| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <openssl/opensslconf.h> |
| #include <openssl/sha.h> |
| |
| #define DATA_ORDER_IS_BIG_ENDIAN |
| |
| #define HASH_LONG SHA_LONG |
| #define HASH_CTX SHA_CTX |
| #define HASH_CBLOCK SHA_CBLOCK |
| #define HASH_MAKE_STRING(c,s) do { \ |
| unsigned long ll; \ |
| ll=(c)->h0; (void)HOST_l2c(ll,(s)); \ |
| ll=(c)->h1; (void)HOST_l2c(ll,(s)); \ |
| ll=(c)->h2; (void)HOST_l2c(ll,(s)); \ |
| ll=(c)->h3; (void)HOST_l2c(ll,(s)); \ |
| ll=(c)->h4; (void)HOST_l2c(ll,(s)); \ |
| } while (0) |
| |
| #define HASH_UPDATE SHA1_Update |
| #define HASH_TRANSFORM SHA1_Transform |
| #define HASH_FINAL SHA1_Final |
| #define HASH_INIT SHA1_Init |
| #define HASH_BLOCK_DATA_ORDER sha1_block_data_order |
| #define Xupdate(a,ix,ia,ib,ic,id) ( (a)=(ia^ib^ic^id), \ |
| ix=(a)=ROTATE((a),1) \ |
| ) |
| |
| #ifndef SHA1_ASM |
| static void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num); |
| #else |
| void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num); |
| #endif |
| |
| #include "internal/md32_common.h" |
| |
| #define INIT_DATA_h0 0x67452301UL |
| #define INIT_DATA_h1 0xefcdab89UL |
| #define INIT_DATA_h2 0x98badcfeUL |
| #define INIT_DATA_h3 0x10325476UL |
| #define INIT_DATA_h4 0xc3d2e1f0UL |
| |
| int HASH_INIT(SHA_CTX *c) |
| { |
| memset(c, 0, sizeof(*c)); |
| c->h0 = INIT_DATA_h0; |
| c->h1 = INIT_DATA_h1; |
| c->h2 = INIT_DATA_h2; |
| c->h3 = INIT_DATA_h3; |
| c->h4 = INIT_DATA_h4; |
| return 1; |
| } |
| |
| #define K_00_19 0x5a827999UL |
| #define K_20_39 0x6ed9eba1UL |
| #define K_40_59 0x8f1bbcdcUL |
| #define K_60_79 0xca62c1d6UL |
| |
| /* |
| * As pointed out by Wei Dai <weidai@eskimo.com>, F() below can be simplified |
| * to the code in F_00_19. Wei attributes these optimisations to Peter |
| * Gutmann's SHS code, and he attributes it to Rich Schroeppel. #define |
| * F(x,y,z) (((x) & (y)) | ((~(x)) & (z))) I've just become aware of another |
| * tweak to be made, again from Wei Dai, in F_40_59, (x&a)|(y&a) -> (x|y)&a |
| */ |
| #define F_00_19(b,c,d) ((((c) ^ (d)) & (b)) ^ (d)) |
| #define F_20_39(b,c,d) ((b) ^ (c) ^ (d)) |
| #define F_40_59(b,c,d) (((b) & (c)) | (((b)|(c)) & (d))) |
| #define F_60_79(b,c,d) F_20_39(b,c,d) |
| |
| #ifndef OPENSSL_SMALL_FOOTPRINT |
| |
| # define BODY_00_15(i,a,b,c,d,e,f,xi) \ |
| (f)=xi+(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \ |
| (b)=ROTATE((b),30); |
| |
| # define BODY_16_19(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \ |
| Xupdate(f,xi,xa,xb,xc,xd); \ |
| (f)+=(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \ |
| (b)=ROTATE((b),30); |
| |
| # define BODY_20_31(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \ |
| Xupdate(f,xi,xa,xb,xc,xd); \ |
| (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \ |
