |
| BIO_snprintf(padlock_name, sizeof(padlock_name), |
| "VIA PadLock (%s, %s)", |
| padlock_use_rng ? "RNG" : "no-RNG", |
| padlock_use_ace ? "ACE" : "no-ACE"); |
| |
| /* Register everything or return with an error */ |
| if (!ENGINE_set_id(e, padlock_id) || |
| !ENGINE_set_name(e, padlock_name) || |
| |
| !ENGINE_set_init_function(e, padlock_init) || |
| #ifndef OPENSSL_NO_AES |
| (padlock_use_ace && !ENGINE_set_ciphers (e, padlock_ciphers)) || |
| #endif |
| (padlock_use_rng && !ENGINE_set_RAND (e, &padlock_rand))) { |
| return 0; |
| } |
| |
| /* Everything looks good */ |
| return 1; |
| } |
| |
| #ifdef OPENSSL_NO_DYNAMIC_ENGINE |
| /* Constructor */ |
| static ENGINE * |
| ENGINE_padlock(void) |
| { |
| ENGINE *eng = ENGINE_new(); |
| |
| if (!eng) { |
| return NULL; |
| } |
| |
| if (!padlock_bind_helper(eng)) { |
| ENGINE_free(eng); |
| return NULL; |
| } |
| |
| return eng; |
| } |
| #endif |
| |
| /* Check availability of the engine */ |
| static int |
| padlock_init(ENGINE *e) |
| { |
| return (padlock_use_rng || padlock_use_ace); |
| } |
| |
| /* This stuff is needed if this ENGINE is being compiled into a self-contained |
| * shared-library. |
| */ |
| #ifdef DYNAMIC_ENGINE |
| static int |
| padlock_bind_fn(ENGINE *e, const char *id) |
| { |
| if (id && (strcmp(id, padlock_id) != 0)) { |
| return 0; |
| } |
| |
| if (!padlock_bind_helper(e)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| IMPLEMENT_DYNAMIC_CHECK_FN() |
| IMPLEMENT_DYNAMIC_BIND_FN (padlock_bind_fn) |
| #endif /* DYNAMIC_ENGINE */ |
| |
| /* ===== Here comes the "real" engine ===== */ |
| |
| #ifndef OPENSSL_NO_AES |
| /* Some AES-related constants */ |
| #define AES_BLOCK_SIZE 16 |
| #define AES_KEY_SIZE_128 16 |
| #define AES_KEY_SIZE_192 24 |
| #define AES_KEY_SIZE_256 32 |
| |
| /* Here we store the status information relevant to the |
| current context. */ |
| /* BIG FAT WARNING: |
| * Inline assembler in PADLOCK_XCRYPT_ASM() |
| * depends on the order of items in this structure. |
| * Don't blindly modify, reorder, etc! |
| */ |
| struct padlock_cipher_data |
| { |
| unsigned char iv[AES_BLOCK_SIZE]; /* Initialization vector */ |
| union { unsigned int pad[4]; |
| struct { |
| int rounds:4; |
| int dgst:1; /* n/a in C3 */ |
| int align:1; /* n/a in C3 */ |
| int ciphr:1; /* n/a in C3 */ |
| unsigned int keygen:1; |
| int interm:1; |
| unsigned int encdec:1; |
| int ksize:2; |
| } b; |
| } cword; /* Control word */ |
| AES_KEY ks; /* Encryption key */ |
| }; |
| #endif |
| |
| /* Interface to assembler module */ |
| unsigned int padlock_capability(); |
| void padlock_key_bswap(AES_KEY *key); |
| void padlock_verify_context(struct padlock_cipher_data *ctx); |
| void padlock_reload_key(); |
| void padlock_aes_block(void *out, const void *inp, |
| struct padlock_cipher_data *ctx); |
| int padlock_ecb_encrypt(void *out, const void *inp, |
