|  | /* | 
|  | * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * | 
|  | * Licensed under the Apache License 2.0 (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | /* We need to use some deprecated APIs */ | 
|  | #define OPENSSL_SUPPRESS_DEPRECATED | 
|  |  | 
|  | #include <string.h> | 
|  | #include "internal/nelem.h" | 
|  | #include <openssl/crypto.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/rand.h> | 
|  | #include <openssl/obj_mac.h> | 
|  | #include <openssl/evp.h> | 
|  | #include <openssl/aes.h> | 
|  | #include "../crypto/rand/rand_local.h" | 
|  | #include "../include/crypto/rand.h" | 
|  | #include "../include/crypto/evp.h" | 
|  | #include "../providers/implementations/rands/drbg_local.h" | 
|  | #include "../crypto/evp/evp_local.h" | 
|  |  | 
|  | #if defined(_WIN32) | 
|  | # include <windows.h> | 
|  | #endif | 
|  |  | 
|  | #if defined(__TANDEM) | 
|  | # if defined(OPENSSL_TANDEM_FLOSS) | 
|  | #  include <floss.h(floss_fork)> | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | #if defined(OPENSSL_SYS_UNIX) | 
|  | # include <sys/types.h> | 
|  | # include <sys/wait.h> | 
|  | # include <unistd.h> | 
|  | #endif | 
|  |  | 
|  | #include "testutil.h" | 
|  |  | 
|  | /* | 
|  | * DRBG generate wrappers | 
|  | */ | 
|  | static int gen_bytes(EVP_RAND_CTX *drbg, unsigned char *buf, int num) | 
|  | { | 
|  | #ifndef OPENSSL_NO_DEPRECATED_3_0 | 
|  | const RAND_METHOD *meth = RAND_get_rand_method(); | 
|  |  | 
|  | if (meth != NULL && meth != RAND_OpenSSL()) { | 
|  | if (meth->bytes != NULL) | 
|  | return meth->bytes(buf, num); | 
|  | return -1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (drbg != NULL) | 
|  | return EVP_RAND_generate(drbg, buf, num, 0, 0, NULL, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rand_bytes(unsigned char *buf, int num) | 
|  | { | 
|  | return gen_bytes(RAND_get0_public(NULL), buf, num); | 
|  | } | 
|  |  | 
|  | static int rand_priv_bytes(unsigned char *buf, int num) | 
|  | { | 
|  | return gen_bytes(RAND_get0_private(NULL), buf, num); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* size of random output generated in test_drbg_reseed() */ | 
|  | #define RANDOM_SIZE 16 | 
|  |  | 
|  | /* | 
|  | * DRBG query functions | 
|  | */ | 
|  | static int state(EVP_RAND_CTX *drbg) | 
|  | { | 
|  | return EVP_RAND_get_state(drbg); | 
|  | } | 
|  |  | 
|  | static unsigned int query_rand_uint(EVP_RAND_CTX *drbg, const char *name) | 
|  | { | 
|  | OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; | 
|  | unsigned int n; | 
|  |  | 
|  | *params = OSSL_PARAM_construct_uint(name, &n); | 
|  | if (EVP_RAND_CTX_get_params(drbg, params)) | 
|  | return n; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define DRBG_UINT(name)                                 \ | 
|  | static unsigned int name(EVP_RAND_CTX *drbg)        \ | 
|  | {                                                   \ | 
|  | return query_rand_uint(drbg, #name);            \ | 
|  | } | 
|  | DRBG_UINT(reseed_counter) | 
|  |  | 
|  | static PROV_DRBG *prov_rand(EVP_RAND_CTX *drbg) | 
|  | { | 
|  | return (PROV_DRBG *)drbg->algctx; | 
|  | } | 
|  |  | 
|  | static void set_reseed_counter(EVP_RAND_CTX *drbg, unsigned int n) | 
|  | { | 
|  | PROV_DRBG *p = prov_rand(drbg); | 
|  |  | 
|  | p->reseed_counter = n; | 
|  | } | 
|  |  | 
|  | static void inc_reseed_counter(EVP_RAND_CTX *drbg) | 
|  | { | 
|  | set_reseed_counter(drbg, reseed_counter(drbg) + 1); | 
|  | } | 
|  |  | 
|  | static time_t reseed_time(EVP_RAND_CTX *drbg) | 
|  | { | 
|  | OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; | 
|  | time_t t; | 
|  |  | 
|  | *params = OSSL_PARAM_construct_time_t(OSSL_DRBG_PARAM_RESEED_TIME, &t); | 
