blob: c5a664dc0b0dd6522a05a6546db2b3c36be5cdff [file] [log] [blame]
/*
* Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* RSA low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/bn.h>
#include <openssl/rsa.h>
#include <openssl/objects.h>
#ifndef FIPS_MODULE
# ifndef OPENSSL_NO_MD2
# include <openssl/md2.h> /* uses MD2_DIGEST_LENGTH */
# endif
# ifndef OPENSSL_NO_MD4
# include <openssl/md4.h> /* uses MD4_DIGEST_LENGTH */
# endif
# ifndef OPENSSL_NO_MD5
# include <openssl/md5.h> /* uses MD5_DIGEST_LENGTH */
# endif
# ifndef OPENSSL_NO_MDC2
# include <openssl/mdc2.h> /* uses MDC2_DIGEST_LENGTH */
# endif
# ifndef OPENSSL_NO_RMD160
# include <openssl/ripemd.h> /* uses RIPEMD160_DIGEST_LENGTH */
# endif
#endif
#include <openssl/sha.h> /* uses SHA???_DIGEST_LENGTH */
#include "crypto/rsa.h"
#include "rsa_local.h"
/*
* The general purpose ASN1 code is not available inside the FIPS provider.
* To remove the dependency RSASSA-PKCS1-v1_5 DigestInfo encodings can be
* treated as a special case by pregenerating the required ASN1 encoding.
* This encoding will also be shared by the default provider.
*
* The EMSA-PKCS1-v1_5 encoding method includes an ASN.1 value of type
* DigestInfo, where the type DigestInfo has the syntax
*
* DigestInfo ::= SEQUENCE {
* digestAlgorithm DigestAlgorithm,
* digest OCTET STRING
* }
*
* DigestAlgorithm ::= AlgorithmIdentifier {
* {PKCS1-v1-5DigestAlgorithms}
* }
*
* The AlgorithmIdentifier is a sequence containing the digest OID and
* parameters (a value of type NULL).
*
* The ENCODE_DIGESTINFO_SHA() and ENCODE_DIGESTINFO_MD() macros define an
* initialized array containing the DER encoded DigestInfo for the specified
* SHA or MD digest. The content of the OCTET STRING is not included.
* |name| is the digest name.
* |n| is last byte in the encoded OID for the digest.
* |sz| is the digest length in bytes. It must not be greater than 110.
*/
#define ASN1_SEQUENCE 0x30
#define ASN1_OCTET_STRING 0x04
#define ASN1_NULL 0x05
#define ASN1_OID 0x06
/* SHA OIDs are of the form: (2 16 840 1 101 3 4 2 |n|) */
#define ENCODE_DIGESTINFO_SHA(name, n, sz) \
static const unsigned char digestinfo_##name##_der[] = { \
ASN1_SEQUENCE, 0x11 + sz, \
ASN1_SEQUENCE, 0x0d, \
ASN1_OID, 0x09, 2 * 40 + 16, 0x86, 0x48, 1, 101, 3, 4, 2, n, \
ASN1_NULL, 0x00, \
ASN1_OCTET_STRING, sz \
};
/* MD2, MD4 and MD5 OIDs are of the form: (1 2 840 113549 2 |n|) */
#define ENCODE_DIGESTINFO_MD(name, n, sz) \
static const unsigned char digestinfo_##name##_der[] = { \
ASN1_SEQUENCE, 0x10 + sz, \
ASN1_SEQUENCE, 0x0c, \
ASN1_OID, 0x08, 1 * 40 + 2, 0x86, 0x48, 0x86, 0xf7, 0x0d, 2, n, \
ASN1_NULL, 0x00, \
ASN1_OCTET_STRING, sz \
};
#ifndef FIPS_MODULE
# ifndef OPENSSL_NO_MD2
ENCODE_DIGESTINFO_MD(md2, 0x02, MD2_DIGEST_LENGTH)
# endif
# ifndef OPENSSL_NO_MD4
ENCODE_DIGESTINFO_MD(md4, 0x03, MD4_DIGEST_LENGTH)
# endif
# ifndef OPENSSL_NO_MD5
ENCODE_DIGESTINFO_MD(md5, 0x05, MD5_DIGEST_LENGTH)
