| /* |
| * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include "internal/cryptlib.h" |
| # include <openssl/x509.h> |
| # include <openssl/evp.h> |
| # include <openssl/hmac.h> |
| # include "evp_locl.h" |
| |
| /* set this to print out info about the keygen algorithm */ |
| /* #define OPENSSL_DEBUG_PKCS5V2 */ |
| |
| # ifdef OPENSSL_DEBUG_PKCS5V2 |
| static void h__dump(const unsigned char *p, int len); |
| # endif |
| |
| /* |
| * This is an implementation of PKCS#5 v2.0 password based encryption key |
| * derivation function PBKDF2. SHA1 version verified against test vectors |
| * posted by Peter Gutmann to the PKCS-TNG mailing list. |
| */ |
| |
| int PKCS5_PBKDF2_HMAC(const char *pass, int passlen, |
| const unsigned char *salt, int saltlen, int iter, |
| const EVP_MD *digest, int keylen, unsigned char *out) |
| { |
| const char *empty = ""; |
| unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4]; |
| int cplen, j, k, tkeylen, mdlen; |
| unsigned long i = 1; |
| HMAC_CTX *hctx_tpl = NULL, *hctx = NULL; |
| |
| mdlen = EVP_MD_size(digest); |
| if (mdlen < 0) |
| return 0; |
| |
| hctx_tpl = HMAC_CTX_new(); |
| if (hctx_tpl == NULL) |
| return 0; |
| p = out; |
| tkeylen = keylen; |
| if (pass == NULL) { |
| pass = empty; |
| passlen = 0; |
| } else if (passlen == -1) { |
| passlen = strlen(pass); |
| } |
| if (!HMAC_Init_ex(hctx_tpl, pass, passlen, digest, NULL)) { |
| HMAC_CTX_free(hctx_tpl); |
| return 0; |
| } |
| hctx = HMAC_CTX_new(); |
| if (hctx == NULL) { |
| HMAC_CTX_free(hctx_tpl); |
| return 0; |
| } |
| while (tkeylen) { |
| if (tkeylen > mdlen) |
| cplen = mdlen; |
| else |
| cplen = tkeylen; |
| /* |
| * We are unlikely to ever use more than 256 blocks (5120 bits!) but |
| * just in case... |
| */ |
| itmp[0] = (unsigned char)((i >> 24) & 0xff); |
| itmp[1] = (unsigned char)((i >> 16) & 0xff); |
| itmp[2] = (unsigned char)((i >> 8) & 0xff); |
| itmp[3] = (unsigned char)(i & 0xff); |
| if (!HMAC_CTX_copy(hctx, hctx_tpl)) { |
| HMAC_CTX_free(hctx); |
| HMAC_CTX_free(hctx_tpl); |
| return 0; |
| } |
| if (!HMAC_Update(hctx, salt, saltlen) |
| || !HMAC_Update(hctx, itmp, 4) |
| || !HMAC_Final(hctx, digtmp, NULL)) { |
| HMAC_CTX_free(hctx); |
| HMAC_CTX_free(hctx_tpl); |
| return 0; |
| } |
| memcpy(p, digtmp, cplen); |
| for (j = 1; j < iter; j++) { |
| if (!HMAC_CTX_copy(hctx, hctx_tpl)) { |
| HMAC_CTX_free(hctx); |
| HMAC_CTX_free(hctx_tpl); |
| return 0; |
| } |
| if (!HMAC_Update(hctx, digtmp, mdlen) |
| || !HMAC_Final(hctx, digtmp, NULL)) { |
| HMAC_CTX_free(hctx); |
| HMAC_CTX_free(hctx_tpl); |
| return 0; |
| } |
| for (k = 0; k < cplen; k++) |
| p[k] ^= digtmp[k]; |
| } |
| tkeylen -= cplen; |
| i++; |
| p += cplen; |
| } |
| HMAC_CTX_free(hctx); |
| HMAC_CTX_free(hctx_tpl); |
| # ifdef OPENSSL_DEBUG_PKCS5V2 |
| fprintf(stderr, "Password:\n"); |
| h__dump(pass, passlen); |
| fprintf(stderr, "Salt:\n"); |
| h__dump(salt, saltlen); |
| fprintf(stderr, "Iteration count %d\n", iter); |
| fprintf(stderr, "Key:\n"); |
| h__dump(out, keylen); |
| # endif |
| return 1; |
| } |
| |
| int PKCS5_PBKDF2_HMAC_SHA1(const char *pass, int passlen, |
| const unsigned char *salt, int saltlen, int iter, |
| int keylen, unsigned char *out) |
| { |
| return PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, EVP_sha1(), |
| keylen, out); |
| } |
| |
| /* |
| * Now the key derivation function itself. This is a bit evil because it has |
| * to check the ASN1 parameters are valid: and there are quite a few of |
| * them... |
| */ |
| |
| int PKCS5_v2_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen, |
| ASN1_TYPE *param, const EVP_CIPHER *c, |
| const EVP_MD *md, int en_de) |
| { |
| PBE2PARAM *pbe2 = NULL; |