| struct padlock_cipher_data *ctx, size_t len); |
| int padlock_cbc_encrypt(void *out, const void *inp, |
| struct padlock_cipher_data *ctx, size_t len); |
| int padlock_cfb_encrypt(void *out, const void *inp, |
| struct padlock_cipher_data *ctx, size_t len); |
| int padlock_ofb_encrypt(void *out, const void *inp, |
| struct padlock_cipher_data *ctx, size_t len); |
| int padlock_ctr32_encrypt(void *out, const void *inp, |
| struct padlock_cipher_data *ctx, size_t len); |
| int padlock_xstore(void *out,int edx); |
| void padlock_sha1_oneshot(void *ctx,const void *inp,size_t len); |
| void padlock_sha1(void *ctx,const void *inp,size_t len); |
| void padlock_sha256_oneshot(void *ctx,const void *inp,size_t len); |
| void padlock_sha256(void *ctx,const void *inp,size_t len); |
| |
| /* Load supported features of the CPU to see if |
| the PadLock is available. */ |
| static int |
| padlock_available(void) |
| { |
| unsigned int edx = padlock_capability(); |
| |
| /* Fill up some flags */ |
| padlock_use_ace = ((edx & (0x3<<6)) == (0x3<<6)); |
| padlock_use_rng = ((edx & (0x3<<2)) == (0x3<<2)); |
| |
| return padlock_use_ace + padlock_use_rng; |
| } |
| |
| /* ===== AES encryption/decryption ===== */ |
| #ifndef OPENSSL_NO_AES |
| |
| #if defined(NID_aes_128_cfb128) && ! defined (NID_aes_128_cfb) |
| #define NID_aes_128_cfb NID_aes_128_cfb128 |
| #endif |
| |
| #if defined(NID_aes_128_ofb128) && ! defined (NID_aes_128_ofb) |
| #define NID_aes_128_ofb NID_aes_128_ofb128 |
| #endif |
| |
| #if defined(NID_aes_192_cfb128) && ! defined (NID_aes_192_cfb) |
| #define NID_aes_192_cfb NID_aes_192_cfb128 |
| #endif |
| |
| #if defined(NID_aes_192_ofb128) && ! defined (NID_aes_192_ofb) |
| #define NID_aes_192_ofb NID_aes_192_ofb128 |
| #endif |
| |
| #if defined(NID_aes_256_cfb128) && ! defined (NID_aes_256_cfb) |
| #define NID_aes_256_cfb NID_aes_256_cfb128 |
| #endif |
| |
| #if defined(NID_aes_256_ofb128) && ! defined (NID_aes_256_ofb) |
| #define NID_aes_256_ofb NID_aes_256_ofb128 |
| #endif |
| |
| /* List of supported ciphers. */ |
| static const int padlock_cipher_nids[] = { |
| NID_aes_128_ecb, |
| NID_aes_128_cbc, |
| NID_aes_128_cfb, |
| NID_aes_128_ofb, |
| NID_aes_128_ctr, |
| |
| NID_aes_192_ecb, |
| NID_aes_192_cbc, |
| NID_aes_192_cfb, |
| NID_aes_192_ofb, |
| NID_aes_192_ctr, |
| |
| NID_aes_256_ecb, |
| NID_aes_256_cbc, |
| NID_aes_256_cfb, |
| NID_aes_256_ofb, |
| NID_aes_256_ctr |
| }; |
| static int padlock_cipher_nids_num = (sizeof(padlock_cipher_nids)/ |
| sizeof(padlock_cipher_nids[0])); |
| |
| /* Function prototypes ... */ |
| static int padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc); |
| |
| #define NEAREST_ALIGNED(ptr) ( (unsigned char *)(ptr) + \ |
| ( (0x10 - ((size_t)(ptr) & 0x0F)) & 0x0F ) ) |
| #define ALIGNED_CIPHER_DATA(ctx) ((struct padlock_cipher_data *)\ |