| (b)=ROTATE((b),30); |
| |
| # define BODY_32_39(i,a,b,c,d,e,f,xa,xb,xc,xd) \ |
| Xupdate(f,xa,xa,xb,xc,xd); \ |
| (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \ |
| (b)=ROTATE((b),30); |
| |
| # define BODY_40_59(i,a,b,c,d,e,f,xa,xb,xc,xd) \ |
| Xupdate(f,xa,xa,xb,xc,xd); \ |
| (f)+=(e)+K_40_59+ROTATE((a),5)+F_40_59((b),(c),(d)); \ |
| (b)=ROTATE((b),30); |
| |
| # define BODY_60_79(i,a,b,c,d,e,f,xa,xb,xc,xd) \ |
| Xupdate(f,xa,xa,xb,xc,xd); \ |
| (f)=xa+(e)+K_60_79+ROTATE((a),5)+F_60_79((b),(c),(d)); \ |
| (b)=ROTATE((b),30); |
| |
| # ifdef X |
| # undef X |
| # endif |
| # ifndef MD32_XARRAY |
| /* |
| * Originally X was an array. As it's automatic it's natural |
| * to expect RISC compiler to accommodate at least part of it in |
| * the register bank, isn't it? Unfortunately not all compilers |
| * "find" this expectation reasonable:-( On order to make such |
| * compilers generate better code I replace X[] with a bunch of |
| * X0, X1, etc. See the function body below... |
| * <appro@fy.chalmers.se> |
| */ |
| # define X(i) XX##i |
| # else |
| /* |
| * However! Some compilers (most notably HP C) get overwhelmed by |
| * that many local variables so that we have to have the way to |
| * fall down to the original behavior. |
| */ |
| # define X(i) XX[i] |
| # endif |
| |
| # if !defined(SHA1_ASM) |
| static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num) |
| { |
| const unsigned char *data = p; |
| register unsigned MD32_REG_T A, B, C, D, E, T, l; |
| # ifndef MD32_XARRAY |
| unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7, |
| XX8, XX9, XX10, XX11, XX12, XX13, XX14, XX15; |
| # else |
| SHA_LONG XX[16]; |
| # endif |
| |
| A = c->h0; |
| B = c->h1; |
| C = c->h2; |
| D = c->h3; |
| E = c->h4; |
| |
| for (;;) { |
| const union { |
| long one; |
| char little; |
| } is_endian = { |
| 1 |
| }; |
| |
| if (!is_endian.little && sizeof(SHA_LONG) == 4 |
| && ((size_t)p % 4) == 0) { |
| const SHA_LONG *W = (const SHA_LONG *)data; |
| |
| X(0) = W[0]; |
| X(1) = W[1]; |
| BODY_00_15(0, A, B, C, D, E, T, X(0)); |
| X(2) = W[2]; |
| BODY_00_15(1, T, A, B, C, D, E, X(1)); |
| X(3) = W[3]; |
| BODY_00_15(2, E, T, A, B, C, D, X(2)); |
| X(4) = W[4]; |
| BODY_00_15(3, D, E, T, A, B, C, X(3)); |
| X(5) = W[5]; |
| BODY_00_15(4, C, D, E, T, A, B, X(4)); |
| X(6) = W[6]; |
| BODY_00_15(5, B, C, D, E, T, A, X(5)); |
| X(7) = W[7]; |
| BODY_00_15(6, A, B, C, D, E, T, X(6)); |
| X(8) = W[8]; |
| BODY_00_15(7, T, A, B, C, D, E, X(7)); |
| X(9) = W[9]; |
| BODY_00_15(8, E, T, A, B, C, D, X(8)); |
| X(10) = W[10]; |
| BODY_00_15(9, D, E, T, A, B, C, X(9)); |
| X(11) = W[11]; |
| BODY_00_15(10, C, D, E, T, A, B, X(10)); |
| X(12) = W[12]; |
| BODY_00_15(11, B, C, D, E, T, A, X(11)); |
| X(13) = W[13]; |
