| /* |
| * Copyright 2001-2021 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| /*- |
| * IBM S390X support for AES GCM. |
| * This file is included by cipher_aes_gcm_hw.c |
| */ |
| |
| /* iv + padding length for iv lengths != 12 */ |
| #define S390X_gcm_ivpadlen(i) ((((i) + 15) >> 4 << 4) + 16) |
| |
| /* Additional flag or'ed to fc for decryption */ |
| #define S390X_gcm_decrypt_flag(ctx) (((ctx)->enc) ? 0 : S390X_DECRYPT) |
| |
| #define S390X_gcm_fc(A,C) ((A)->plat.s390x.fc | (A)->plat.s390x.hsflag |\ |
| S390X_gcm_decrypt_flag((C))) |
| |
| static int s390x_aes_gcm_initkey(PROV_GCM_CTX *ctx, |
| const unsigned char *key, size_t keylen) |
| { |
| PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx; |
| |
| ctx->key_set = 1; |
| memcpy(&actx->plat.s390x.param.kma.k, key, keylen); |
| actx->plat.s390x.fc = S390X_AES_FC(keylen); |
| return 1; |
| } |
| |
| static int s390x_aes_gcm_setiv(PROV_GCM_CTX *ctx, const unsigned char *iv, |
| size_t ivlen) |
| { |
| PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx; |
| S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma; |
| |
| kma->t.g[0] = 0; |
| kma->t.g[1] = 0; |
| kma->tpcl = 0; |
| kma->taadl = 0; |
| actx->plat.s390x.mreslen = 0; |
| actx->plat.s390x.areslen = 0; |
| actx->plat.s390x.kreslen = 0; |
| |
| if (ivlen == GCM_IV_DEFAULT_SIZE) { |
| memcpy(&kma->j0, iv, ivlen); |
| kma->j0.w[3] = 1; |
| kma->cv.w = 1; |
| actx->plat.s390x.hsflag = 0; |
| } else { |
| unsigned long long ivbits = ivlen << 3; |
| size_t len = S390X_gcm_ivpadlen(ivlen); |
| unsigned char iv_zero_pad[S390X_gcm_ivpadlen(GCM_IV_MAX_SIZE)]; |
| /* |
| * The IV length needs to be zero padded to be a multiple of 16 bytes |
| * followed by 8 bytes of zeros and 8 bytes for the IV length. |
| * The GHASH of this value can then be calculated. |
| */ |
| memcpy(iv_zero_pad, iv, ivlen); |
| memset(iv_zero_pad + ivlen, 0, len - ivlen); |
| memcpy(iv_zero_pad + len - sizeof(ivbits), &ivbits, sizeof(ivbits)); |
| /* |
| * Calculate the ghash of the iv - the result is stored into the tag |
| * param. |
| */ |
| s390x_kma(iv_zero_pad, len, NULL, 0, NULL, actx->plat.s390x.fc, kma); |
| actx->plat.s390x.hsflag = S390X_KMA_HS; /* The hash subkey is set */ |
| |
| /* Copy the 128 bit GHASH result into J0 and clear the tag */ |
| kma->j0.g[0] = kma->t.g[0]; |
| kma->j0.g[1] = kma->t.g[1]; |
| kma->t.g[0] = 0; |
| kma->t.g[1] = 0; |
| /* Set the 32 bit counter */ |
| kma->cv.w = kma->j0.w[3]; |
| } |
| return 1; |
| } |
| |
| static int s390x_aes_gcm_cipher_final(PROV_GCM_CTX *ctx, unsigned char *tag) |
| { |
| PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx; |
| S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma; |
| unsigned char out[AES_BLOCK_SIZE]; |
| unsigned int fc; |
| int rc; |
| |
| kma->taadl <<= 3; |
| kma->tpcl <<= 3; |
| fc = S390X_gcm_fc(actx, ctx) | S390X_KMA_LAAD | S390X_KMA_LPC; |
| s390x_kma(actx->plat.s390x.ares, actx->plat.s390x.areslen, |