|  | if (EVP_RAND_CTX_get_params(drbg, params)) | 
|  | return t; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When building the FIPS module, it isn't possible to disable the continuous | 
|  | * RNG tests.  Tests that require this are skipped. | 
|  | */ | 
|  | static int crngt_skip(void) | 
|  | { | 
|  | #ifdef FIPS_MODULE | 
|  | return 1; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disable CRNG testing if it is enabled. | 
|  | * This stub remains to indicate the calling locations where it is necessary. | 
|  | * Once the RNG infrastructure is able to disable these tests, it should be | 
|  | * reconstituted. | 
|  | */ | 
|  | static int disable_crngt(EVP_RAND_CTX *drbg) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generates random output using rand_bytes() and rand_priv_bytes() | 
|  | * and checks whether the three shared DRBGs were reseeded as | 
|  | * expected. | 
|  | * | 
|  | * |expect_success|: expected outcome (as reported by RAND_status()) | 
|  | * |primary|, |public|, |private|: pointers to the three shared DRBGs | 
|  | * |public_random|, |private_random|: generated random output | 
|  | * |expect_xxx_reseed| = | 
|  | *       1:  it is expected that the specified DRBG is reseeded | 
|  | *       0:  it is expected that the specified DRBG is not reseeded | 
|  | *      -1:  don't check whether the specified DRBG was reseeded or not | 
|  | * |reseed_when|: if nonzero, used instead of time(NULL) to set the | 
|  | *                |before_reseed| time. | 
|  | */ | 
|  | static int test_drbg_reseed(int expect_success, | 
|  | EVP_RAND_CTX *primary, | 
|  | EVP_RAND_CTX *public, | 
|  | EVP_RAND_CTX *private, | 
|  | unsigned char *public_random, | 
|  | unsigned char *private_random, | 
|  | int expect_primary_reseed, | 
|  | int expect_public_reseed, | 
|  | int expect_private_reseed, | 
|  | time_t reseed_when | 
|  | ) | 
|  | { | 
|  | time_t before_reseed, after_reseed; | 
|  | int expected_state = (expect_success ? DRBG_READY : DRBG_ERROR); | 
|  | unsigned int primary_reseed, public_reseed, private_reseed; | 
|  | unsigned char dummy[RANDOM_SIZE]; | 
|  |  | 
|  | if (public_random == NULL) | 
|  | public_random = dummy; | 
|  |  | 
|  | if (private_random == NULL) | 
|  | private_random = dummy; | 
|  |  | 
|  | /* | 
|  | * step 1: check preconditions | 
|  | */ | 
|  |  | 
|  | /* Test whether seed propagation is enabled */ | 
|  | if (!TEST_int_ne(primary_reseed = reseed_counter(primary), 0) | 
|  | || !TEST_int_ne(public_reseed = reseed_counter(public), 0) | 
|  | || !TEST_int_ne(private_reseed = reseed_counter(private), 0)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * step 2: generate random output | 
|  | */ | 
|  |  | 
|  | if (reseed_when == 0) | 
|  | reseed_when = time(NULL); | 
|  |  | 
|  | /* Generate random output from the public and private DRBG */ | 
|  | before_reseed = expect_primary_reseed == 1 ? reseed_when : 0; | 
|  | if (!TEST_int_eq(rand_bytes((unsigned char*)public_random, | 
|  | RANDOM_SIZE), expect_success) | 
|  | || !TEST_int_eq(rand_priv_bytes((unsigned char*) private_random, | 
|  | RANDOM_SIZE), expect_success)) | 
|  | return 0; | 
|  | after_reseed = time(NULL); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * step 3: check postconditions | 
|  | */ | 
|  |  | 
|  | /* Test whether reseeding succeeded as expected */ | 
|  | if (!TEST_int_eq(state(primary), expected_state) | 
|  | || !TEST_int_eq(state(public), expected_state) | 
|  | || !TEST_int_eq(state(private), expected_state)) | 
|  | return 0; | 
|  |  | 
|  | if (expect_primary_reseed >= 0) { | 
|  | /* Test whether primary DRBG was reseeded as expected */ | 
|  | if (!TEST_int_ge(reseed_counter(primary), primary_reseed)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (expect_public_reseed >= 0) { | 