| BODY_00_15(12, A, B, C, D, E, T, X(12)); |
| X(14) = W[14]; |
| BODY_00_15(13, T, A, B, C, D, E, X(13)); |
| X(15) = W[15]; |
| BODY_00_15(14, E, T, A, B, C, D, X(14)); |
| BODY_00_15(15, D, E, T, A, B, C, X(15)); |
| |
| data += SHA_CBLOCK; |
| } else { |
| (void)HOST_c2l(data, l); |
| X(0) = l; |
| (void)HOST_c2l(data, l); |
| X(1) = l; |
| BODY_00_15(0, A, B, C, D, E, T, X(0)); |
| (void)HOST_c2l(data, l); |
| X(2) = l; |
| BODY_00_15(1, T, A, B, C, D, E, X(1)); |
| (void)HOST_c2l(data, l); |
| X(3) = l; |
| BODY_00_15(2, E, T, A, B, C, D, X(2)); |
| (void)HOST_c2l(data, l); |
| X(4) = l; |
| BODY_00_15(3, D, E, T, A, B, C, X(3)); |
| (void)HOST_c2l(data, l); |
| X(5) = l; |
| BODY_00_15(4, C, D, E, T, A, B, X(4)); |
| (void)HOST_c2l(data, l); |
| X(6) = l; |
| BODY_00_15(5, B, C, D, E, T, A, X(5)); |
| (void)HOST_c2l(data, l); |
| X(7) = l; |
| BODY_00_15(6, A, B, C, D, E, T, X(6)); |
| (void)HOST_c2l(data, l); |
| X(8) = l; |
| BODY_00_15(7, T, A, B, C, D, E, X(7)); |
| (void)HOST_c2l(data, l); |
| X(9) = l; |
| BODY_00_15(8, E, T, A, B, C, D, X(8)); |
| (void)HOST_c2l(data, l); |
| X(10) = l; |
| BODY_00_15(9, D, E, T, A, B, C, X(9)); |
| (void)HOST_c2l(data, l); |
| X(11) = l; |
| BODY_00_15(10, C, D, E, T, A, B, X(10)); |
| (void)HOST_c2l(data, l); |
| X(12) = l; |
| BODY_00_15(11, B, C, D, E, T, A, X(11)); |
| (void)HOST_c2l(data, l); |
| X(13) = l; |
| BODY_00_15(12, A, B, C, D, E, T, X(12)); |
| (void)HOST_c2l(data, l); |
| X(14) = l; |
| BODY_00_15(13, T, A, B, C, D, E, X(13)); |
| (void)HOST_c2l(data, l); |
| X(15) = l; |
| BODY_00_15(14, E, T, A, B, C, D, X(14)); |
| BODY_00_15(15, D, E, T, A, B, C, X(15)); |
| } |
| |
| BODY_16_19(16, C, D, E, T, A, B, X(0), X(0), X(2), X(8), X(13)); |
| BODY_16_19(17, B, C, D, E, T, A, X(1), X(1), X(3), X(9), X(14)); |
| BODY_16_19(18, A, B, C, D, E, T, X(2), X(2), X(4), X(10), X(15)); |
| BODY_16_19(19, T, A, B, C, D, E, X(3), X(3), X(5), X(11), X(0)); |
| |
| BODY_20_31(20, E, T, A, B, C, D, X(4), X(4), X(6), X(12), X(1)); |
| BODY_20_31(21, D, E, T, A, B, C, X(5), X(5), X(7), X(13), X(2)); |
| BODY_20_31(22, C, D, E, T, A, B, X(6), X(6), X(8), X(14), X(3)); |
| BODY_20_31(23, B, C, D, E, T, A, X(7), X(7), X(9), X(15), X(4)); |
| BODY_20_31(24, A, B, C, D, E, T, X(8), X(8), X(10), X(0), X(5)); |
| BODY_20_31(25, T, A, B, C, D, E, X(9), X(9), X(11), X(1), X(6)); |
| BODY_20_31(26, E, T, A, B, C, D, X(10), X(10), X(12), X(2), X(7)); |
| BODY_20_31(27, D, E, T, A, B, C, X(11), X(11), X(13), X(3), X(8)); |
| BODY_20_31(28, C, D, E, T, A, B, X(12), X(12), X(14), X(4), X(9)); |
| BODY_20_31(29, B, C, D, E, T, A, X(13), X(13), X(15), X(5), X(10)); |
| BODY_20_31(30, A, B, C, D, E, T, X(14), X(14), X(0), X(6), X(11)); |
| BODY_20_31(31, T, A, B, C, D, E, X(15), X(15), X(1), X(7), X(12)); |
| |
