| /* | 
 |  * Copyright 2011-2022 The OpenSSL Project Authors. All Rights Reserved. | 
 |  * | 
 |  * Licensed under the Apache License 2.0 (the "License").  You may not use | 
 |  * this file except in compliance with the License.  You can obtain a copy | 
 |  * in the file LICENSE in the source distribution or at | 
 |  * https://www.openssl.org/source/license.html | 
 |  */ | 
 |  | 
 | /* | 
 |  * AES low level APIs are deprecated for public use, but still ok for internal | 
 |  * use where we're using them to implement the higher level EVP interface, as is | 
 |  * the case here. | 
 |  */ | 
 | #include "internal/deprecated.h" | 
 |  | 
 | #include <stdio.h> | 
 | #include <string.h> | 
 | #include <openssl/opensslconf.h> | 
 | #include <openssl/evp.h> | 
 | #include <openssl/objects.h> | 
 | #include <openssl/aes.h> | 
 | #include <openssl/sha.h> | 
 | #include <openssl/rand.h> | 
 | #include "internal/cryptlib.h" | 
 | #include "crypto/modes.h" | 
 | #include "crypto/evp.h" | 
 | #include "internal/constant_time.h" | 
 | #include "evp_local.h" | 
 |  | 
 | typedef struct { | 
 |     AES_KEY ks; | 
 |     SHA_CTX head, tail, md; | 
 |     size_t payload_length;      /* AAD length in decrypt case */ | 
 |     union { | 
 |         unsigned int tls_ver; | 
 |         unsigned char tls_aad[16]; /* 13 used */ | 
 |     } aux; | 
 | } EVP_AES_HMAC_SHA1; | 
 |  | 
 | #define NO_PAYLOAD_LENGTH       ((size_t)-1) | 
 |  | 
 | #if     defined(AES_ASM) &&     ( \ | 
 |         defined(__x86_64)       || defined(__x86_64__)  || \ | 
 |         defined(_M_AMD64)       || defined(_M_X64)      ) | 
 |  | 
 | # define AESNI_CAPABLE   (1<<(57-32)) | 
 |  | 
 | int aesni_set_encrypt_key(const unsigned char *userKey, int bits, | 
 |                           AES_KEY *key); | 
 | int aesni_set_decrypt_key(const unsigned char *userKey, int bits, | 
 |                           AES_KEY *key); | 
 |  | 
 | void aesni_cbc_encrypt(const unsigned char *in, | 
 |                        unsigned char *out, | 
 |                        size_t length, | 
 |                        const AES_KEY *key, unsigned char *ivec, int enc); | 
 |  | 
 | void aesni_cbc_sha1_enc(const void *inp, void *out, size_t blocks, | 
 |                         const AES_KEY *key, unsigned char iv[16], | 
 |                         SHA_CTX *ctx, const void *in0); | 
 |  | 
 | void aesni256_cbc_sha1_dec(const void *inp, void *out, size_t blocks, | 
 |                            const AES_KEY *key, unsigned char iv[16], | 
 |                            SHA_CTX *ctx, const void *in0); | 
 |  | 
 | # define data(ctx) ((EVP_AES_HMAC_SHA1 *)EVP_CIPHER_CTX_get_cipher_data(ctx)) | 
 |  | 
 | static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx, | 
 |                                         const unsigned char *inkey, | 
 |                                         const unsigned char *iv, int enc) | 
 | { | 
 |     EVP_AES_HMAC_SHA1 *key = data(ctx); | 
 |     int ret; | 
 |     const int keylen = EVP_CIPHER_CTX_get_key_length(ctx) * 8; | 
 |  | 
 |     if (keylen <= 0) { | 
 |         ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); | 
 |         return 0; | 
 |     } | 
 |     if (enc) | 
 |         ret = aesni_set_encrypt_key(inkey, keylen, &key->ks); | 
 |     else | 
 |         ret = aesni_set_decrypt_key(inkey, keylen, &key->ks); | 
 |  | 
 |     SHA1_Init(&key->head);      /* handy when benchmarking */ | 
 |     key->tail = key->head; | 
 |     key->md = key->head; | 
 |  | 
 |     key->payload_length = NO_PAYLOAD_LENGTH; | 
 |  | 
 |     return ret < 0 ? 0 : 1; | 
 | } | 
 |  | 
 | # define STITCHED_CALL | 
 | # undef  STITCHED_DECRYPT_CALL | 
 |  | 
 | # if !defined(STITCHED_CALL) | 
 | #  define aes_off 0 | 
 | # endif | 
 |  | 
 | void sha1_block_data_order(void *c, const void *p, size_t len); | 
 |  | 
 | static void sha1_update(SHA_CTX *c, const void *data, size_t len) | 
 | { | 
 |     const unsigned char *ptr = data; | 
 |     size_t res; | 
 |  | 
 |     if ((res = c->num)) { | 
 |         res = SHA_CBLOCK - res; | 
 |         if (len < res) | 
 |             res = len; | 
 |         SHA1_Update(c, ptr, res); | 
 |         ptr += res; | 
 |         len -= res; | 
 |     } | 
 |  | 
 |     res = len % SHA_CBLOCK; | 
 |     len -= res; | 
 |  | 
 |     if (len) { | 
 |         sha1_block_data_order(c, ptr, len / SHA_CBLOCK); | 
 |  | 
 |         ptr += len; | 
 |         c->Nh += len >> 29; | 
 |         c->Nl += len <<= 3; | 
 |         if (c->Nl < (unsigned int)len) | 
 |             c->Nh++; | 
 |     } | 
 |  | 
 |     if (res) | 
 |         SHA1_Update(c, ptr, res); | 
 | } | 
 |  | 
 | # ifdef SHA1_Update | 
 | #  undef SHA1_Update | 
 | # endif | 
 | # define SHA1_Update sha1_update | 
 |  | 
 | # if !defined(OPENSSL_NO_MULTIBLOCK) | 
 |  | 