| actx->plat.s390x.mres, actx->plat.s390x.mreslen, out, |
| fc, kma); |
| |
| /* gctx->mres already returned to the caller */ |
| OPENSSL_cleanse(out, actx->plat.s390x.mreslen); |
| |
| if (ctx->enc) { |
| ctx->taglen = GCM_TAG_MAX_SIZE; |
| memcpy(tag, kma->t.b, ctx->taglen); |
| rc = 1; |
| } else { |
| rc = (CRYPTO_memcmp(tag, kma->t.b, ctx->taglen) == 0); |
| } |
| return rc; |
| } |
| |
| static int s390x_aes_gcm_one_shot(PROV_GCM_CTX *ctx, |
| unsigned char *aad, size_t aad_len, |
| const unsigned char *in, size_t in_len, |
| unsigned char *out, |
| unsigned char *tag, size_t taglen) |
| { |
| PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx; |
| S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma; |
| unsigned int fc; |
| int rc; |
| |
| kma->taadl = aad_len << 3; |
| kma->tpcl = in_len << 3; |
| fc = S390X_gcm_fc(actx, ctx) | S390X_KMA_LAAD | S390X_KMA_LPC; |
| s390x_kma(aad, aad_len, in, in_len, out, fc, kma); |
| |
| if (ctx->enc) { |
| memcpy(tag, kma->t.b, taglen); |
| rc = 1; |
| } else { |
| rc = (CRYPTO_memcmp(tag, kma->t.b, taglen) == 0); |
| } |
| return rc; |
| } |
| |
| /* |
| * Process additional authenticated data. Returns 1 on success. Code is |
| * big-endian. |
| */ |
| static int s390x_aes_gcm_aad_update(PROV_GCM_CTX *ctx, |
| const unsigned char *aad, size_t len) |
| { |
| PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx; |
| S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma; |
| unsigned long long alen; |
| unsigned int fc; |
| int n, rem; |
| |
| /* If already processed pt/ct then error */ |
| if (kma->tpcl != 0) |
| return 0; |
| |
| /* update the total aad length */ |
| alen = kma->taadl + len; |
| if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len)) |
| return 0; |
| kma->taadl = alen; |
| |
| /* check if there is any existing aad data from a previous add */ |
| n = actx->plat.s390x.areslen; |
| if (n) { |
| /* add additional data to a buffer until it has 16 bytes */ |
| while (n && len) { |
| actx->plat.s390x.ares[n] = *aad; |
| ++aad; |
| --len; |
| n = (n + 1) & 0xf; |
| } |
| /* ctx->ares contains a complete block if offset has wrapped around */ |
| if (!n) { |
| fc = S390X_gcm_fc(actx, ctx); |
| s390x_kma(actx->plat.s390x.ares, 16, NULL, 0, NULL, fc, kma); |
| actx->plat.s390x.hsflag = S390X_KMA_HS; |
| } |
| actx->plat.s390x.areslen = n; |
| } |
| |
| /* If there are leftover bytes (< 128 bits) save them for next time */ |
| rem = len & 0xf; |
| /* Add any remaining 16 byte blocks (128 bit each) */ |
| len &= ~(size_t)0xf; |
| if (len) { |
| fc = S390X_gcm_fc(actx, ctx); |
| s390x_kma(aad, len, NULL, 0, NULL, fc, kma); |
| actx->plat.s390x.hsflag = S390X_KMA_HS; |
| aad += len; |
| } |
| |
| if (rem) { |
| actx->plat.s390x.areslen = rem; |
| |
| do { |
| --rem; |
| actx->plat.s390x.ares[rem] = aad[rem]; |
| } while (rem); |
| } |
| return 1; |
| } |
| |
| /*- |
| * En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 1 for |