|  | /* Test whether public DRBG was reseeded as expected */ | 
|  | if (!TEST_int_ge(reseed_counter(public), public_reseed) | 
|  | || !TEST_uint_ge(reseed_counter(public), | 
|  | reseed_counter(primary))) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (expect_private_reseed >= 0) { | 
|  | /* Test whether public DRBG was reseeded as expected */ | 
|  | if (!TEST_int_ge(reseed_counter(private), private_reseed) | 
|  | || !TEST_uint_ge(reseed_counter(private), | 
|  | reseed_counter(primary))) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (expect_success == 1) { | 
|  | /* Test whether reseed time of primary DRBG is set correctly */ | 
|  | if (!TEST_time_t_le(before_reseed, reseed_time(primary)) | 
|  | || !TEST_time_t_le(reseed_time(primary), after_reseed)) | 
|  | return 0; | 
|  |  | 
|  | /* Test whether reseed times of child DRBGs are synchronized with primary */ | 
|  | if (!TEST_time_t_ge(reseed_time(public), reseed_time(primary)) | 
|  | || !TEST_time_t_ge(reseed_time(private), reseed_time(primary))) | 
|  | return 0; | 
|  | } else { | 
|  | ERR_clear_error(); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | #if defined(OPENSSL_SYS_UNIX) | 
|  | /* number of children to fork */ | 
|  | #define DRBG_FORK_COUNT 9 | 
|  | /* two results per child, two for the parent */ | 
|  | #define DRBG_FORK_RESULT_COUNT (2 * (DRBG_FORK_COUNT + 1)) | 
|  |  | 
|  | typedef struct drbg_fork_result_st { | 
|  |  | 
|  | unsigned char random[RANDOM_SIZE]; /* random output */ | 
|  |  | 
|  | int pindex;               /* process index (0: parent, 1,2,3...: children)*/ | 
|  | pid_t pid;                /* process id */ | 
|  | int private;              /* true if the private drbg was used */ | 
|  | char name[10];            /* 'parent' resp. 'child 1', 'child 2', ... */ | 
|  | } drbg_fork_result; | 
|  |  | 
|  | /* | 
|  | * Sort the drbg_fork_result entries in lexicographical order | 
|  | * | 
|  | * This simplifies finding duplicate random output and makes | 
|  | * the printout in case of an error more readable. | 
|  | */ | 
|  | static int compare_drbg_fork_result(const void * left, const void * right) | 
|  | { | 
|  | int result; | 
|  | const drbg_fork_result *l = left; | 
|  | const drbg_fork_result *r = right; | 
|  |  | 
|  | /* separate public and private results */ | 
|  | result = l->private - r->private; | 
|  |  | 
|  | if (result == 0) | 
|  | result = memcmp(l->random, r->random, RANDOM_SIZE); | 
|  |  | 
|  | if (result == 0) | 
|  | result = l->pindex - r->pindex; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sort two-byte chunks of random data | 
|  | * | 
|  | * Used for finding collisions in two-byte chunks | 
|  | */ | 
|  | static int compare_rand_chunk(const void * left, const void * right) | 
|  | { | 
|  | return memcmp(left, right, 2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Test whether primary, public and private DRBG are reseeded | 
|  | * in the child after forking the process. Collect the random | 
|  | * output of the public and private DRBG and send it back to | 
|  | * the parent process. | 
|  | */ | 
|  | static int test_drbg_reseed_in_child(EVP_RAND_CTX *primary, | 
|  | EVP_RAND_CTX *public, | 
|  | EVP_RAND_CTX *private, | 
|  | drbg_fork_result result[2]) | 
|  | { | 
|  | int rv = 0, status; | 
|  | int fd[2]; | 
|  | pid_t pid; | 
|  | unsigned char random[2 * RANDOM_SIZE]; | 
|  |  | 
|  | if (!TEST_int_ge(pipe(fd), 0)) | 
|  | return 0; | 
|  |  | 
|  | if (!TEST_int_ge(pid = fork(), 0)) { | 
|  | close(fd[0]); | 
|  | close(fd[1]); | 
|  | return 0; | 
|  | } else if (pid > 0) { | 
|  |  | 
|  | /* I'm the parent; close the write end */ | 