 | typedef struct { | 
 |     unsigned int A[8], B[8], C[8], D[8], E[8]; | 
 | } SHA1_MB_CTX; | 
 | typedef struct { | 
 |     const unsigned char *ptr; | 
 |     int blocks; | 
 | } HASH_DESC; | 
 |  | 
 | void sha1_multi_block(SHA1_MB_CTX *, const HASH_DESC *, int); | 
 |  | 
 | typedef struct { | 
 |     const unsigned char *inp; | 
 |     unsigned char *out; | 
 |     int blocks; | 
 |     u64 iv[2]; | 
 | } CIPH_DESC; | 
 |  | 
 | void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int); | 
 |  | 
 | static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA1 *key, | 
 |                                          unsigned char *out, | 
 |                                          const unsigned char *inp, | 
 |                                          size_t inp_len, int n4x) | 
 | {                               /* n4x is 1 or 2 */ | 
 |     HASH_DESC hash_d[8], edges[8]; | 
 |     CIPH_DESC ciph_d[8]; | 
 |     unsigned char storage[sizeof(SHA1_MB_CTX) + 32]; | 
 |     union { | 
 |         u64 q[16]; | 
 |         u32 d[32]; | 
 |         u8 c[128]; | 
 |     } blocks[8]; | 
 |     SHA1_MB_CTX *ctx; | 
 |     unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed = | 
 |         0; | 
 |     size_t ret = 0; | 
 |     u8 *IVs; | 
 | #  if defined(BSWAP8) | 
 |     u64 seqnum; | 
 | #  endif | 
 |  | 
 |     /* ask for IVs in bulk */ | 
 |     if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0) | 
 |         return 0; | 
 |  | 
 |     ctx = (SHA1_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); /* align */ | 
 |  | 
 |     frag = (unsigned int)inp_len >> (1 + n4x); | 
 |     last = (unsigned int)inp_len + frag - (frag << (1 + n4x)); | 
 |     if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) { | 
 |         frag++; | 
 |         last -= x4 - 1; | 
 |     } | 
 |  | 
 |     packlen = 5 + 16 + ((frag + 20 + 16) & -16); | 
 |  | 
 |     /* populate descriptors with pointers and IVs */ | 
 |     hash_d[0].ptr = inp; | 
 |     ciph_d[0].inp = inp; | 
 |     /* 5+16 is place for header and explicit IV */ | 
 |     ciph_d[0].out = out + 5 + 16; | 
 |     memcpy(ciph_d[0].out - 16, IVs, 16); | 
 |     memcpy(ciph_d[0].iv, IVs, 16); | 
 |     IVs += 16; | 
 |  | 
 |     for (i = 1; i < x4; i++) { | 
 |         ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag; | 
 |         ciph_d[i].out = ciph_d[i - 1].out + packlen; | 
 |         memcpy(ciph_d[i].out - 16, IVs, 16); | 
 |         memcpy(ciph_d[i].iv, IVs, 16); | 
 |         IVs += 16; | 
 |     } | 
 |  | 
 | #  if defined(BSWAP8) | 
 |     memcpy(blocks[0].c, key->md.data, 8); | 
 |     seqnum = BSWAP8(blocks[0].q[0]); | 
 | #  endif | 
 |     for (i = 0; i < x4; i++) { | 
 |         unsigned int len = (i == (x4 - 1) ? last : frag); | 
 | #  if !defined(BSWAP8) | 
 |         unsigned int carry, j; | 
 | #  endif | 
 |  | 
 |         ctx->A[i] = key->md.h0; | 
 |         ctx->B[i] = key->md.h1; | 
 |         ctx->C[i] = key->md.h2; | 
 |         ctx->D[i] = key->md.h3; | 
 |         ctx->E[i] = key->md.h4; | 
 |  | 
 |         /* fix seqnum */ | 
 | #  if defined(BSWAP8) | 
 |         blocks[i].q[0] = BSWAP8(seqnum + i); | 
 | #  else | 
 |         for (carry = i, j = 8; j--;) { | 
 |             blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry; | 
 |             carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1); | 
 |         } | 
 | #  endif | 
 |         blocks[i].c[8] = ((u8 *)key->md.data)[8]; | 
 |         blocks[i].c[9] = ((u8 *)key->md.data)[9]; | 
 |         blocks[i].c[10] = ((u8 *)key->md.data)[10]; | 
 |         /* fix length */ | 
 |         blocks[i].c[11] = (u8)(len >> 8); | 
 |         blocks[i].c[12] = (u8)(len); | 
 |  | 
 |         memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13); | 
 |         hash_d[i].ptr += 64 - 13; | 
 |         hash_d[i].blocks = (len - (64 - 13)) / 64; | 
 |  | 
 |         edges[i].ptr = blocks[i].c; | 
 |         edges[i].blocks = 1; | 
 |     } | 
 |  | 
 |     /* hash 13-byte headers and first 64-13 bytes of inputs */ | 
 |     sha1_multi_block(ctx, edges, n4x); | 
 |     /* hash bulk inputs */ | 
 | #  define MAXCHUNKSIZE    2048 | 
 | #  if     MAXCHUNKSIZE%64 | 
 | #   error  "MAXCHUNKSIZE is not divisible by 64" | 
 | #  elif   MAXCHUNKSIZE | 
 |     /* | 
 |      * goal is to minimize pressure on L1 cache by moving in shorter steps, | 
 |      * so that hashed data is still in the cache by the time we encrypt it | 
 |      */ | 
 |     minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64; | 
 |     if (minblocks > MAXCHUNKSIZE / 64) { | 
 |         for (i = 0; i < x4; i++) { | 
 |             edges[i].ptr = hash_d[i].ptr; | 
 |             edges[i].blocks = MAXCHUNKSIZE / 64; | 
 |             ciph_d[i].blocks = MAXCHUNKSIZE / 16; | 
 |         } | 