| * success. Code is big-endian. |
| */ |
| static int s390x_aes_gcm_cipher_update(PROV_GCM_CTX *ctx, |
| const unsigned char *in, size_t len, |
| unsigned char *out) |
| { |
| PROV_AES_GCM_CTX *actx = (PROV_AES_GCM_CTX *)ctx; |
| S390X_KMA_PARAMS *kma = &actx->plat.s390x.param.kma; |
| const unsigned char *inptr; |
| unsigned long long mlen; |
| unsigned int fc; |
| union { |
| unsigned int w[4]; |
| unsigned char b[16]; |
| } buf; |
| size_t inlen; |
| int n, rem, i; |
| |
| mlen = kma->tpcl + len; |
| if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) |
| return 0; |
| kma->tpcl = mlen; |
| |
| fc = S390X_gcm_fc(actx, ctx) | S390X_KMA_LAAD; |
| n = actx->plat.s390x.mreslen; |
| if (n) { |
| inptr = in; |
| inlen = len; |
| while (n && inlen) { |
| actx->plat.s390x.mres[n] = *inptr; |
| n = (n + 1) & 0xf; |
| ++inptr; |
| --inlen; |
| } |
| /* ctx->mres contains a complete block if offset has wrapped around */ |
| if (!n) { |
| s390x_kma(actx->plat.s390x.ares, actx->plat.s390x.areslen, |
| actx->plat.s390x.mres, 16, buf.b, fc, kma); |
| actx->plat.s390x.hsflag = S390X_KMA_HS; |
| fc |= S390X_KMA_HS; |
| actx->plat.s390x.areslen = 0; |
| |
| /* previous call already encrypted/decrypted its remainder, |
| * see comment below */ |
| n = actx->plat.s390x.mreslen; |
| while (n) { |
| *out = buf.b[n]; |
| n = (n + 1) & 0xf; |
| ++out; |
| ++in; |
| --len; |
| } |
| actx->plat.s390x.mreslen = 0; |
| } |
| } |
| |
| rem = len & 0xf; |
| |
| len &= ~(size_t)0xf; |
| if (len) { |
| s390x_kma(actx->plat.s390x.ares, actx->plat.s390x.areslen, in, len, out, |
| fc, kma); |
| in += len; |
| out += len; |
| actx->plat.s390x.hsflag = S390X_KMA_HS; |
| actx->plat.s390x.areslen = 0; |
| } |
| |
| /*- |
| * If there is a remainder, it has to be saved such that it can be |
| * processed by kma later. However, we also have to do the for-now |
| * unauthenticated encryption/decryption part here and now... |
| */ |
| if (rem) { |
| if (!actx->plat.s390x.mreslen) { |
| buf.w[0] = kma->j0.w[0]; |
| buf.w[1] = kma->j0.w[1]; |
| buf.w[2] = kma->j0.w[2]; |
| buf.w[3] = kma->cv.w + 1; |
| s390x_km(buf.b, 16, actx->plat.s390x.kres, |
| fc & 0x1f, &kma->k); |
| } |
| |
| n = actx->plat.s390x.mreslen; |
| for (i = 0; i < rem; i++) { |
| actx->plat.s390x.mres[n + i] = in[i]; |
| out[i] = in[i] ^ actx->plat.s390x.kres[n + i]; |
| } |
| actx->plat.s390x.mreslen += rem; |
| } |
| return 1; |
| } |
| |
| static const PROV_GCM_HW s390x_aes_gcm = { |
| s390x_aes_gcm_initkey, |
| s390x_aes_gcm_setiv, |
| s390x_aes_gcm_aad_update, |
| s390x_aes_gcm_cipher_update, |
| s390x_aes_gcm_cipher_final, |
| s390x_aes_gcm_one_shot |
| }; |
| |
| const PROV_GCM_HW *ossl_prov_aes_hw_gcm(size_t keybits) |
| { |
| if ((keybits == 128 && S390X_aes_128_gcm_CAPABLE) |
| || (keybits == 192 && S390X_aes_192_gcm_CAPABLE) |
| || (keybits == 256 && S390X_aes_256_gcm_CAPABLE)) |
| return &s390x_aes_gcm; |
| return &aes_gcm; |
| } |