|  | close(fd[1]); | 
|  |  | 
|  | /* wait for children to terminate and collect their random output */ | 
|  | if (TEST_int_eq(waitpid(pid, &status, 0), pid) | 
|  | && TEST_int_eq(status, 0) | 
|  | && TEST_true(read(fd[0], &random[0], sizeof(random)) | 
|  | == sizeof(random))) { | 
|  |  | 
|  | /* random output of public drbg */ | 
|  | result[0].pid = pid; | 
|  | result[0].private = 0; | 
|  | memcpy(result[0].random, &random[0], RANDOM_SIZE); | 
|  |  | 
|  | /* random output of private drbg */ | 
|  | result[1].pid = pid; | 
|  | result[1].private = 1; | 
|  | memcpy(result[1].random, &random[RANDOM_SIZE], RANDOM_SIZE); | 
|  |  | 
|  | rv = 1; | 
|  | } | 
|  |  | 
|  | /* close the read end */ | 
|  | close(fd[0]); | 
|  |  | 
|  | return rv; | 
|  |  | 
|  | } else { | 
|  |  | 
|  | /* I'm the child; close the read end */ | 
|  | close(fd[0]); | 
|  |  | 
|  | /* check whether all three DRBGs reseed and send output to parent */ | 
|  | if (TEST_true(test_drbg_reseed(1, primary, public, private, | 
|  | &random[0], &random[RANDOM_SIZE], | 
|  | 1, 1, 1, 0)) | 
|  | && TEST_true(write(fd[1], random, sizeof(random)) | 
|  | == sizeof(random))) { | 
|  |  | 
|  | rv = 1; | 
|  | } | 
|  |  | 
|  | /* close the write end */ | 
|  | close(fd[1]); | 
|  |  | 
|  | /* convert boolean to exit code */ | 
|  | exit(rv == 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int test_rand_reseed_on_fork(EVP_RAND_CTX *primary, | 
|  | EVP_RAND_CTX *public, | 
|  | EVP_RAND_CTX *private) | 
|  | { | 
|  | unsigned int i; | 
|  | pid_t pid = getpid(); | 
|  | int verbose = (getenv("V") != NULL); | 
|  | int success = 1; | 
|  | int duplicate[2] = {0, 0}; | 
|  | unsigned char random[2 * RANDOM_SIZE]; | 
|  | unsigned char sample[DRBG_FORK_RESULT_COUNT * RANDOM_SIZE]; | 
|  | unsigned char *psample = &sample[0]; | 
|  | drbg_fork_result result[DRBG_FORK_RESULT_COUNT]; | 
|  | drbg_fork_result *presult = &result[2]; | 
|  |  | 
|  | memset(&result,  0, sizeof(result)); | 
|  |  | 
|  | for (i = 1 ; i <= DRBG_FORK_COUNT ; ++i) { | 
|  |  | 
|  | presult[0].pindex = presult[1].pindex = i; | 
|  |  | 
|  | sprintf(presult[0].name, "child %d", i); | 
|  | strcpy(presult[1].name, presult[0].name); | 
|  |  | 
|  | /* collect the random output of the children */ | 
|  | if (!TEST_true(test_drbg_reseed_in_child(primary, | 
|  | public, | 
|  | private, | 
|  | presult))) | 
|  | return 0; | 
|  |  | 
|  | presult += 2; | 
|  | } | 
|  |  | 
|  | /* collect the random output of the parent */ | 
|  | if (!TEST_true(test_drbg_reseed(1, | 
|  | primary, public, private, | 
|  | &random[0], &random[RANDOM_SIZE], | 
|  | 0, 0, 0, 0))) | 
|  | return 0; | 
|  |  | 
|  | strcpy(result[0].name, "parent"); | 
|  | strcpy(result[1].name, "parent"); | 
|  |  | 
|  | /* output of public drbg */ | 
|  | result[0].pid = pid; | 
|  | result[0].private = 0; | 
|  | memcpy(result[0].random, &random[0], RANDOM_SIZE); | 
|  |  | 
|  | /* output of private drbg */ | 
|  | result[1].pid = pid; | 
|  | result[1].private = 1; | 
|  | memcpy(result[1].random, &random[RANDOM_SIZE], RANDOM_SIZE); | 
|  |  | 
|  | /* collect all sampled random data in a single buffer */ | 
|  | for (i = 0 ; i < DRBG_FORK_RESULT_COUNT ; ++i) { | 
|  | memcpy(psample, &result[i].random[0], RANDOM_SIZE); | 
|  | psample += RANDOM_SIZE; | 
|  | } | 
|  |  | 
|  | /* sort the results... */ | 
|  | qsort(result, DRBG_FORK_RESULT_COUNT, sizeof(drbg_fork_result), | 
|  | compare_drbg_fork_result); | 
|  |  | 
|  | /* ...and count duplicate prefixes by looking at the first byte only */ | 
|  | for (i = 1 ; i < DRBG_FORK_RESULT_COUNT ; ++i) { | 
|  | if (result[i].random[0] == result[i-1].random[0]) { | 
|  | /* count public and private duplicates separately */ | 