# endif
# ifndef OPENSSL_NO_MDC2
/* MDC-2 (2 5 8 3 101) */
static const unsigned char digestinfo_mdc2_der[] = {
ASN1_SEQUENCE, 0x0c + MDC2_DIGEST_LENGTH,
ASN1_SEQUENCE, 0x08,
ASN1_OID, 0x04, 2 * 40 + 5, 8, 3, 101,
ASN1_NULL, 0x00,
ASN1_OCTET_STRING, MDC2_DIGEST_LENGTH
};
# endif
# ifndef OPENSSL_NO_RMD160
/* RIPEMD160 (1 3 36 3 2 1) */
static const unsigned char digestinfo_ripemd160_der[] = {
ASN1_SEQUENCE, 0x0d + RIPEMD160_DIGEST_LENGTH,
ASN1_SEQUENCE, 0x09,
ASN1_OID, 0x05, 1 * 40 + 3, 36, 3, 2, 1,
ASN1_NULL, 0x00,
ASN1_OCTET_STRING, RIPEMD160_DIGEST_LENGTH
};
# endif
#endif /* FIPS_MODULE */
/* SHA-1 (1 3 14 3 2 26) */
static const unsigned char digestinfo_sha1_der[] = {
ASN1_SEQUENCE, 0x0d + SHA_DIGEST_LENGTH,
ASN1_SEQUENCE, 0x09,
ASN1_OID, 0x05, 1 * 40 + 3, 14, 3, 2, 26,
ASN1_NULL, 0x00,
ASN1_OCTET_STRING, SHA_DIGEST_LENGTH
};
ENCODE_DIGESTINFO_SHA(sha256, 0x01, SHA256_DIGEST_LENGTH)
ENCODE_DIGESTINFO_SHA(sha384, 0x02, SHA384_DIGEST_LENGTH)
ENCODE_DIGESTINFO_SHA(sha512, 0x03, SHA512_DIGEST_LENGTH)
ENCODE_DIGESTINFO_SHA(sha224, 0x04, SHA224_DIGEST_LENGTH)
ENCODE_DIGESTINFO_SHA(sha512_224, 0x05, SHA224_DIGEST_LENGTH)
ENCODE_DIGESTINFO_SHA(sha512_256, 0x06, SHA256_DIGEST_LENGTH)
ENCODE_DIGESTINFO_SHA(sha3_224, 0x07, SHA224_DIGEST_LENGTH)
ENCODE_DIGESTINFO_SHA(sha3_256, 0x08, SHA256_DIGEST_LENGTH)
ENCODE_DIGESTINFO_SHA(sha3_384, 0x09, SHA384_DIGEST_LENGTH)
ENCODE_DIGESTINFO_SHA(sha3_512, 0x0a, SHA512_DIGEST_LENGTH)
#define MD_CASE(name) \
case NID_##name: \
*len = sizeof(digestinfo_##name##_der); \
return digestinfo_##name##_der;
const unsigned char *ossl_rsa_digestinfo_encoding(int md_nid, size_t *len)
{
switch (md_nid) {
#ifndef FIPS_MODULE
# ifndef OPENSSL_NO_MDC2
MD_CASE(mdc2)
# endif
# ifndef OPENSSL_NO_MD2
MD_CASE(md2)
# endif
# ifndef OPENSSL_NO_MD4
MD_CASE(md4)
# endif
# ifndef OPENSSL_NO_MD5
MD_CASE(md5)
# endif
# ifndef OPENSSL_NO_RMD160
MD_CASE(ripemd160)
# endif
#endif /* FIPS_MODULE */
MD_CASE(sha1)
MD_CASE(sha224)
MD_CASE(sha256)
MD_CASE(sha384)
MD_CASE(sha512)
MD_CASE(sha512_224)
MD_CASE(sha512_256)
MD_CASE(sha3_224)
MD_CASE(sha3_256)
MD_CASE(sha3_384)
MD_CASE(sha3_512)
default:
return NULL;
}
}
#define MD_NID_CASE(name, sz) \
case NID_##name: \
return sz;
static int digest_sz_from_nid(int nid)
{
switch (nid) {
#ifndef FIPS_MODULE
# ifndef OPENSSL_NO_MDC2
MD_NID_CASE(mdc2, MDC2_DIGEST_LENGTH)
# endif
# ifndef OPENSSL_NO_MD2
MD_NID_CASE(md2, MD2_DIGEST_LENGTH)
# endif
# ifndef OPENSSL_NO_MD4
MD_NID_CASE(md4, MD4_DIGEST_LENGTH)
# endif
# ifndef OPENSSL_NO_MD5
MD_NID_CASE(md5, MD5_DIGEST_LENGTH)
# endif
# ifndef OPENSSL_NO_RMD160
MD_NID_CASE(ripemd160, RIPEMD160_DIGEST_LENGTH)
# endif
#endif /* FIPS_MODULE */
MD_NID_CASE(sha1, SHA_DIGEST_LENGTH)
MD_NID_CASE(sha224, SHA224_DIGEST_LENGTH)
MD_NID_CASE(sha256, SHA256_DIGEST_LENGTH)
MD_NID_CASE(sha384, SHA384_DIGEST_LENGTH)