 |         do { | 
 |             sha1_multi_block(ctx, edges, n4x); | 
 |             aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x); | 
 |  | 
 |             for (i = 0; i < x4; i++) { | 
 |                 edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE; | 
 |                 hash_d[i].blocks -= MAXCHUNKSIZE / 64; | 
 |                 edges[i].blocks = MAXCHUNKSIZE / 64; | 
 |                 ciph_d[i].inp += MAXCHUNKSIZE; | 
 |                 ciph_d[i].out += MAXCHUNKSIZE; | 
 |                 ciph_d[i].blocks = MAXCHUNKSIZE / 16; | 
 |                 memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16); | 
 |             } | 
 |             processed += MAXCHUNKSIZE; | 
 |             minblocks -= MAXCHUNKSIZE / 64; | 
 |         } while (minblocks > MAXCHUNKSIZE / 64); | 
 |     } | 
 | #  endif | 
 | #  undef  MAXCHUNKSIZE | 
 |     sha1_multi_block(ctx, hash_d, n4x); | 
 |  | 
 |     memset(blocks, 0, sizeof(blocks)); | 
 |     for (i = 0; i < x4; i++) { | 
 |         unsigned int len = (i == (x4 - 1) ? last : frag), | 
 |             off = hash_d[i].blocks * 64; | 
 |         const unsigned char *ptr = hash_d[i].ptr + off; | 
 |  | 
 |         off = (len - processed) - (64 - 13) - off; /* remainder actually */ | 
 |         memcpy(blocks[i].c, ptr, off); | 
 |         blocks[i].c[off] = 0x80; | 
 |         len += 64 + 13;         /* 64 is HMAC header */ | 
 |         len *= 8;               /* convert to bits */ | 
 |         if (off < (64 - 8)) { | 
 | #  ifdef BSWAP4 | 
 |             blocks[i].d[15] = BSWAP4(len); | 
 | #  else | 
 |             PUTU32(blocks[i].c + 60, len); | 
 | #  endif | 
 |             edges[i].blocks = 1; | 
 |         } else { | 
 | #  ifdef BSWAP4 | 
 |             blocks[i].d[31] = BSWAP4(len); | 
 | #  else | 
 |             PUTU32(blocks[i].c + 124, len); | 
 | #  endif | 
 |             edges[i].blocks = 2; | 
 |         } | 
 |         edges[i].ptr = blocks[i].c; | 
 |     } | 
 |  | 
 |     /* hash input tails and finalize */ | 
 |     sha1_multi_block(ctx, edges, n4x); | 
 |  | 
 |     memset(blocks, 0, sizeof(blocks)); | 
 |     for (i = 0; i < x4; i++) { | 
 | #  ifdef BSWAP4 | 
 |         blocks[i].d[0] = BSWAP4(ctx->A[i]); | 
 |         ctx->A[i] = key->tail.h0; | 
 |         blocks[i].d[1] = BSWAP4(ctx->B[i]); | 
 |         ctx->B[i] = key->tail.h1; | 
 |         blocks[i].d[2] = BSWAP4(ctx->C[i]); | 
 |         ctx->C[i] = key->tail.h2; | 
 |         blocks[i].d[3] = BSWAP4(ctx->D[i]); | 
 |         ctx->D[i] = key->tail.h3; | 
 |         blocks[i].d[4] = BSWAP4(ctx->E[i]); | 
 |         ctx->E[i] = key->tail.h4; | 
 |         blocks[i].c[20] = 0x80; | 
 |         blocks[i].d[15] = BSWAP4((64 + 20) * 8); | 
 | #  else | 
 |         PUTU32(blocks[i].c + 0, ctx->A[i]); | 
 |         ctx->A[i] = key->tail.h0; | 
 |         PUTU32(blocks[i].c + 4, ctx->B[i]); | 
 |         ctx->B[i] = key->tail.h1; | 
 |         PUTU32(blocks[i].c + 8, ctx->C[i]); | 
 |         ctx->C[i] = key->tail.h2; | 
 |         PUTU32(blocks[i].c + 12, ctx->D[i]); | 
 |         ctx->D[i] = key->tail.h3; | 
 |         PUTU32(blocks[i].c + 16, ctx->E[i]); | 
 |         ctx->E[i] = key->tail.h4; | 
 |         blocks[i].c[20] = 0x80; | 
 |         PUTU32(blocks[i].c + 60, (64 + 20) * 8); | 
 | #  endif | 
 |         edges[i].ptr = blocks[i].c; | 
 |         edges[i].blocks = 1; | 
 |     } | 
 |  | 
 |     /* finalize MACs */ | 
 |     sha1_multi_block(ctx, edges, n4x); | 
 |  | 
 |     for (i = 0; i < x4; i++) { | 
 |         unsigned int len = (i == (x4 - 1) ? last : frag), pad, j; | 
 |         unsigned char *out0 = out; | 
 |  | 
 |         memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed); | 
 |         ciph_d[i].inp = ciph_d[i].out; | 
 |  | 
 |         out += 5 + 16 + len; | 
 |  | 
 |         /* write MAC */ | 
 |         PUTU32(out + 0, ctx->A[i]); | 
 |         PUTU32(out + 4, ctx->B[i]); | 
 |         PUTU32(out + 8, ctx->C[i]); | 
 |         PUTU32(out + 12, ctx->D[i]); | 
 |         PUTU32(out + 16, ctx->E[i]); | 
 |         out += 20; | 
 |         len += 20; | 
 |  | 
 |         /* pad */ | 
 |         pad = 15 - len % 16; | 
 |         for (j = 0; j <= pad; j++) | 
 |             *(out++) = pad; | 
 |         len += pad + 1; | 
 |  | 
 |         ciph_d[i].blocks = (len - processed) / 16; | 
 |         len += 16;              /* account for explicit iv */ | 
 |  | 
 |         /* arrange header */ | 
 |         out0[0] = ((u8 *)key->md.data)[8]; | 
 |         out0[1] = ((u8 *)key->md.data)[9]; | 
 |         out0[2] = ((u8 *)key->md.data)[10]; | 
 |         out0[3] = (u8)(len >> 8); | 
 |         out0[4] = (u8)(len); | 
 |  | 
 |         ret += len + 5; | 
 |         inp += frag; | 
 |     } | 
 |  | 
 |     aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x); | 