| NEAREST_ALIGNED(ctx->cipher_data)) |
| |
| static int |
| padlock_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
| const unsigned char *in_arg, size_t nbytes) |
| { |
| return padlock_ecb_encrypt(out_arg,in_arg, |
| ALIGNED_CIPHER_DATA(ctx),nbytes); |
| } |
| static int |
| padlock_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
| const unsigned char *in_arg, size_t nbytes) |
| { |
| struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx); |
| int ret; |
| |
| memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE); |
| if ((ret = padlock_cbc_encrypt(out_arg,in_arg,cdata,nbytes))) |
| memcpy(ctx->iv, cdata->iv, AES_BLOCK_SIZE); |
| return ret; |
| } |
| |
| static int |
| padlock_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
| const unsigned char *in_arg, size_t nbytes) |
| { |
| struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx); |
| size_t chunk; |
| |
| if ((chunk = ctx->num)) { /* borrow chunk variable */ |
| unsigned char *ivp=ctx->iv; |
| |
| if (chunk >= AES_BLOCK_SIZE) |
| return 0; /* bogus value */ |
| |
| if (ctx->encrypt) |
| while (chunk<AES_BLOCK_SIZE && nbytes!=0) { |
| ivp[chunk] = *(out_arg++) = *(in_arg++) ^ ivp[chunk]; |
| chunk++, nbytes--; |
| } |
| else while (chunk<AES_BLOCK_SIZE && nbytes!=0) { |
| unsigned char c = *(in_arg++); |
| *(out_arg++) = c ^ ivp[chunk]; |
| ivp[chunk++] = c, nbytes--; |
| } |
| |
| ctx->num = chunk%AES_BLOCK_SIZE; |
| } |
| |
| if (nbytes == 0) |
| return 1; |
| |
| memcpy (cdata->iv, ctx->iv, AES_BLOCK_SIZE); |
| |
| if ((chunk = nbytes & ~(AES_BLOCK_SIZE-1))) { |
| if (!padlock_cfb_encrypt(out_arg,in_arg,cdata,chunk)) |
| return 0; |
| nbytes -= chunk; |
| } |
| |
| if (nbytes) { |
| unsigned char *ivp = cdata->iv; |
| |
| out_arg += chunk; |
| in_arg += chunk; |
| ctx->num = nbytes; |
| if (cdata->cword.b.encdec) { |
| cdata->cword.b.encdec=0; |
| padlock_reload_key(); |
| padlock_aes_block(ivp,ivp,cdata); |
| cdata->cword.b.encdec=1; |
| padlock_reload_key(); |
| while(nbytes) { |
| unsigned char c = *(in_arg++); |
| *(out_arg++) = c ^ *ivp; |
| *(ivp++) = c, nbytes--; |
| } |
| } |
| else { padlock_reload_key(); |
| padlock_aes_block(ivp,ivp,cdata); |
| padlock_reload_key(); |
| while (nbytes) { |
| *ivp = *(out_arg++) = *(in_arg++) ^ *ivp; |
| ivp++, nbytes--; |
| } |
| } |
| } |
| |
| memcpy(ctx->iv, cdata->iv, AES_BLOCK_SIZE); |
| |
| return 1; |
| } |
| |
| static int |
| padlock_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
| const unsigned char *in_arg, size_t nbytes) |
| { |
| struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx); |
| size_t chunk; |
| |
| /* ctx->num is maintained in byte-oriented modes, |
| such as CFB and OFB... */ |
| if ((chunk = ctx->num)) { /* borrow chunk variable */ |
| unsigned char *ivp=ctx->iv; |
| |
| if (chunk >= AES_BLOCK_SIZE) |
| return 0; /* bogus value */ |