MD_NID_CASE(sha512, SHA512_DIGEST_LENGTH)
MD_NID_CASE(sha512_224, SHA224_DIGEST_LENGTH)
MD_NID_CASE(sha512_256, SHA256_DIGEST_LENGTH)
MD_NID_CASE(sha3_224, SHA224_DIGEST_LENGTH)
MD_NID_CASE(sha3_256, SHA256_DIGEST_LENGTH)
MD_NID_CASE(sha3_384, SHA384_DIGEST_LENGTH)
MD_NID_CASE(sha3_512, SHA512_DIGEST_LENGTH)
default:
return 0;
}
}
/* Size of an SSL signature: MD5+SHA1 */
#define SSL_SIG_LENGTH 36
/*
* Encodes a DigestInfo prefix of hash |type| and digest |m|, as
* described in EMSA-PKCS1-v1_5-ENCODE, RFC 3447 section 9.2 step 2. This
* encodes the DigestInfo (T and tLen) but does not add the padding.
*
* On success, it returns one and sets |*out| to a newly allocated buffer
* containing the result and |*out_len| to its length. The caller must free
* |*out| with OPENSSL_free(). Otherwise, it returns zero.
*/
static int encode_pkcs1(unsigned char **out, size_t *out_len, int type,
const unsigned char *m, size_t m_len)
{
size_t di_prefix_len, dig_info_len;
const unsigned char *di_prefix;
unsigned char *dig_info;
if (type == NID_undef) {
ERR_raise(ERR_LIB_RSA, RSA_R_UNKNOWN_ALGORITHM_TYPE);
return 0;
}
di_prefix = ossl_rsa_digestinfo_encoding(type, &di_prefix_len);
if (di_prefix == NULL) {
ERR_raise(ERR_LIB_RSA,
RSA_R_THE_ASN1_OBJECT_IDENTIFIER_IS_NOT_KNOWN_FOR_THIS_MD);
return 0;
}
dig_info_len = di_prefix_len + m_len;
dig_info = OPENSSL_malloc(dig_info_len);
if (dig_info == NULL) {
ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
return 0;
}
memcpy(dig_info, di_prefix, di_prefix_len);
memcpy(dig_info + di_prefix_len, m, m_len);
*out = dig_info;
*out_len = dig_info_len;
return 1;
}
int RSA_sign(int type, const unsigned char *m, unsigned int m_len,
unsigned char *sigret, unsigned int *siglen, RSA *rsa)
{
int encrypt_len, ret = 0;
size_t encoded_len = 0;
unsigned char *tmps = NULL;
const unsigned char *encoded = NULL;
#ifndef FIPS_MODULE
if (rsa->meth->rsa_sign != NULL)
return rsa->meth->rsa_sign(type, m, m_len, sigret, siglen, rsa);
#endif /* FIPS_MODULE */
/* Compute the encoded digest. */
if (type == NID_md5_sha1) {
/*
* NID_md5_sha1 corresponds to the MD5/SHA1 combination in TLS 1.1 and
* earlier. It has no DigestInfo wrapper but otherwise is
* RSASSA-PKCS1-v1_5.
*/
if (m_len != SSL_SIG_LENGTH) {
ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_MESSAGE_LENGTH);
return 0;
}
encoded_len = SSL_SIG_LENGTH;
encoded = m;
} else {
if (!encode_pkcs1(&tmps, &encoded_len, type, m, m_len))
goto err;
encoded = tmps;
}
if (encoded_len + RSA_PKCS1_PADDING_SIZE > (size_t)RSA_size(rsa)) {
ERR_raise(ERR_LIB_RSA, RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY);
goto err;
}
encrypt_len = RSA_private_encrypt((int)encoded_len, encoded, sigret, rsa,
RSA_PKCS1_PADDING);
if (encrypt_len <= 0)
goto err;
*siglen = encrypt_len;
ret = 1;
err:
OPENSSL_clear_free(tmps, encoded_len);
return ret;
}
/*
* Verify an RSA signature in |sigbuf| using |rsa|.
