| /* |
| * Copyright 1999-2021 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */ |
| |
| /* |
| * See Victor Shoup, "OAEP reconsidered," Nov. 2000, <URL: |
| * http://www.shoup.net/papers/oaep.ps.Z> for problems with the security |
| * proof for the original OAEP scheme, which EME-OAEP is based on. A new |
| * proof can be found in E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern, |
| * "RSA-OEAP is Still Alive!", Dec. 2000, <URL: |
| * http://eprint.iacr.org/2000/061/>. The new proof has stronger requirements |
| * for the underlying permutation: "partial-one-wayness" instead of |
| * one-wayness. For the RSA function, this is an equivalent notion. |
| */ |
| |
| /* |
| * RSA low level APIs are deprecated for public use, but still ok for |
| * internal use. |
| */ |
| #include "internal/deprecated.h" |
| |
| #include "internal/constant_time.h" |
| |
| #include <stdio.h> |
| #include "internal/cryptlib.h" |
| #include <openssl/bn.h> |
| #include <openssl/evp.h> |
| #include <openssl/rand.h> |
| #include <openssl/sha.h> |
| #include "rsa_local.h" |
| |
| int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen, |
| const unsigned char *from, int flen, |
| const unsigned char *param, int plen) |
| { |
| return ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(NULL, to, tlen, from, flen, |
| param, plen, NULL, NULL); |
| } |
| |
| /* |
| * Perform the padding as per NIST 800-56B 7.2.2.3 |
| * from (K) is the key material. |
| * param (A) is the additional input. |
| * Step numbers are included here but not in the constant time inverse below |
| * to avoid complicating an already difficult enough function. |
| */ |
| int ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(OSSL_LIB_CTX *libctx, |
| unsigned char *to, int tlen, |
| const unsigned char *from, int flen, |
| const unsigned char *param, |
| int plen, const EVP_MD *md, |
| const EVP_MD *mgf1md) |
| { |
| int rv = 0; |
| int i, emlen = tlen - 1; |
| unsigned char *db, *seed; |
| unsigned char *dbmask = NULL; |
| unsigned char seedmask[EVP_MAX_MD_SIZE]; |
| int mdlen, dbmask_len = 0; |
| |
| if (md == NULL) { |
| #ifndef FIPS_MODULE |
| md = EVP_sha1(); |
| #else |
| ERR_raise(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| #endif |
| } |
| if (mgf1md == NULL) |
| mgf1md = md; |
| |
| mdlen = EVP_MD_get_size(md); |
| if (mdlen <= 0) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH); |
| return 0; |
| } |
| |
| /* step 2b: check KLen > nLen - 2 HLen - 2 */ |
| if (flen > emlen - 2 * mdlen - 1) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
| return 0; |
| } |
| |
| if (emlen < 2 * mdlen + 1) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
| return 0; |
| } |
| |
| /* step 3i: EM = 00000000 || maskedMGF || maskedDB */ |
| to[0] = 0; |
| seed = to + 1; |
| db = to + mdlen + 1; |
| |
| /* step 3a: hash the additional input */ |
| if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL)) |
| goto err; |
| /* step 3b: zero bytes array of length nLen - KLen - 2 HLen -2 */ |
| memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1); |
| /* step 3c: DB = HA || PS || 00000001 || K */ |
| db[emlen - flen - mdlen - 1] = 0x01; |
| memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen); |
| /* step 3d: generate random byte string */ |
| if (RAND_bytes_ex(libctx, seed, mdlen, 0) <= 0) |
| goto err; |
| |
| dbmask_len = emlen - mdlen; |
| dbmask = OPENSSL_malloc(dbmask_len); |
| if (dbmask == NULL) { |
| ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| /* step 3e: dbMask = MGF(mgfSeed, nLen - HLen - 1) */ |
| if (PKCS1_MGF1(dbmask, dbmask_len, seed, mdlen, mgf1md) < 0) |
| goto err; |
| /* step 3f: maskedDB = DB XOR dbMask */ |
| for (i = 0; i < dbmask_len; i++) |
| db[i] ^= dbmask[i]; |
| |
| /* step 3g: mgfSeed = MGF(maskedDB, HLen) */ |
| if (PKCS1_MGF1(seedmask, mdlen, db, dbmask_len, mgf1md) < 0) |
| goto err; |
| /* stepo 3h: maskedMGFSeed = mgfSeed XOR mgfSeedMask */ |