|  | ++duplicate[result[i].private]; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (duplicate[0] >= DRBG_FORK_COUNT - 1) { | 
|  | /* just too many duplicates to be a coincidence */ | 
|  | TEST_note("ERROR: %d duplicate prefixes in public random output", duplicate[0]); | 
|  | success = 0; | 
|  | } | 
|  |  | 
|  | if (duplicate[1] >= DRBG_FORK_COUNT - 1) { | 
|  | /* just too many duplicates to be a coincidence */ | 
|  | TEST_note("ERROR: %d duplicate prefixes in private random output", duplicate[1]); | 
|  | success = 0; | 
|  | } | 
|  |  | 
|  | duplicate[0] = 0; | 
|  |  | 
|  | /* sort the two-byte chunks... */ | 
|  | qsort(sample, sizeof(sample)/2, 2, compare_rand_chunk); | 
|  |  | 
|  | /* ...and count duplicate chunks */ | 
|  | for (i = 2, psample = sample + 2 ; i < sizeof(sample) ; i += 2, psample += 2) { | 
|  | if (compare_rand_chunk(psample - 2, psample) == 0) | 
|  | ++duplicate[0]; | 
|  | } | 
|  |  | 
|  | if (duplicate[0] >= DRBG_FORK_COUNT - 1) { | 
|  | /* just too many duplicates to be a coincidence */ | 
|  | TEST_note("ERROR: %d duplicate chunks in random output", duplicate[0]); | 
|  | success = 0; | 
|  | } | 
|  |  | 
|  | if (verbose || !success) { | 
|  |  | 
|  | for (i = 0 ; i < DRBG_FORK_RESULT_COUNT ; ++i) { | 
|  | char *rand_hex = OPENSSL_buf2hexstr(result[i].random, RANDOM_SIZE); | 
|  |  | 
|  | TEST_note("    random: %s, pid: %d (%s, %s)", | 
|  | rand_hex, | 
|  | result[i].pid, | 
|  | result[i].name, | 
|  | result[i].private ? "private" : "public" | 
|  | ); | 
|  |  | 
|  | OPENSSL_free(rand_hex); | 
|  | } | 
|  | } | 
|  |  | 
|  | return success; | 
|  | } | 
|  |  | 
|  | static int test_rand_fork_safety(int i) | 
|  | { | 
|  | int success = 1; | 
|  | unsigned char random[1]; | 
|  | EVP_RAND_CTX *primary, *public, *private; | 
|  |  | 
|  | /* All three DRBGs should be non-null */ | 
|  | if (!TEST_ptr(primary = RAND_get0_primary(NULL)) | 
|  | || !TEST_ptr(public = RAND_get0_public(NULL)) | 
|  | || !TEST_ptr(private = RAND_get0_private(NULL))) | 
|  | return 0; | 
|  |  | 
|  | /* run the actual test */ | 
|  | if (!TEST_true(test_rand_reseed_on_fork(primary, public, private))) | 
|  | success = 0; | 
|  |  | 
|  | /* request a single byte from each of the DRBGs before the next run */ | 
|  | if (!TEST_true(RAND_bytes(random, 1) && RAND_priv_bytes(random, 1))) | 
|  | success = 0; | 
|  |  | 
|  | return success; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Test whether the default rand_method (RAND_OpenSSL()) is | 
|  | * setup correctly, in particular whether reseeding  works | 
|  | * as designed. | 
|  | */ | 
|  | static int test_rand_reseed(void) | 
|  | { | 
|  | EVP_RAND_CTX *primary, *public, *private; | 
|  | unsigned char rand_add_buf[256]; | 
|  | int rv = 0; | 
|  | time_t before_reseed; | 
|  |  | 
|  | if (crngt_skip()) | 
|  | return TEST_skip("CRNGT cannot be disabled"); | 
|  |  | 
|  | #ifndef OPENSSL_NO_DEPRECATED_3_0 | 
|  | /* Check whether RAND_OpenSSL() is the default method */ | 
|  | if (!TEST_ptr_eq(RAND_get_rand_method(), RAND_OpenSSL())) | 
|  | return 0; | 
|  | #endif | 
|  |  | 
|  | /* All three DRBGs should be non-null */ | 
|  | if (!TEST_ptr(primary = RAND_get0_primary(NULL)) | 
|  | || !TEST_ptr(public = RAND_get0_public(NULL)) | 
|  | || !TEST_ptr(private = RAND_get0_private(NULL))) | 
|  | return 0; | 
|  |  | 
|  | /* There should be three distinct DRBGs, two of them chained to primary */ | 
|  | if (!TEST_ptr_ne(public, private) | 
|  | || !TEST_ptr_ne(public, primary) | 
|  | || !TEST_ptr_ne(private, primary) | 
|  | || !TEST_ptr_eq(prov_rand(public)->parent, prov_rand(primary)) | 
|  | || !TEST_ptr_eq(prov_rand(private)->parent, prov_rand(primary))) | 