 |  | 
 |     OPENSSL_cleanse(blocks, sizeof(blocks)); | 
 |     OPENSSL_cleanse(ctx, sizeof(*ctx)); | 
 |  | 
 |     return ret; | 
 | } | 
 | # endif | 
 |  | 
 | static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | 
 |                                       const unsigned char *in, size_t len) | 
 | { | 
 |     EVP_AES_HMAC_SHA1 *key = data(ctx); | 
 |     unsigned int l; | 
 |     size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and | 
 |                                                 * later */ | 
 |         sha_off = 0; | 
 | # if defined(STITCHED_CALL) | 
 |     size_t aes_off = 0, blocks; | 
 |  | 
 |     sha_off = SHA_CBLOCK - key->md.num; | 
 | # endif | 
 |  | 
 |     key->payload_length = NO_PAYLOAD_LENGTH; | 
 |  | 
 |     if (len % AES_BLOCK_SIZE) | 
 |         return 0; | 
 |  | 
 |     if (EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
 |         if (plen == NO_PAYLOAD_LENGTH) | 
 |             plen = len; | 
 |         else if (len != | 
 |                  ((plen + SHA_DIGEST_LENGTH + | 
 |                    AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)) | 
 |             return 0; | 
 |         else if (key->aux.tls_ver >= TLS1_1_VERSION) | 
 |             iv = AES_BLOCK_SIZE; | 
 |  | 
 | # if defined(STITCHED_CALL) | 
 |         if (plen > (sha_off + iv) | 
 |             && (blocks = (plen - (sha_off + iv)) / SHA_CBLOCK)) { | 
 |             SHA1_Update(&key->md, in + iv, sha_off); | 
 |  | 
 |             aesni_cbc_sha1_enc(in, out, blocks, &key->ks, ctx->iv, | 
 |                                &key->md, in + iv + sha_off); | 
 |             blocks *= SHA_CBLOCK; | 
 |             aes_off += blocks; | 
 |             sha_off += blocks; | 
 |             key->md.Nh += blocks >> 29; | 
 |             key->md.Nl += blocks <<= 3; | 
 |             if (key->md.Nl < (unsigned int)blocks) | 
 |                 key->md.Nh++; | 
 |         } else { | 
 |             sha_off = 0; | 
 |         } | 
 | # endif | 
 |         sha_off += iv; | 
 |         SHA1_Update(&key->md, in + sha_off, plen - sha_off); | 
 |  | 
 |         if (plen != len) {      /* "TLS" mode of operation */ | 
 |             if (in != out) | 
 |                 memcpy(out + aes_off, in + aes_off, plen - aes_off); | 
 |  | 
 |             /* calculate HMAC and append it to payload */ | 
 |             SHA1_Final(out + plen, &key->md); | 
 |             key->md = key->tail; | 
 |             SHA1_Update(&key->md, out + plen, SHA_DIGEST_LENGTH); | 
 |             SHA1_Final(out + plen, &key->md); | 
 |  | 
 |             /* pad the payload|hmac */ | 
 |             plen += SHA_DIGEST_LENGTH; | 
 |             for (l = len - plen - 1; plen < len; plen++) | 
 |                 out[plen] = l; | 
 |             /* encrypt HMAC|padding at once */ | 
 |             aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off, | 
 |                               &key->ks, ctx->iv, 1); | 
 |         } else { | 
 |             aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off, | 
 |                               &key->ks, ctx->iv, 1); | 
 |         } | 
 |     } else { | 
 |         union { | 
 |             unsigned int u[SHA_DIGEST_LENGTH / sizeof(unsigned int)]; | 
 |             unsigned char c[32 + SHA_DIGEST_LENGTH]; | 
 |         } mac, *pmac; | 
 |  | 
 |         /* arrange cache line alignment */ | 
 |         pmac = (void *)(((size_t)mac.c + 31) & ((size_t)0 - 32)); | 
 |  | 
 |         if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */ | 
 |             size_t inp_len, mask, j, i; | 
 |             unsigned int res, maxpad, pad, bitlen; | 
 |             int ret = 1; | 
 |             union { | 
 |                 unsigned int u[SHA_LBLOCK]; | 
 |                 unsigned char c[SHA_CBLOCK]; | 
 |             } *data = (void *)key->md.data; | 
 | # if defined(STITCHED_DECRYPT_CALL) | 
 |             unsigned char tail_iv[AES_BLOCK_SIZE]; | 
 |             int stitch = 0; | 
 |             const int keylen = EVP_CIPHER_CTX_get_key_length(ctx); | 
 |  | 
 |             if (keylen <= 0) { | 
 |                 ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY_LENGTH); | 
 |                 return 0; | 
 |             } | 
 | # endif | 
 |  | 
 |             if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3]) | 
 |                 >= TLS1_1_VERSION) { | 
 |                 if (len < (AES_BLOCK_SIZE + SHA_DIGEST_LENGTH + 1)) | 
 |                     return 0; | 
 |  | 
 |                 /* omit explicit iv */ | 
 |                 memcpy(ctx->iv, in, AES_BLOCK_SIZE); | 
 |  | 
 |                 in += AES_BLOCK_SIZE; | 
 |                 out += AES_BLOCK_SIZE; | 
 |                 len -= AES_BLOCK_SIZE; | 
 |             } else if (len < (SHA_DIGEST_LENGTH + 1)) | 