| BODY_32_39(32, E, T, A, B, C, D, X(0), X(2), X(8), X(13)); |
| BODY_32_39(33, D, E, T, A, B, C, X(1), X(3), X(9), X(14)); |
| BODY_32_39(34, C, D, E, T, A, B, X(2), X(4), X(10), X(15)); |
| BODY_32_39(35, B, C, D, E, T, A, X(3), X(5), X(11), X(0)); |
| BODY_32_39(36, A, B, C, D, E, T, X(4), X(6), X(12), X(1)); |
| BODY_32_39(37, T, A, B, C, D, E, X(5), X(7), X(13), X(2)); |
| BODY_32_39(38, E, T, A, B, C, D, X(6), X(8), X(14), X(3)); |
| BODY_32_39(39, D, E, T, A, B, C, X(7), X(9), X(15), X(4)); |
| |
| BODY_40_59(40, C, D, E, T, A, B, X(8), X(10), X(0), X(5)); |
| BODY_40_59(41, B, C, D, E, T, A, X(9), X(11), X(1), X(6)); |
| BODY_40_59(42, A, B, C, D, E, T, X(10), X(12), X(2), X(7)); |
| BODY_40_59(43, T, A, B, C, D, E, X(11), X(13), X(3), X(8)); |
| BODY_40_59(44, E, T, A, B, C, D, X(12), X(14), X(4), X(9)); |
| BODY_40_59(45, D, E, T, A, B, C, X(13), X(15), X(5), X(10)); |
| BODY_40_59(46, C, D, E, T, A, B, X(14), X(0), X(6), X(11)); |
| BODY_40_59(47, B, C, D, E, T, A, X(15), X(1), X(7), X(12)); |
| BODY_40_59(48, A, B, C, D, E, T, X(0), X(2), X(8), X(13)); |
| BODY_40_59(49, T, A, B, C, D, E, X(1), X(3), X(9), X(14)); |
| BODY_40_59(50, E, T, A, B, C, D, X(2), X(4), X(10), X(15)); |
| BODY_40_59(51, D, E, T, A, B, C, X(3), X(5), X(11), X(0)); |
| BODY_40_59(52, C, D, E, T, A, B, X(4), X(6), X(12), X(1)); |
| BODY_40_59(53, B, C, D, E, T, A, X(5), X(7), X(13), X(2)); |
| BODY_40_59(54, A, B, C, D, E, T, X(6), X(8), X(14), X(3)); |
| BODY_40_59(55, T, A, B, C, D, E, X(7), X(9), X(15), X(4)); |
| BODY_40_59(56, E, T, A, B, C, D, X(8), X(10), X(0), X(5)); |
| BODY_40_59(57, D, E, T, A, B, C, X(9), X(11), X(1), X(6)); |
| BODY_40_59(58, C, D, E, T, A, B, X(10), X(12), X(2), X(7)); |
| BODY_40_59(59, B, C, D, E, T, A, X(11), X(13), X(3), X(8)); |
| |
| BODY_60_79(60, A, B, C, D, E, T, X(12), X(14), X(4), X(9)); |
| BODY_60_79(61, T, A, B, C, D, E, X(13), X(15), X(5), X(10)); |
| BODY_60_79(62, E, T, A, B, C, D, X(14), X(0), X(6), X(11)); |
| BODY_60_79(63, D, E, T, A, B, C, X(15), X(1), X(7), X(12)); |
| BODY_60_79(64, C, D, E, T, A, B, X(0), X(2), X(8), X(13)); |
| BODY_60_79(65, B, C, D, E, T, A, X(1), X(3), X(9), X(14)); |
| BODY_60_79(66, A, B, C, D, E, T, X(2), X(4), X(10), X(15)); |
| BODY_60_79(67, T, A, B, C, D, E, X(3), X(5), X(11), X(0)); |
| BODY_60_79(68, E, T, A, B, C, D, X(4), X(6), X(12), X(1)); |
| BODY_60_79(69, D, E, T, A, B, C, X(5), X(7), X(13), X(2)); |
| BODY_60_79(70, C, D, E, T, A, B, X(6), X(8), X(14), X(3)); |
| BODY_60_79(71, B, C, D, E, T, A, X(7), X(9), X(15), X(4)); |
| BODY_60_79(72, A, B, C, D, E, T, X(8), X(10), X(0), X(5)); |
| BODY_60_79(73, T, A, B, C, D, E, X(9), X(11), X(1), X(6)); |
| BODY_60_79(74, E, T, A, B, C, D, X(10), X(12), X(2), X(7)); |
| BODY_60_79(75, D, E, T, A, B, C, X(11), X(13), X(3), X(8)); |