| |
| while (chunk<AES_BLOCK_SIZE && nbytes!=0) { |
| *(out_arg++) = *(in_arg++) ^ ivp[chunk]; |
| chunk++, nbytes--; |
| } |
| |
| ctx->num = chunk%AES_BLOCK_SIZE; |
| } |
| |
| if (nbytes == 0) |
| return 1; |
| |
| memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE); |
| |
| if ((chunk = nbytes & ~(AES_BLOCK_SIZE-1))) { |
| if (!padlock_ofb_encrypt(out_arg,in_arg,cdata,chunk)) |
| return 0; |
| nbytes -= chunk; |
| } |
| |
| if (nbytes) { |
| unsigned char *ivp = cdata->iv; |
| |
| out_arg += chunk; |
| in_arg += chunk; |
| ctx->num = nbytes; |
| padlock_reload_key(); /* empirically found */ |
| padlock_aes_block(ivp,ivp,cdata); |
| padlock_reload_key(); /* empirically found */ |
| while (nbytes) { |
| *(out_arg++) = *(in_arg++) ^ *ivp; |
| ivp++, nbytes--; |
| } |
| } |
| |
| memcpy(ctx->iv, cdata->iv, AES_BLOCK_SIZE); |
| |
| return 1; |
| } |
| |
| static void padlock_ctr32_encrypt_glue(const unsigned char *in, |
| unsigned char *out, size_t blocks, |
| struct padlock_cipher_data *ctx, |
| const unsigned char *ivec) |
| { |
| memcpy(ctx->iv,ivec,AES_BLOCK_SIZE); |
| padlock_ctr32_encrypt(out,in,ctx,AES_BLOCK_SIZE*blocks); |
| } |
| |
| static int |
| padlock_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
| const unsigned char *in_arg, size_t nbytes) |
| { |
| struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx); |
| unsigned int num = ctx->num; |
| |
| CRYPTO_ctr128_encrypt_ctr32(in_arg,out_arg,nbytes, |
| cdata,ctx->iv,ctx->buf,&num, |
| (ctr128_f)padlock_ctr32_encrypt_glue); |
| |
| ctx->num = (size_t)num; |
| return 1; |
| } |
| |
| #define EVP_CIPHER_block_size_ECB AES_BLOCK_SIZE |
| #define EVP_CIPHER_block_size_CBC AES_BLOCK_SIZE |
| #define EVP_CIPHER_block_size_OFB 1 |
| #define EVP_CIPHER_block_size_CFB 1 |
| #define EVP_CIPHER_block_size_CTR 1 |
| |
| /* Declaring so many ciphers by hand would be a pain. |
| Instead introduce a bit of preprocessor magic :-) */ |
| #define DECLARE_AES_EVP(ksize,lmode,umode) \ |
| static const EVP_CIPHER padlock_aes_##ksize##_##lmode = { \ |
| NID_aes_##ksize##_##lmode, \ |
| EVP_CIPHER_block_size_##umode, \ |
| AES_KEY_SIZE_##ksize, \ |
| AES_BLOCK_SIZE, \ |
| 0 | EVP_CIPH_##umode##_MODE, \ |
| padlock_aes_init_key, \ |
| padlock_##lmode##_cipher, \ |
| NULL, \ |
| sizeof(struct padlock_cipher_data) + 16, \ |
| EVP_CIPHER_set_asn1_iv, \ |
| EVP_CIPHER_get_asn1_iv, \ |
| NULL, \ |
| NULL \ |
| } |
| |
| DECLARE_AES_EVP(128,ecb,ECB); |
| DECLARE_AES_EVP(128,cbc,CBC); |
| DECLARE_AES_EVP(128,cfb,CFB); |
| DECLARE_AES_EVP(128,ofb,OFB); |
| DECLARE_AES_EVP(128,ctr,CTR); |
| |
| DECLARE_AES_EVP(192,ecb,ECB); |
| DECLARE_AES_EVP(192,cbc,CBC); |
| DECLARE_AES_EVP(192,cfb,CFB); |
| DECLARE_AES_EVP(192,ofb,OFB); |
| DECLARE_AES_EVP(192,ctr,CTR); |
| |
| DECLARE_AES_EVP(256,ecb,ECB); |
| DECLARE_AES_EVP(256,cbc,CBC); |
| DECLARE_AES_EVP(256,cfb,CFB); |