 |                 return 0; | 
 |  | 
 | # if defined(STITCHED_DECRYPT_CALL) | 
 |             if (len >= 1024 && keylen == 32) { | 
 |                 /* decrypt last block */ | 
 |                 memcpy(tail_iv, in + len - 2 * AES_BLOCK_SIZE, | 
 |                        AES_BLOCK_SIZE); | 
 |                 aesni_cbc_encrypt(in + len - AES_BLOCK_SIZE, | 
 |                                   out + len - AES_BLOCK_SIZE, AES_BLOCK_SIZE, | 
 |                                   &key->ks, tail_iv, 0); | 
 |                 stitch = 1; | 
 |             } else | 
 | # endif | 
 |                 /* decrypt HMAC|padding at once */ | 
 |                 aesni_cbc_encrypt(in, out, len, &key->ks, | 
 |                                   ctx->iv, 0); | 
 |  | 
 |             /* figure out payload length */ | 
 |             pad = out[len - 1]; | 
 |             maxpad = len - (SHA_DIGEST_LENGTH + 1); | 
 |             maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8); | 
 |             maxpad &= 255; | 
 |  | 
 |             mask = constant_time_ge(maxpad, pad); | 
 |             ret &= mask; | 
 |             /* | 
 |              * If pad is invalid then we will fail the above test but we must | 
 |              * continue anyway because we are in constant time code. However, | 
 |              * we'll use the maxpad value instead of the supplied pad to make | 
 |              * sure we perform well defined pointer arithmetic. | 
 |              */ | 
 |             pad = constant_time_select(mask, pad, maxpad); | 
 |  | 
 |             inp_len = len - (SHA_DIGEST_LENGTH + pad + 1); | 
 |  | 
 |             key->aux.tls_aad[plen - 2] = inp_len >> 8; | 
 |             key->aux.tls_aad[plen - 1] = inp_len; | 
 |  | 
 |             /* calculate HMAC */ | 
 |             key->md = key->head; | 
 |             SHA1_Update(&key->md, key->aux.tls_aad, plen); | 
 |  | 
 | # if defined(STITCHED_DECRYPT_CALL) | 
 |             if (stitch) { | 
 |                 blocks = (len - (256 + 32 + SHA_CBLOCK)) / SHA_CBLOCK; | 
 |                 aes_off = len - AES_BLOCK_SIZE - blocks * SHA_CBLOCK; | 
 |                 sha_off = SHA_CBLOCK - plen; | 
 |  | 
 |                 aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0); | 
 |  | 
 |                 SHA1_Update(&key->md, out, sha_off); | 
 |                 aesni256_cbc_sha1_dec(in + aes_off, | 
 |                                       out + aes_off, blocks, &key->ks, | 
 |                                       ctx->iv, &key->md, out + sha_off); | 
 |  | 
 |                 sha_off += blocks *= SHA_CBLOCK; | 
 |                 out += sha_off; | 
 |                 len -= sha_off; | 
 |                 inp_len -= sha_off; | 
 |  | 
 |                 key->md.Nl += (blocks << 3); /* at most 18 bits */ | 
 |                 memcpy(ctx->iv, tail_iv, AES_BLOCK_SIZE); | 
 |             } | 
 | # endif | 
 |  | 
 | # if 1      /* see original reference version in #else */ | 
 |             len -= SHA_DIGEST_LENGTH; /* amend mac */ | 
 |             if (len >= (256 + SHA_CBLOCK)) { | 
 |                 j = (len - (256 + SHA_CBLOCK)) & (0 - SHA_CBLOCK); | 
 |                 j += SHA_CBLOCK - key->md.num; | 
 |                 SHA1_Update(&key->md, out, j); | 
 |                 out += j; | 
 |                 len -= j; | 
 |                 inp_len -= j; | 
 |             } | 
 |  | 
 |             /* but pretend as if we hashed padded payload */ | 
 |             bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */ | 
 | #  ifdef BSWAP4 | 
 |             bitlen = BSWAP4(bitlen); | 
 | #  else | 
 |             mac.c[0] = 0; | 
 |             mac.c[1] = (unsigned char)(bitlen >> 16); | 
 |             mac.c[2] = (unsigned char)(bitlen >> 8); | 
 |             mac.c[3] = (unsigned char)bitlen; | 
 |             bitlen = mac.u[0]; | 
 | #  endif | 
 |  | 
 |             pmac->u[0] = 0; | 
 |             pmac->u[1] = 0; | 
 |             pmac->u[2] = 0; | 
 |             pmac->u[3] = 0; | 
 |             pmac->u[4] = 0; | 
 |  | 
 |             for (res = key->md.num, j = 0; j < len; j++) { | 
 |                 size_t c = out[j]; | 
 |                 mask = (j - inp_len) >> (sizeof(j) * 8 - 8); | 
 |                 c &= mask; | 
 |                 c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8)); | 
 |                 data->c[res++] = (unsigned char)c; | 
 |  | 
 |                 if (res != SHA_CBLOCK) | 
 |                     continue; | 
 |  | 
 |                 /* j is not incremented yet */ | 
 |                 mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1)); | 
 |                 data->u[SHA_LBLOCK - 1] |= bitlen & mask; | 
 |                 sha1_block_data_order(&key->md, data, 1); | 
 |                 mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1)); | 