* |type| is the NID of the digest algorithm to use.
* If |rm| is NULL, it verifies the signature for digest |m|, otherwise
* it recovers the digest from the signature, writing the digest to |rm| and
* the length to |*prm_len|.
*
* It returns one on successful verification or zero otherwise.
*/
int ossl_rsa_verify(int type, const unsigned char *m, unsigned int m_len,
unsigned char *rm, size_t *prm_len,
const unsigned char *sigbuf, size_t siglen, RSA *rsa)
{
int len, ret = 0;
size_t decrypt_len, encoded_len = 0;
unsigned char *decrypt_buf = NULL, *encoded = NULL;
if (siglen != (size_t)RSA_size(rsa)) {
ERR_raise(ERR_LIB_RSA, RSA_R_WRONG_SIGNATURE_LENGTH);
return 0;
}
/* Recover the encoded digest. */
decrypt_buf = OPENSSL_malloc(siglen);
if (decrypt_buf == NULL) {
ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
goto err;
}
len = RSA_public_decrypt((int)siglen, sigbuf, decrypt_buf, rsa,
RSA_PKCS1_PADDING);
if (len <= 0)
goto err;
decrypt_len = len;
#ifndef FIPS_MODULE
if (type == NID_md5_sha1) {
/*
* NID_md5_sha1 corresponds to the MD5/SHA1 combination in TLS 1.1 and
* earlier. It has no DigestInfo wrapper but otherwise is
* RSASSA-PKCS1-v1_5.
*/
if (decrypt_len != SSL_SIG_LENGTH) {
ERR_raise(ERR_LIB_RSA, RSA_R_BAD_SIGNATURE);
goto err;
}
if (rm != NULL) {
memcpy(rm, decrypt_buf, SSL_SIG_LENGTH);
*prm_len = SSL_SIG_LENGTH;
} else {
if (m_len != SSL_SIG_LENGTH) {
ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_MESSAGE_LENGTH);
goto err;
}
if (memcmp(decrypt_buf, m, SSL_SIG_LENGTH) != 0) {
ERR_raise(ERR_LIB_RSA, RSA_R_BAD_SIGNATURE);
goto err;
}
}
} else if (type == NID_mdc2 && decrypt_len == 2 + 16
&& decrypt_buf[0] == 0x04 && decrypt_buf[1] == 0x10) {
/*
* Oddball MDC2 case: signature can be OCTET STRING. check for correct
* tag and length octets.
*/
if (rm != NULL) {
memcpy(rm, decrypt_buf + 2, 16);
*prm_len = 16;
} else {
if (m_len != 16) {
ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_MESSAGE_LENGTH);
goto err;
}
if (memcmp(m, decrypt_buf + 2, 16) != 0) {
ERR_raise(ERR_LIB_RSA, RSA_R_BAD_SIGNATURE);
goto err;
}
}
} else
#endif /* FIPS_MODULE */
{
/*
* If recovering the digest, extract a digest-sized output from the end
* of |decrypt_buf| for |encode_pkcs1|, then compare the decryption
* output as in a standard verification.
*/
if (rm != NULL) {
len = digest_sz_from_nid(type);
if (len <= 0)
goto err;
m_len = (unsigned int)len;
if (m_len > decrypt_len) {
ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_DIGEST_LENGTH);
goto err;
}
m = decrypt_buf + decrypt_len - m_len;
}
/* Construct the encoded digest and ensure it matches. */
if (!encode_pkcs1(&encoded, &encoded_len, type, m, m_len))
goto err;
if (encoded_len != decrypt_len
|| memcmp(encoded, decrypt_buf, encoded_len) != 0) {
ERR_raise(ERR_LIB_RSA, RSA_R_BAD_SIGNATURE);
goto err;
}
/* Output the recovered digest. */
if (rm != NULL) {
memcpy(rm, m, m_len);
*prm_len = m_len;
}
}
ret = 1;
err:
OPENSSL_clear_free(encoded, encoded_len);
OPENSSL_clear_free(decrypt_buf, siglen);
return ret;
}
int RSA_verify(int type, const unsigned char *m, unsigned int m_len,
const unsigned char *sigbuf, unsigned int siglen, RSA *rsa)
{
if (rsa->meth->rsa_verify != NULL)
return rsa->meth->rsa_verify(type, m, m_len, sigbuf, siglen, rsa);
return ossl_rsa_verify(type, m, m_len, NULL, NULL, sigbuf, siglen, rsa);
}