| DECLARE_AES_EVP(256,ofb,OFB); |
| DECLARE_AES_EVP(256,ctr,CTR); |
| |
| static int |
| padlock_ciphers (ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid) |
| { |
| /* No specific cipher => return a list of supported nids ... */ |
| if (!cipher) { |
| *nids = padlock_cipher_nids; |
| return padlock_cipher_nids_num; |
| } |
| |
| /* ... or the requested "cipher" otherwise */ |
| switch (nid) { |
| case NID_aes_128_ecb: |
| *cipher = &padlock_aes_128_ecb; |
| break; |
| case NID_aes_128_cbc: |
| *cipher = &padlock_aes_128_cbc; |
| break; |
| case NID_aes_128_cfb: |
| *cipher = &padlock_aes_128_cfb; |
| break; |
| case NID_aes_128_ofb: |
| *cipher = &padlock_aes_128_ofb; |
| break; |
| case NID_aes_128_ctr: |
| *cipher = &padlock_aes_128_ctr; |
| break; |
| |
| case NID_aes_192_ecb: |
| *cipher = &padlock_aes_192_ecb; |
| break; |
| case NID_aes_192_cbc: |
| *cipher = &padlock_aes_192_cbc; |
| break; |
| case NID_aes_192_cfb: |
| *cipher = &padlock_aes_192_cfb; |
| break; |
| case NID_aes_192_ofb: |
| *cipher = &padlock_aes_192_ofb; |
| break; |
| case NID_aes_192_ctr: |
| *cipher = &padlock_aes_192_ctr; |
| break; |
| |
| case NID_aes_256_ecb: |
| *cipher = &padlock_aes_256_ecb; |
| break; |
| case NID_aes_256_cbc: |
| *cipher = &padlock_aes_256_cbc; |
| break; |
| case NID_aes_256_cfb: |
| *cipher = &padlock_aes_256_cfb; |
| break; |
| case NID_aes_256_ofb: |
| *cipher = &padlock_aes_256_ofb; |
| break; |
| case NID_aes_256_ctr: |
| *cipher = &padlock_aes_256_ctr; |
| break; |
| |
| default: |
| /* Sorry, we don't support this NID */ |
| *cipher = NULL; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Prepare the encryption key for PadLock usage */ |
| static int |
| padlock_aes_init_key (EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| struct padlock_cipher_data *cdata; |
| int key_len = EVP_CIPHER_CTX_key_length(ctx) * 8; |
| unsigned long mode = EVP_CIPHER_CTX_mode(ctx); |
| |
| if (key==NULL) return 0; /* ERROR */ |
| |
| cdata = ALIGNED_CIPHER_DATA(ctx); |
| memset(cdata, 0, sizeof(struct padlock_cipher_data)); |
| |
| /* Prepare Control word. */ |
| if (mode == EVP_CIPH_OFB_MODE || mode == EVP_CIPH_CTR_MODE) |
| cdata->cword.b.encdec = 0; |
| else |
| cdata->cword.b.encdec = (ctx->encrypt == 0); |
| cdata->cword.b.rounds = 10 + (key_len - 128) / 32; |
| cdata->cword.b.ksize = (key_len - 128) / 64; |
| |
| switch(key_len) { |
| case 128: |
| /* PadLock can generate an extended key for |
| AES128 in hardware */ |
| memcpy(cdata->ks.rd_key, key, AES_KEY_SIZE_128); |
| cdata->cword.b.keygen = 0; |
| break; |
| |
| case 192: |
| case 256: |
| /* Generate an extended AES key in software. |
| Needed for AES192/AES256 */ |
| /* Well, the above applies to Stepping 8 CPUs |
| and is listed as hardware errata. They most |
| likely will fix it at some point and then |