 |                 pmac->u[0] |= key->md.h0 & mask; | 
 |                 pmac->u[1] |= key->md.h1 & mask; | 
 |                 pmac->u[2] |= key->md.h2 & mask; | 
 |                 pmac->u[3] |= key->md.h3 & mask; | 
 |                 pmac->u[4] |= key->md.h4 & mask; | 
 |                 res = 0; | 
 |             } | 
 |  | 
 |             for (i = res; i < SHA_CBLOCK; i++, j++) | 
 |                 data->c[i] = 0; | 
 |  | 
 |             if (res > SHA_CBLOCK - 8) { | 
 |                 mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1)); | 
 |                 data->u[SHA_LBLOCK - 1] |= bitlen & mask; | 
 |                 sha1_block_data_order(&key->md, data, 1); | 
 |                 mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1)); | 
 |                 pmac->u[0] |= key->md.h0 & mask; | 
 |                 pmac->u[1] |= key->md.h1 & mask; | 
 |                 pmac->u[2] |= key->md.h2 & mask; | 
 |                 pmac->u[3] |= key->md.h3 & mask; | 
 |                 pmac->u[4] |= key->md.h4 & mask; | 
 |  | 
 |                 memset(data, 0, SHA_CBLOCK); | 
 |                 j += 64; | 
 |             } | 
 |             data->u[SHA_LBLOCK - 1] = bitlen; | 
 |             sha1_block_data_order(&key->md, data, 1); | 
 |             mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1)); | 
 |             pmac->u[0] |= key->md.h0 & mask; | 
 |             pmac->u[1] |= key->md.h1 & mask; | 
 |             pmac->u[2] |= key->md.h2 & mask; | 
 |             pmac->u[3] |= key->md.h3 & mask; | 
 |             pmac->u[4] |= key->md.h4 & mask; | 
 |  | 
 | #  ifdef BSWAP4 | 
 |             pmac->u[0] = BSWAP4(pmac->u[0]); | 
 |             pmac->u[1] = BSWAP4(pmac->u[1]); | 
 |             pmac->u[2] = BSWAP4(pmac->u[2]); | 
 |             pmac->u[3] = BSWAP4(pmac->u[3]); | 
 |             pmac->u[4] = BSWAP4(pmac->u[4]); | 
 | #  else | 
 |             for (i = 0; i < 5; i++) { | 
 |                 res = pmac->u[i]; | 
 |                 pmac->c[4 * i + 0] = (unsigned char)(res >> 24); | 
 |                 pmac->c[4 * i + 1] = (unsigned char)(res >> 16); | 
 |                 pmac->c[4 * i + 2] = (unsigned char)(res >> 8); | 
 |                 pmac->c[4 * i + 3] = (unsigned char)res; | 
 |             } | 
 | #  endif | 
 |             len += SHA_DIGEST_LENGTH; | 
 | # else      /* pre-lucky-13 reference version of above */ | 
 |             SHA1_Update(&key->md, out, inp_len); | 
 |             res = key->md.num; | 
 |             SHA1_Final(pmac->c, &key->md); | 
 |  | 
 |             { | 
 |                 unsigned int inp_blocks, pad_blocks; | 
 |  | 
 |                 /* but pretend as if we hashed padded payload */ | 
 |                 inp_blocks = | 
 |                     1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1)); | 
 |                 res += (unsigned int)(len - inp_len); | 
 |                 pad_blocks = res / SHA_CBLOCK; | 
 |                 res %= SHA_CBLOCK; | 
 |                 pad_blocks += | 
 |                     1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1)); | 
 |                 for (; inp_blocks < pad_blocks; inp_blocks++) | 
 |                     sha1_block_data_order(&key->md, data, 1); | 
 |             } | 
 | # endif | 
 |             key->md = key->tail; | 
 |             SHA1_Update(&key->md, pmac->c, SHA_DIGEST_LENGTH); | 
 |             SHA1_Final(pmac->c, &key->md); | 
 |  | 
 |             /* verify HMAC */ | 
 |             out += inp_len; | 
 |             len -= inp_len; | 
 | # if 1      /* see original reference version in #else */ | 
 |             { | 
 |                 unsigned char *p = out + len - 1 - maxpad - SHA_DIGEST_LENGTH; | 
 |                 size_t off = out - p; | 
 |                 unsigned int c, cmask; | 
 |  | 
 |                 for (res = 0, i = 0, j = 0; j < maxpad + SHA_DIGEST_LENGTH; j++) { | 
 |                     c = p[j]; | 
 |                     cmask = | 
 |                         ((int)(j - off - SHA_DIGEST_LENGTH)) >> (sizeof(int) * | 
 |                                                                  8 - 1); | 
 |                     res |= (c ^ pad) & ~cmask; /* ... and padding */ | 
 |                     cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1); | 
 |                     res |= (c ^ pmac->c[i]) & cmask; | 
 |                     i += 1 & cmask; | 
 |                 } | 
 |  | 
 |                 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1)); | 
 |                 ret &= (int)~res; | 
 |             } | 
 | # else      /* pre-lucky-13 reference version of above */ | 
 |             for (res = 0, i = 0; i < SHA_DIGEST_LENGTH; i++) | 
 |                 res |= out[i] ^ pmac->c[i]; | 
 |             res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1)); | 