| for (i = 0; i < mdlen; i++) |
| seed[i] ^= seedmask[i]; |
| rv = 1; |
| |
| err: |
| OPENSSL_cleanse(seedmask, sizeof(seedmask)); |
| OPENSSL_clear_free(dbmask, dbmask_len); |
| return rv; |
| } |
| |
| int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen, |
| const unsigned char *from, int flen, |
| const unsigned char *param, int plen, |
| const EVP_MD *md, const EVP_MD *mgf1md) |
| { |
| return ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(NULL, to, tlen, from, flen, |
| param, plen, md, mgf1md); |
| } |
| |
| int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen, |
| const unsigned char *from, int flen, int num, |
| const unsigned char *param, int plen) |
| { |
| return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num, |
| param, plen, NULL, NULL); |
| } |
| |
| int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen, |
| const unsigned char *from, int flen, |
| int num, const unsigned char *param, |
| int plen, const EVP_MD *md, |
| const EVP_MD *mgf1md) |
| { |
| int i, dblen = 0, mlen = -1, one_index = 0, msg_index; |
| unsigned int good = 0, found_one_byte, mask; |
| const unsigned char *maskedseed, *maskeddb; |
| /* |
| * |em| is the encoded message, zero-padded to exactly |num| bytes: em = |
| * Y || maskedSeed || maskedDB |
| */ |
| unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE], |
| phash[EVP_MAX_MD_SIZE]; |
| int mdlen; |
| |
| if (md == NULL) { |
| #ifndef FIPS_MODULE |
| md = EVP_sha1(); |
| #else |
| ERR_raise(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER); |
| return -1; |
| #endif |
| } |
| |
| if (mgf1md == NULL) |
| mgf1md = md; |
| |
| mdlen = EVP_MD_get_size(md); |
| |
| if (tlen <= 0 || flen <= 0) |
| return -1; |
| /* |
| * |num| is the length of the modulus; |flen| is the length of the |
| * encoded message. Therefore, for any |from| that was obtained by |
| * decrypting a ciphertext, we must have |flen| <= |num|. Similarly, |
| * |num| >= 2 * |mdlen| + 2 must hold for the modulus irrespective of |
| * the ciphertext, see PKCS #1 v2.2, section 7.1.2. |
| * This does not leak any side-channel information. |
| */ |
| if (num < flen || num < 2 * mdlen + 2) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_OAEP_DECODING_ERROR); |
| return -1; |
| } |
| |
| dblen = num - mdlen - 1; |
| db = OPENSSL_malloc(dblen); |
| if (db == NULL) { |
| ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); |
| goto cleanup; |
| } |
| |
| em = OPENSSL_malloc(num); |
| if (em == NULL) { |
| ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); |
| goto cleanup; |
| } |
| |
| /* |
| * Caller is encouraged to pass zero-padded message created with |
| * BN_bn2binpad. Trouble is that since we can't read out of |from|'s |
| * bounds, it's impossible to have an invariant memory access pattern |
| * in case |from| was not zero-padded in advance. |
| */ |
| for (from += flen, em += num, i = 0; i < num; i++) { |
| mask = ~constant_time_is_zero(flen); |
| flen -= 1 & mask; |
| from -= 1 & mask; |
| *--em = *from & mask; |
| } |
| |
| /* |
| * The first byte must be zero, however we must not leak if this is |
| * true. See James H. Manger, "A Chosen Ciphertext Attack on RSA |
| * Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001). |
| */ |
| good = constant_time_is_zero(em[0]); |
| |
| maskedseed = em + 1; |
| maskeddb = em + 1 + mdlen; |
| |
| if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) |
| goto cleanup; |
| for (i = 0; i < mdlen; i++) |
| seed[i] ^= maskedseed[i]; |
| |
| if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) |
| goto cleanup; |
| for (i = 0; i < dblen; i++) |
| db[i] ^= maskeddb[i]; |
| |
| if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL)) |
| goto cleanup; |
| |
| good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen)); |
| |
| found_one_byte = 0; |
| for (i = mdlen; i < dblen; i++) { |
| /* |
| * Padding consists of a number of 0-bytes, followed by a 1. |