| BODY_60_79(76, C, D, E, T, A, B, X(12), X(14), X(4), X(9)); |
| BODY_60_79(77, B, C, D, E, T, A, X(13), X(15), X(5), X(10)); |
| BODY_60_79(78, A, B, C, D, E, T, X(14), X(0), X(6), X(11)); |
| BODY_60_79(79, T, A, B, C, D, E, X(15), X(1), X(7), X(12)); |
| |
| c->h0 = (c->h0 + E) & 0xffffffffL; |
| c->h1 = (c->h1 + T) & 0xffffffffL; |
| c->h2 = (c->h2 + A) & 0xffffffffL; |
| c->h3 = (c->h3 + B) & 0xffffffffL; |
| c->h4 = (c->h4 + C) & 0xffffffffL; |
| |
| if (--num == 0) |
| break; |
| |
| A = c->h0; |
| B = c->h1; |
| C = c->h2; |
| D = c->h3; |
| E = c->h4; |
| |
| } |
| } |
| # endif |
| |
| #else /* OPENSSL_SMALL_FOOTPRINT */ |
| |
| # define BODY_00_15(xi) do { \ |
| T=E+K_00_19+F_00_19(B,C,D); \ |
| E=D, D=C, C=ROTATE(B,30), B=A; \ |
| A=ROTATE(A,5)+T+xi; } while(0) |
| |
| # define BODY_16_19(xa,xb,xc,xd) do { \ |
| Xupdate(T,xa,xa,xb,xc,xd); \ |
| T+=E+K_00_19+F_00_19(B,C,D); \ |
| E=D, D=C, C=ROTATE(B,30), B=A; \ |
| A=ROTATE(A,5)+T; } while(0) |
| |
| # define BODY_20_39(xa,xb,xc,xd) do { \ |
| Xupdate(T,xa,xa,xb,xc,xd); \ |
| T+=E+K_20_39+F_20_39(B,C,D); \ |
| E=D, D=C, C=ROTATE(B,30), B=A; \ |
| A=ROTATE(A,5)+T; } while(0) |
| |
| # define BODY_40_59(xa,xb,xc,xd) do { \ |
| Xupdate(T,xa,xa,xb,xc,xd); \ |
| T+=E+K_40_59+F_40_59(B,C,D); \ |
| E=D, D=C, C=ROTATE(B,30), B=A; \ |
| A=ROTATE(A,5)+T; } while(0) |
| |
| # define BODY_60_79(xa,xb,xc,xd) do { \ |
| Xupdate(T,xa,xa,xb,xc,xd); \ |
| T=E+K_60_79+F_60_79(B,C,D); \ |
| E=D, D=C, C=ROTATE(B,30), B=A; \ |
| A=ROTATE(A,5)+T+xa; } while(0) |
| |
| # if !defined(SHA1_ASM) |
| static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num) |
| { |
| const unsigned char *data = p; |
| register unsigned MD32_REG_T A, B, C, D, E, T, l; |
| int i; |
| SHA_LONG X[16]; |
| |
| A = c->h0; |
| B = c->h1; |
| C = c->h2; |
| D = c->h3; |
| E = c->h4; |
| |
| for (;;) { |
| for (i = 0; i < 16; i++) { |
| (void)HOST_c2l(data, l); |
| X[i] = l; |
| BODY_00_15(X[i]); |
| } |
| for (i = 0; i < 4; i++) { |
| BODY_16_19(X[i], X[i + 2], X[i + 8], X[(i + 13) & 15]); |
| } |
| for (; i < 24; i++) { |
| BODY_20_39(X[i & 15], X[(i + 2) & 15], X[(i + 8) & 15], |
| X[(i + 13) & 15]); |
| } |
| for (i = 0; i < 20; i++) { |
| BODY_40_59(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15], |
| X[(i + 5) & 15]); |
| } |
| for (i = 4; i < 24; i++) { |
| BODY_60_79(X[(i + 8) & 15], X[(i + 10) & 15], X[i & 15], |
| X[(i + 5) & 15]); |
| } |
| |
| c->h0 = (c->h0 + A) & 0xffffffffL; |
| c->h1 = (c->h1 + B) & 0xffffffffL; |
| c->h2 = (c->h2 + C) & 0xffffffffL; |
| c->h3 = (c->h3 + D) & 0xffffffffL; |
| c->h4 = (c->h4 + E) & 0xffffffffL; |
| |
| if (--num == 0) |
| break; |
| |
| A = c->h0; |
| B = c->h1; |
| C = c->h2; |
| D = c->h3; |
| E = c->h4; |
| |
| } |
| } |
| # endif |
| |
| #endif |