 |             ret &= (int)~res; | 
 |  | 
 |             /* verify padding */ | 
 |             pad = (pad & ~res) | (maxpad & res); | 
 |             out = out + len - 1 - pad; | 
 |             for (res = 0, i = 0; i < pad; i++) | 
 |                 res |= out[i] ^ pad; | 
 |  | 
 |             res = (0 - res) >> (sizeof(res) * 8 - 1); | 
 |             ret &= (int)~res; | 
 | # endif | 
 |             return ret; | 
 |         } else { | 
 | # if defined(STITCHED_DECRYPT_CALL) | 
 |             if (len >= 1024 && keylen == 32) { | 
 |                 if (sha_off %= SHA_CBLOCK) | 
 |                     blocks = (len - 3 * SHA_CBLOCK) / SHA_CBLOCK; | 
 |                 else | 
 |                     blocks = (len - 2 * SHA_CBLOCK) / SHA_CBLOCK; | 
 |                 aes_off = len - blocks * SHA_CBLOCK; | 
 |  | 
 |                 aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0); | 
 |                 SHA1_Update(&key->md, out, sha_off); | 
 |                 aesni256_cbc_sha1_dec(in + aes_off, | 
 |                                       out + aes_off, blocks, &key->ks, | 
 |                                       ctx->iv, &key->md, out + sha_off); | 
 |  | 
 |                 sha_off += blocks *= SHA_CBLOCK; | 
 |                 out += sha_off; | 
 |                 len -= sha_off; | 
 |  | 
 |                 key->md.Nh += blocks >> 29; | 
 |                 key->md.Nl += blocks <<= 3; | 
 |                 if (key->md.Nl < (unsigned int)blocks) | 
 |                     key->md.Nh++; | 
 |             } else | 
 | # endif | 
 |                 /* decrypt HMAC|padding at once */ | 
 |                 aesni_cbc_encrypt(in, out, len, &key->ks, | 
 |                                   ctx->iv, 0); | 
 |  | 
 |             SHA1_Update(&key->md, out, len); | 
 |         } | 
 |     } | 
 |  | 
 |     return 1; | 
 | } | 
 |  | 
 | static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, | 
 |                                     void *ptr) | 
 | { | 
 |     EVP_AES_HMAC_SHA1 *key = data(ctx); | 
 |  | 
 |     switch (type) { | 
 |     case EVP_CTRL_AEAD_SET_MAC_KEY: | 
 |         { | 
 |             unsigned int i; | 
 |             unsigned char hmac_key[64]; | 
 |  | 
 |             memset(hmac_key, 0, sizeof(hmac_key)); | 
 |  | 
 |             if (arg > (int)sizeof(hmac_key)) { | 
 |                 SHA1_Init(&key->head); | 
 |                 SHA1_Update(&key->head, ptr, arg); | 
 |                 SHA1_Final(hmac_key, &key->head); | 
 |             } else { | 
 |                 memcpy(hmac_key, ptr, arg); | 
 |             } | 
 |  | 
 |             for (i = 0; i < sizeof(hmac_key); i++) | 
 |                 hmac_key[i] ^= 0x36; /* ipad */ | 
 |             SHA1_Init(&key->head); | 
 |             SHA1_Update(&key->head, hmac_key, sizeof(hmac_key)); | 
 |  | 
 |             for (i = 0; i < sizeof(hmac_key); i++) | 
 |                 hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */ | 
 |             SHA1_Init(&key->tail); | 
 |             SHA1_Update(&key->tail, hmac_key, sizeof(hmac_key)); | 
 |  | 
 |             OPENSSL_cleanse(hmac_key, sizeof(hmac_key)); | 
 |  | 
 |             return 1; | 
 |         } | 
 |     case EVP_CTRL_AEAD_TLS1_AAD: | 
 |         { | 
 |             unsigned char *p = ptr; | 
 |             unsigned int len; | 
 |  | 
 |             if (arg != EVP_AEAD_TLS1_AAD_LEN) | 
 |                 return -1; | 
 |  | 
 |             len = p[arg - 2] << 8 | p[arg - 1]; | 
 |  | 
 |             if (EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
 |                 key->payload_length = len; | 
 |                 if ((key->aux.tls_ver = | 
 |                      p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) { | 
 |                     if (len < AES_BLOCK_SIZE) | 
 |                         return 0; | 
 |                     len -= AES_BLOCK_SIZE; | 
 |                     p[arg - 2] = len >> 8; | 
 |                     p[arg - 1] = len; | 
 |                 } | 
 |                 key->md = key->head; | 
 |                 SHA1_Update(&key->md, p, arg); | 
 |  | 
 |                 return (int)(((len + SHA_DIGEST_LENGTH + | 
 |                                AES_BLOCK_SIZE) & -AES_BLOCK_SIZE) | 
 |                              - len); | 
 |             } else { | 
 |                 memcpy(key->aux.tls_aad, ptr, arg); | 
 |                 key->payload_length = arg; | 
 |  | 
 |                 return SHA_DIGEST_LENGTH; | 
 |             } | 
 |         } | 
 | # if !defined(OPENSSL_NO_MULTIBLOCK) | 
 |     case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE: | 
 |         return (int)(5 + 16 + ((arg + 20 + 16) & -16)); | 
 |     case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD: | 
 |         { | 