|  | return 0; | 
|  |  | 
|  | /* Disable CRNG testing for the primary DRBG */ | 
|  | if (!TEST_true(disable_crngt(primary))) | 
|  | return 0; | 
|  |  | 
|  | /* uninstantiate the three global DRBGs */ | 
|  | EVP_RAND_uninstantiate(primary); | 
|  | EVP_RAND_uninstantiate(private); | 
|  | EVP_RAND_uninstantiate(public); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Test initial seeding of shared DRBGs | 
|  | */ | 
|  | if (!TEST_true(test_drbg_reseed(1, | 
|  | primary, public, private, | 
|  | NULL, NULL, | 
|  | 1, 1, 1, 0))) | 
|  | goto error; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Test initial state of shared DRBGs | 
|  | */ | 
|  | if (!TEST_true(test_drbg_reseed(1, | 
|  | primary, public, private, | 
|  | NULL, NULL, | 
|  | 0, 0, 0, 0))) | 
|  | goto error; | 
|  |  | 
|  | /* | 
|  | * Test whether the public and private DRBG are both reseeded when their | 
|  | * reseed counters differ from the primary's reseed counter. | 
|  | */ | 
|  | inc_reseed_counter(primary); | 
|  | if (!TEST_true(test_drbg_reseed(1, | 
|  | primary, public, private, | 
|  | NULL, NULL, | 
|  | 0, 1, 1, 0))) | 
|  | goto error; | 
|  |  | 
|  | /* | 
|  | * Test whether the public DRBG is reseeded when its reseed counter differs | 
|  | * from the primary's reseed counter. | 
|  | */ | 
|  | inc_reseed_counter(primary); | 
|  | inc_reseed_counter(private); | 
|  | if (!TEST_true(test_drbg_reseed(1, | 
|  | primary, public, private, | 
|  | NULL, NULL, | 
|  | 0, 1, 0, 0))) | 
|  | goto error; | 
|  |  | 
|  | /* | 
|  | * Test whether the private DRBG is reseeded when its reseed counter differs | 
|  | * from the primary's reseed counter. | 
|  | */ | 
|  | inc_reseed_counter(primary); | 
|  | inc_reseed_counter(public); | 
|  | if (!TEST_true(test_drbg_reseed(1, | 
|  | primary, public, private, | 
|  | NULL, NULL, | 
|  | 0, 0, 1, 0))) | 
|  | goto error; | 
|  |  | 
|  | /* fill 'randomness' buffer with some arbitrary data */ | 
|  | memset(rand_add_buf, 'r', sizeof(rand_add_buf)); | 
|  |  | 
|  | #ifndef FIPS_MODULE | 
|  | /* | 
|  | * Test whether all three DRBGs are reseeded by RAND_add(). | 
|  | * The before_reseed time has to be measured here and passed into the | 
|  | * test_drbg_reseed() test, because the primary DRBG gets already reseeded | 
|  | * in RAND_add(), whence the check for the condition | 
|  | * before_reseed <= reseed_time(primary) will fail if the time value happens | 
|  | * to increase between the RAND_add() and the test_drbg_reseed() call. | 
|  | */ | 
|  | before_reseed = time(NULL); | 
|  | RAND_add(rand_add_buf, sizeof(rand_add_buf), sizeof(rand_add_buf)); | 
|  | if (!TEST_true(test_drbg_reseed(1, | 
|  | primary, public, private, | 
|  | NULL, NULL, | 
|  | 1, 1, 1, | 
|  | before_reseed))) | 
|  | goto error; | 
|  | #else /* FIPS_MODULE */ | 
|  | /* | 
|  | * In FIPS mode, random data provided by the application via RAND_add() | 
|  | * is not considered a trusted entropy source. It is only treated as | 
|  | * additional_data and no reseeding is forced. This test assures that | 
|  | * no reseeding occurs. | 
|  | */ | 
|  | before_reseed = time(NULL); | 
|  | RAND_add(rand_add_buf, sizeof(rand_add_buf), sizeof(rand_add_buf)); | 
|  | if (!TEST_true(test_drbg_reseed(1, | 
|  | primary, public, private, | 
|  | NULL, NULL, | 
|  | 0, 0, 0, | 
|  | before_reseed))) | 
|  | goto error; | 
|  | #endif | 
|  |  | 
|  | rv = 1; | 
|  |  | 
|  | error: | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | #if defined(OPENSSL_THREADS) | 
|  | static int multi_thread_rand_bytes_succeeded = 1; | 
|  | static int multi_thread_rand_priv_bytes_succeeded = 1; | 
|  |  | 
|  | static int set_reseed_time_interval(EVP_RAND_CTX *drbg, int t) | 