| a check for stepping would be due here. */ |
| if ((mode == EVP_CIPH_ECB_MODE || |
| mode == EVP_CIPH_CBC_MODE) |
| && !enc) |
| AES_set_decrypt_key(key, key_len, &cdata->ks); |
| else |
| AES_set_encrypt_key(key, key_len, &cdata->ks); |
| #ifndef AES_ASM |
| /* OpenSSL C functions use byte-swapped extended key. */ |
| padlock_key_bswap(&cdata->ks); |
| #endif |
| cdata->cword.b.keygen = 1; |
| break; |
| |
| default: |
| /* ERROR */ |
| return 0; |
| } |
| |
| /* |
| * This is done to cover for cases when user reuses the |
| * context for new key. The catch is that if we don't do |
| * this, padlock_eas_cipher might proceed with old key... |
| */ |
| padlock_reload_key (); |
| |
| return 1; |
| } |
| |
| #endif /* OPENSSL_NO_AES */ |
| |
| /* ===== Random Number Generator ===== */ |
| /* |
| * This code is not engaged. The reason is that it does not comply |
| * with recommendations for VIA RNG usage for secure applications |
| * (posted at http://www.via.com.tw/en/viac3/c3.jsp) nor does it |
| * provide meaningful error control... |
| */ |
| /* Wrapper that provides an interface between the API and |
| the raw PadLock RNG */ |
| static int |
| padlock_rand_bytes(unsigned char *output, int count) |
| { |
| unsigned int eax, buf; |
| |
| while (count >= 8) { |
| eax = padlock_xstore(output, 0); |
| if (!(eax&(1<<6))) return 0; /* RNG disabled */ |
| /* this ---vv--- covers DC bias, Raw Bits and String Filter */ |
| if (eax&(0x1F<<10)) return 0; |
| if ((eax&0x1F)==0) continue; /* no data, retry... */ |
| if ((eax&0x1F)!=8) return 0; /* fatal failure... */ |
| output += 8; |
| count -= 8; |
| } |
| while (count > 0) { |
| eax = padlock_xstore(&buf, 3); |
| if (!(eax&(1<<6))) return 0; /* RNG disabled */ |
| /* this ---vv--- covers DC bias, Raw Bits and String Filter */ |
| if (eax&(0x1F<<10)) return 0; |
| if ((eax&0x1F)==0) continue; /* no data, retry... */ |
| if ((eax&0x1F)!=1) return 0; /* fatal failure... */ |
| *output++ = (unsigned char)buf; |
| count--; |
| } |
| *(volatile unsigned int *)&buf=0; |
| |
| return 1; |
| } |
| |
| /* Dummy but necessary function */ |
| static int |
| padlock_rand_status(void) |
| { |
| return 1; |
| } |
| |
| /* Prepare structure for registration */ |
| static RAND_METHOD padlock_rand = { |
| NULL, /* seed */ |
| padlock_rand_bytes, /* bytes */ |
| NULL, /* cleanup */ |
| NULL, /* add */ |
| padlock_rand_bytes, /* pseudorand */ |
| padlock_rand_status, /* rand status */ |
| }; |
| |
| #else /* !COMPILE_HW_PADLOCK */ |
| #ifndef OPENSSL_NO_DYNAMIC_ENGINE |
| OPENSSL_EXPORT |
| int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns); |
| OPENSSL_EXPORT |
| int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns) { return 0; } |
| IMPLEMENT_DYNAMIC_CHECK_FN() |
| #endif |
| #endif /* COMPILE_HW_PADLOCK */ |
| |
| #endif /* !OPENSSL_NO_HW_PADLOCK */ |
| #endif /* !OPENSSL_NO_HW */ |