| */ |
| unsigned int equals1 = constant_time_eq(db[i], 1); |
| unsigned int equals0 = constant_time_is_zero(db[i]); |
| one_index = constant_time_select_int(~found_one_byte & equals1, |
| i, one_index); |
| found_one_byte |= equals1; |
| good &= (found_one_byte | equals0); |
| } |
| |
| good &= found_one_byte; |
| |
| /* |
| * At this point |good| is zero unless the plaintext was valid, |
| * so plaintext-awareness ensures timing side-channels are no longer a |
| * concern. |
| */ |
| msg_index = one_index + 1; |
| mlen = dblen - msg_index; |
| |
| /* |
| * For good measure, do this check in constant time as well. |
| */ |
| good &= constant_time_ge(tlen, mlen); |
| |
| /* |
| * Move the result in-place by |dblen|-|mdlen|-1-|mlen| bytes to the left. |
| * Then if |good| move |mlen| bytes from |db|+|mdlen|+1 to |to|. |
| * Otherwise leave |to| unchanged. |
| * Copy the memory back in a way that does not reveal the size of |
| * the data being copied via a timing side channel. This requires copying |
| * parts of the buffer multiple times based on the bits set in the real |
| * length. Clear bits do a non-copy with identical access pattern. |
| * The loop below has overall complexity of O(N*log(N)). |
| */ |
| tlen = constant_time_select_int(constant_time_lt(dblen - mdlen - 1, tlen), |
| dblen - mdlen - 1, tlen); |
| for (msg_index = 1; msg_index < dblen - mdlen - 1; msg_index <<= 1) { |
| mask = ~constant_time_eq(msg_index & (dblen - mdlen - 1 - mlen), 0); |
| for (i = mdlen + 1; i < dblen - msg_index; i++) |
| db[i] = constant_time_select_8(mask, db[i + msg_index], db[i]); |
| } |
| for (i = 0; i < tlen; i++) { |
| mask = good & constant_time_lt(i, mlen); |
| to[i] = constant_time_select_8(mask, db[i + mdlen + 1], to[i]); |
| } |
| |
| #ifndef FIPS_MODULE |
| /* |
| * To avoid chosen ciphertext attacks, the error message should not |
| * reveal which kind of decoding error happened. |
| * |
| * This trick doesn't work in the FIPS provider because libcrypto manages |
| * the error stack. Instead we opt not to put an error on the stack at all |
| * in case of padding failure in the FIPS provider. |
| */ |
| ERR_raise(ERR_LIB_RSA, RSA_R_OAEP_DECODING_ERROR); |
| err_clear_last_constant_time(1 & good); |
| #endif |
| cleanup: |
| OPENSSL_cleanse(seed, sizeof(seed)); |
| OPENSSL_clear_free(db, dblen); |
| OPENSSL_clear_free(em, num); |
| |
| return constant_time_select_int(good, mlen, -1); |
| } |
| |
| /* |
| * Mask Generation Function corresponding to section 7.2.2.2 of NIST SP 800-56B. |
| * The variables are named differently to NIST: |
| * mask (T) and len (maskLen)are the returned mask. |
| * seed (mgfSeed). |
| * The range checking steps inm the process are performed outside. |
| */ |
| int PKCS1_MGF1(unsigned char *mask, long len, |
| const unsigned char *seed, long seedlen, const EVP_MD *dgst) |
| { |
| long i, outlen = 0; |
| unsigned char cnt[4]; |
| EVP_MD_CTX *c = EVP_MD_CTX_new(); |
| unsigned char md[EVP_MAX_MD_SIZE]; |
| int mdlen; |
| int rv = -1; |
| |
| if (c == NULL) |
| goto err; |
| mdlen = EVP_MD_get_size(dgst); |
| if (mdlen < 0) |
| goto err; |
| /* step 4 */ |
| for (i = 0; outlen < len; i++) { |
| /* step 4a: D = I2BS(counter, 4) */ |
| cnt[0] = (unsigned char)((i >> 24) & 255); |
| cnt[1] = (unsigned char)((i >> 16) & 255); |
| cnt[2] = (unsigned char)((i >> 8)) & 255; |
| cnt[3] = (unsigned char)(i & 255); |
| /* step 4b: T =T || hash(mgfSeed || D) */ |
| if (!EVP_DigestInit_ex(c, dgst, NULL) |
| || !EVP_DigestUpdate(c, seed, seedlen) |
| || !EVP_DigestUpdate(c, cnt, 4)) |
| goto err; |
| if (outlen + mdlen <= len) { |
| if (!EVP_DigestFinal_ex(c, mask + outlen, NULL)) |
| goto err; |
| outlen += mdlen; |
| } else { |
| if (!EVP_DigestFinal_ex(c, md, NULL)) |
| goto err; |
| memcpy(mask + outlen, md, len - outlen); |
| outlen = len; |
| } |
| } |
| rv = 0; |
| err: |
| OPENSSL_cleanse(md, sizeof(md)); |
| EVP_MD_CTX_free(c); |
| return rv; |
| } |