 |             EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param = | 
 |                 (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr; | 
 |             unsigned int n4x = 1, x4; | 
 |             unsigned int frag, last, packlen, inp_len; | 
 |  | 
 |             if (arg < (int)sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM)) | 
 |                 return -1; | 
 |  | 
 |             inp_len = param->inp[11] << 8 | param->inp[12]; | 
 |  | 
 |             if (EVP_CIPHER_CTX_is_encrypting(ctx)) { | 
 |                 if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION) | 
 |                     return -1; | 
 |  | 
 |                 if (inp_len) { | 
 |                     if (inp_len < 4096) | 
 |                         return 0; /* too short */ | 
 |  | 
 |                     if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5)) | 
 |                         n4x = 2; /* AVX2 */ | 
 |                 } else if ((n4x = param->interleave / 4) && n4x <= 2) | 
 |                     inp_len = param->len; | 
 |                 else | 
 |                     return -1; | 
 |  | 
 |                 key->md = key->head; | 
 |                 SHA1_Update(&key->md, param->inp, 13); | 
 |  | 
 |                 x4 = 4 * n4x; | 
 |                 n4x += 1; | 
 |  | 
 |                 frag = inp_len >> n4x; | 
 |                 last = inp_len + frag - (frag << n4x); | 
 |                 if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) { | 
 |                     frag++; | 
 |                     last -= x4 - 1; | 
 |                 } | 
 |  | 
 |                 packlen = 5 + 16 + ((frag + 20 + 16) & -16); | 
 |                 packlen = (packlen << n4x) - packlen; | 
 |                 packlen += 5 + 16 + ((last + 20 + 16) & -16); | 
 |  | 
 |                 param->interleave = x4; | 
 |  | 
 |                 return (int)packlen; | 
 |             } else | 
 |                 return -1;      /* not yet */ | 
 |         } | 
 |     case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT: | 
 |         { | 
 |             EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param = | 
 |                 (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr; | 
 |  | 
 |             return (int)tls1_1_multi_block_encrypt(key, param->out, | 
 |                                                    param->inp, param->len, | 
 |                                                    param->interleave / 4); | 
 |         } | 
 |     case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT: | 
 | # endif | 
 |     default: | 
 |         return -1; | 
 |     } | 
 | } | 
 |  | 
 | static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher = { | 
 | # ifdef NID_aes_128_cbc_hmac_sha1 | 
 |     NID_aes_128_cbc_hmac_sha1, | 
 | # else | 
 |     NID_undef, | 
 | # endif | 
 |     AES_BLOCK_SIZE, 16, AES_BLOCK_SIZE, | 
 |     EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 | | 
 |         EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK, | 
 |     EVP_ORIG_GLOBAL, | 
 |     aesni_cbc_hmac_sha1_init_key, | 
 |     aesni_cbc_hmac_sha1_cipher, | 
 |     NULL, | 
 |     sizeof(EVP_AES_HMAC_SHA1), | 
 |     EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv, | 
 |     EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv, | 
 |     aesni_cbc_hmac_sha1_ctrl, | 
 |     NULL | 
 | }; | 
 |  | 
 | static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher = { | 
 | # ifdef NID_aes_256_cbc_hmac_sha1 | 
 |     NID_aes_256_cbc_hmac_sha1, | 
 | # else | 
 |     NID_undef, | 
 | # endif | 
 |     AES_BLOCK_SIZE, 32, AES_BLOCK_SIZE, | 
 |     EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 | | 
 |         EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK, | 
 |     EVP_ORIG_GLOBAL, | 
 |     aesni_cbc_hmac_sha1_init_key, | 
 |     aesni_cbc_hmac_sha1_cipher, | 
 |     NULL, | 
 |     sizeof(EVP_AES_HMAC_SHA1), | 
 |     EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv, | 
 |     EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv, | 
 |     aesni_cbc_hmac_sha1_ctrl, | 
 |     NULL | 
 | }; | 
 |  | 
 | const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void) | 
 | { | 
 |     return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ? | 
 |             &aesni_128_cbc_hmac_sha1_cipher : NULL); | 
 | } | 
 |  | 
 | const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void) | 
 | { | 
 |     return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ? | 
 |             &aesni_256_cbc_hmac_sha1_cipher : NULL); | 
 | } | 
 | #else | 
 | const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void) | 
 | { | 
 |     return NULL; | 
 | } | 
 |  | 
 | const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void) | 
 | { | 
 |     return NULL; | 
 | } | 
 | #endif |