| const EVP_CIPHER *cipher; |
| EVP_PBE_KEYGEN *kdf; |
| |
| int rv = 0; |
| |
| pbe2 = ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(PBE2PARAM), param); |
| if (pbe2 == NULL) { |
| EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, EVP_R_DECODE_ERROR); |
| goto err; |
| } |
| |
| /* See if we recognise the key derivation function */ |
| if (!EVP_PBE_find(EVP_PBE_TYPE_KDF, OBJ_obj2nid(pbe2->keyfunc->algorithm), |
| NULL, NULL, &kdf)) { |
| EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, |
| EVP_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION); |
| goto err; |
| } |
| |
| /* |
| * lets see if we recognise the encryption algorithm. |
| */ |
| |
| cipher = EVP_get_cipherbyobj(pbe2->encryption->algorithm); |
| |
| if (!cipher) { |
| EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, EVP_R_UNSUPPORTED_CIPHER); |
| goto err; |
| } |
| |
| /* Fixup cipher based on AlgorithmIdentifier */ |
| if (!EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, en_de)) |
| goto err; |
| if (EVP_CIPHER_asn1_to_param(ctx, pbe2->encryption->parameter) < 0) { |
| EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, EVP_R_CIPHER_PARAMETER_ERROR); |
| goto err; |
| } |
| rv = kdf(ctx, pass, passlen, pbe2->keyfunc->parameter, NULL, NULL, en_de); |
| err: |
| PBE2PARAM_free(pbe2); |
| return rv; |
| } |
| |
| int PKCS5_v2_PBKDF2_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, |
| int passlen, ASN1_TYPE *param, |
| const EVP_CIPHER *c, const EVP_MD *md, int en_de) |
| { |
| unsigned char *salt, key[EVP_MAX_KEY_LENGTH]; |
| int saltlen, iter; |
| int rv = 0; |
| unsigned int keylen = 0; |
| int prf_nid, hmac_md_nid; |
| PBKDF2PARAM *kdf = NULL; |
| const EVP_MD *prfmd; |
| |
| if (EVP_CIPHER_CTX_cipher(ctx) == NULL) { |
| EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_NO_CIPHER_SET); |
| goto err; |
| } |
| keylen = EVP_CIPHER_CTX_key_length(ctx); |
| OPENSSL_assert(keylen <= sizeof(key)); |
| |
| /* Decode parameter */ |
| |
| kdf = ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(PBKDF2PARAM), param); |
| |
| if (kdf == NULL) { |
| EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_DECODE_ERROR); |
| goto err; |
| } |
| |
| keylen = EVP_CIPHER_CTX_key_length(ctx); |
| |
| /* Now check the parameters of the kdf */ |
| |
| if (kdf->keylength && (ASN1_INTEGER_get(kdf->keylength) != (int)keylen)) { |
| EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_KEYLENGTH); |
| goto err; |
| } |
| |
| if (kdf->prf) |
| prf_nid = OBJ_obj2nid(kdf->prf->algorithm); |
| else |
| prf_nid = NID_hmacWithSHA1; |
| |
| if (!EVP_PBE_find(EVP_PBE_TYPE_PRF, prf_nid, NULL, &hmac_md_nid, 0)) { |
| EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_PRF); |
| goto err; |
| } |
| |
| prfmd = EVP_get_digestbynid(hmac_md_nid); |
| if (prfmd == NULL) { |
| EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_PRF); |
| goto err; |
| } |
| |
| if (kdf->salt->type != V_ASN1_OCTET_STRING) { |
| EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_SALT_TYPE); |
| goto err; |
| } |
| |
| /* it seems that its all OK */ |
| salt = kdf->salt->value.octet_string->data; |
| saltlen = kdf->salt->value.octet_string->length; |
| iter = ASN1_INTEGER_get(kdf->iter); |
| if (!PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, prfmd, |
| keylen, key)) |
| goto err; |
| rv = EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, en_de); |
| err: |
| OPENSSL_cleanse(key, keylen); |
| PBKDF2PARAM_free(kdf); |
| return rv; |
| } |
| |
| # ifdef OPENSSL_DEBUG_PKCS5V2 |
| static void h__dump(const unsigned char *p, int len) |
| { |
| for (; len--; p++) |
| fprintf(stderr, "%02X ", *p); |
| fprintf(stderr, "\n"); |
| } |
| # endif |