|  | { | 
|  | OSSL_PARAM params[2]; | 
|  |  | 
|  | params[0] = OSSL_PARAM_construct_int(OSSL_DRBG_PARAM_RESEED_TIME_INTERVAL, | 
|  | &t); | 
|  | params[1] = OSSL_PARAM_construct_end(); | 
|  | return EVP_RAND_CTX_set_params(drbg, params); | 
|  | } | 
|  |  | 
|  | static void run_multi_thread_test(void) | 
|  | { | 
|  | unsigned char buf[256]; | 
|  | time_t start = time(NULL); | 
|  | EVP_RAND_CTX *public = NULL, *private = NULL; | 
|  |  | 
|  | if (!TEST_ptr(public = RAND_get0_public(NULL)) | 
|  | || !TEST_ptr(private = RAND_get0_private(NULL)) | 
|  | || !TEST_true(set_reseed_time_interval(private, 1)) | 
|  | || !TEST_true(set_reseed_time_interval(public, 1))) { | 
|  | multi_thread_rand_bytes_succeeded = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | do { | 
|  | if (rand_bytes(buf, sizeof(buf)) <= 0) | 
|  | multi_thread_rand_bytes_succeeded = 0; | 
|  | if (rand_priv_bytes(buf, sizeof(buf)) <= 0) | 
|  | multi_thread_rand_priv_bytes_succeeded = 0; | 
|  | } | 
|  | while (time(NULL) - start < 5); | 
|  | } | 
|  |  | 
|  | # if defined(OPENSSL_SYS_WINDOWS) | 
|  |  | 
|  | typedef HANDLE thread_t; | 
|  |  | 
|  | static DWORD WINAPI thread_run(LPVOID arg) | 
|  | { | 
|  | run_multi_thread_test(); | 
|  | /* | 
|  | * Because we're linking with a static library, we must stop each | 
|  | * thread explicitly, or so says OPENSSL_thread_stop(3) | 
|  | */ | 
|  | OPENSSL_thread_stop(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int run_thread(thread_t *t) | 
|  | { | 
|  | *t = CreateThread(NULL, 0, thread_run, NULL, 0, NULL); | 
|  | return *t != NULL; | 
|  | } | 
|  |  | 
|  | static int wait_for_thread(thread_t thread) | 
|  | { | 
|  | return WaitForSingleObject(thread, INFINITE) == 0; | 
|  | } | 
|  |  | 
|  | # else | 
|  |  | 
|  | typedef pthread_t thread_t; | 
|  |  | 
|  | static void *thread_run(void *arg) | 
|  | { | 
|  | run_multi_thread_test(); | 
|  | /* | 
|  | * Because we're linking with a static library, we must stop each | 
|  | * thread explicitly, or so says OPENSSL_thread_stop(3) | 
|  | */ | 
|  | OPENSSL_thread_stop(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int run_thread(thread_t *t) | 
|  | { | 
|  | return pthread_create(t, NULL, thread_run, NULL) == 0; | 
|  | } | 
|  |  | 
|  | static int wait_for_thread(thread_t thread) | 
|  | { | 
|  | return pthread_join(thread, NULL) == 0; | 
|  | } | 
|  |  | 
|  | # endif | 
|  |  | 
|  | /* | 
|  | * The main thread will also run the test, so we'll have THREADS+1 parallel | 
|  | * tests running | 
|  | */ | 
|  | # define THREADS 3 | 
|  |  | 
|  | static int test_multi_thread(void) | 
|  | { | 
|  | thread_t t[THREADS]; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < THREADS; i++) | 
|  | run_thread(&t[i]); | 
|  | run_multi_thread_test(); | 
|  | for (i = 0; i < THREADS; i++) | 
|  | wait_for_thread(t[i]); | 
|  |  | 
|  | if (!TEST_true(multi_thread_rand_bytes_succeeded)) | 
|  | return 0; | 
|  | if (!TEST_true(multi_thread_rand_priv_bytes_succeeded)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static EVP_RAND_CTX *new_drbg(EVP_RAND_CTX *parent) | 
|  | { | 
|  | OSSL_PARAM params[2]; | 
|  | EVP_RAND *rand = NULL; | 
|  | EVP_RAND_CTX *drbg = NULL; | 
|  |  | 
|  | params[0] = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_CIPHER, | 
|  | "AES-256-CTR", 0); | 
|  | params[1] = OSSL_PARAM_construct_end(); | 
|  |  | 
|  | if (!TEST_ptr(rand = EVP_RAND_fetch(NULL, "CTR-DRBG", NULL)) | 
|  | || !TEST_ptr(drbg = EVP_RAND_CTX_new(rand, parent)) | 
|  | || !TEST_true(EVP_RAND_CTX_set_params(drbg, params))) { | 
|  | EVP_RAND_CTX_free(drbg); | 
|  | drbg = NULL; | 
|  | } | 
|  | EVP_RAND_free(rand); | 
|  | return drbg; | 
|  | } | 
|  |  | 
|  | static int test_rand_prediction_resistance(void) | 
|  | { | 
|  | EVP_RAND_CTX *x = NULL, *y = NULL, *z = NULL; | 
|  | unsigned char buf1[51], buf2[sizeof(buf1)]; | 
|  | int ret = 0, xreseed, yreseed, zreseed; | 
|  |  | 
|  | if (crngt_skip()) | 
|  | return TEST_skip("CRNGT cannot be disabled"); | 
|  |  | 
|  | /* Initialise a three long DRBG chain */ | 
|  | if (!TEST_ptr(x = new_drbg(NULL)) | 
|  | || !TEST_true(disable_crngt(x)) | 
|  | || !TEST_true(EVP_RAND_instantiate(x, 0, 0, NULL, 0, NULL)) | 
|  | || !TEST_ptr(y = new_drbg(x)) | 
|  | || !TEST_true(EVP_RAND_instantiate(y, 0, 0, NULL, 0, NULL)) | 
|  | || !TEST_ptr(z = new_drbg(y)) | 
|  | || !TEST_true(EVP_RAND_instantiate(z, 0, 0, NULL, 0, NULL))) | 
|  | goto err; | 
|  |  | 
|  | /* | 
|  | * During a normal reseed, only the last DRBG in the chain should | 
|  | * be reseeded. | 
|  | */ | 
|  | inc_reseed_counter(y); | 
|  | xreseed = reseed_counter(x); | 
|  | yreseed = reseed_counter(y); | 
|  | zreseed = reseed_counter(z); | 
|  | if (!TEST_true(EVP_RAND_reseed(z, 0, NULL, 0, NULL, 0)) | 
|  | || !TEST_int_eq(reseed_counter(x), xreseed) | 
|  | || !TEST_int_eq(reseed_counter(y), yreseed) | 
|  | || !TEST_int_gt(reseed_counter(z), zreseed)) | 
|  | goto err; | 
|  |  | 
|  | /* | 
|  | * When prediction resistance is requested, the request should be | 
|  | * propagated to the primary, so that the entire DRBG chain reseeds. | 
|  | */ | 
|  | zreseed = reseed_counter(z); | 
|  | if (!TEST_true(EVP_RAND_reseed(z, 1, NULL, 0, NULL, 0)) | 
|  | || !TEST_int_gt(reseed_counter(x), xreseed) | 
|  | || !TEST_int_gt(reseed_counter(y), yreseed) | 
|  | || !TEST_int_gt(reseed_counter(z), zreseed)) | 
|  | goto err; | 
|  |  | 
|  | /* | 
|  | * During a normal generate, only the last DRBG should be reseed */ | 
|  | inc_reseed_counter(y); | 
|  | xreseed = reseed_counter(x); | 
|  | yreseed = reseed_counter(y); | 
|  | zreseed = reseed_counter(z); | 
|  | if (!TEST_true(EVP_RAND_generate(z, buf1, sizeof(buf1), 0, 0, NULL, 0)) | 
|  | || !TEST_int_eq(reseed_counter(x), xreseed) | 
|  | || !TEST_int_eq(reseed_counter(y), yreseed) | 
|  | || !TEST_int_gt(reseed_counter(z), zreseed)) | 
|  | goto err; | 
|  |  | 
|  | /* | 
|  | * When a prediction resistant generate is requested, the request | 
|  | * should be propagated to the primary, reseeding the entire DRBG chain. | 
|  | */ | 
|  | zreseed = reseed_counter(z); | 
|  | if (!TEST_true(EVP_RAND_generate(z, buf2, sizeof(buf2), 0, 1, NULL, 0)) | 
|  | || !TEST_int_gt(reseed_counter(x), xreseed) | 
|  | || !TEST_int_gt(reseed_counter(y), yreseed) | 
|  | || !TEST_int_gt(reseed_counter(z), zreseed) | 
|  | || !TEST_mem_ne(buf1, sizeof(buf1), buf2, sizeof(buf2))) | 
|  | goto err; | 
|  |  | 
|  | /* Verify that a normal reseed still only reseeds the last DRBG */ | 
|  | inc_reseed_counter(y); | 
|  | xreseed = reseed_counter(x); | 
|  | yreseed = reseed_counter(y); | 
|  | zreseed = reseed_counter(z); | 
|  | if (!TEST_true(EVP_RAND_reseed(z, 0, NULL, 0, NULL, 0)) | 
|  | || !TEST_int_eq(reseed_counter(x), xreseed) | 
|  | || !TEST_int_eq(reseed_counter(y), yreseed) | 
|  | || !TEST_int_gt(reseed_counter(z), zreseed)) | 
|  | goto err; | 
|  |  | 
|  | ret = 1; | 
|  | err: | 
|  | EVP_RAND_CTX_free(z); | 
|  | EVP_RAND_CTX_free(y); | 
|  | EVP_RAND_CTX_free(x); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int setup_tests(void) | 
|  | { | 
|  | ADD_TEST(test_rand_reseed); | 
|  | #if defined(OPENSSL_SYS_UNIX) | 
|  | ADD_ALL_TESTS(test_rand_fork_safety, RANDOM_SIZE); | 
|  | #endif | 
|  | ADD_TEST(test_rand_prediction_resistance); | 
|  | #if defined(OPENSSL_THREADS) | 
|  | ADD_TEST(test_multi_thread); | 
|  | #endif | 
|  | return 1; | 
|  | } |