| /* |
| * Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <stdio.h> |
| #include <openssl/bn.h> |
| #include "bn_local.h" |
| |
| /* X9.31 routines for prime derivation */ |
| |
| /* |
| * X9.31 prime derivation. This is used to generate the primes pi (p1, p2, |
| * q1, q2) from a parameter Xpi by checking successive odd integers. |
| */ |
| |
| static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx, |
| BN_GENCB *cb) |
| { |
| int i = 0, is_prime; |
| if (!BN_copy(pi, Xpi)) |
| return 0; |
| if (!BN_is_odd(pi) && !BN_add_word(pi, 1)) |
| return 0; |
| for (;;) { |
| i++; |
| BN_GENCB_call(cb, 0, i); |
| /* NB 27 MR is specified in X9.31 */ |
| is_prime = BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb); |
| if (is_prime < 0) |
| return 0; |
| if (is_prime) |
| break; |
| if (!BN_add_word(pi, 2)) |
| return 0; |
| } |
| BN_GENCB_call(cb, 2, i); |
| return 1; |
| } |
| |
| /* |
| * This is the main X9.31 prime derivation function. From parameters Xp1, Xp2 |
| * and Xp derive the prime p. If the parameters p1 or p2 are not NULL they |
| * will be returned too: this is needed for testing. |
| */ |
| |
| int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, |
| const BIGNUM *Xp, const BIGNUM *Xp1, |
| const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx, |
| BN_GENCB *cb) |
| { |
| int ret = 0; |
| |
| BIGNUM *t, *p1p2, *pm1; |
| |
| /* Only even e supported */ |
| if (!BN_is_odd(e)) |
| return 0; |
| |
| BN_CTX_start(ctx); |
| if (p1 == NULL) |
| p1 = BN_CTX_get(ctx); |
| |
| if (p2 == NULL) |
| p2 = BN_CTX_get(ctx); |
| |
| t = BN_CTX_get(ctx); |
| |
| p1p2 = BN_CTX_get(ctx); |
| |
| pm1 = BN_CTX_get(ctx); |
| |
| if (pm1 == NULL) |
| goto err; |
| |
| if (!bn_x931_derive_pi(p1, Xp1, ctx, cb)) |
| goto err; |
| |
| if (!bn_x931_derive_pi(p2, Xp2, ctx, cb)) |
| goto err; |
| |
| if (!BN_mul(p1p2, p1, p2, ctx)) |
| goto err; |
| |
| /* First set p to value of Rp */ |
| |
| if (!BN_mod_inverse(p, p2, p1, ctx)) |
| goto err; |
| |
| if (!BN_mul(p, p, p2, ctx)) |
| goto err; |
| |
| if (!BN_mod_inverse(t, p1, p2, ctx)) |
| goto err; |
| |
| if (!BN_mul(t, t, p1, ctx)) |
| goto err; |
| |
| if (!BN_sub(p, p, t)) |
| goto err; |
| |
| if (p->neg && !BN_add(p, p, p1p2)) |
| goto err; |
| |
| /* p now equals Rp */ |
| |
| if (!BN_mod_sub(p, p, Xp, p1p2, ctx)) |
| goto err; |
| |
| if (!BN_add(p, p, Xp)) |
| goto err; |
| |
| /* p now equals Yp0 */ |
| |
| for (;;) { |
| int i = 1; |
| BN_GENCB_call(cb, 0, i++); |
| if (!BN_copy(pm1, p)) |
| goto err; |
| if (!BN_sub_word(pm1, 1)) |
| goto err; |
| if (!BN_gcd(t, pm1, e, ctx)) |
| goto err; |
| if (BN_is_one(t)) { |
| /* |
| * X9.31 specifies 8 MR and 1 Lucas test or any prime test |
| * offering similar or better guarantees 50 MR is considerably |
| * better. |
| */ |
| int r = BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb); |
| if (r < 0) |
| goto err; |
| if (r) |
| break; |
| } |
| if (!BN_add(p, p, p1p2)) |
| goto err; |
| } |
| |
| BN_GENCB_call(cb, 3, 0); |
| |
| ret = 1; |
| |
| err: |
| |
| BN_CTX_end(ctx); |
| |
| return ret; |
| } |
| |
| /* |
| * Generate pair of parameters Xp, Xq for X9.31 prime generation. Note: nbits |
| * parameter is sum of number of bits in both. |
| */ |
| |
| int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx) |
| { |
| BIGNUM *t; |
| int i; |
| /* |
| * Number of bits for each prime is of the form 512+128s for s = 0, 1, |
| * ... |
| */ |
| if ((nbits < 1024) || (nbits & 0xff)) |
| return 0; |
| nbits >>= 1; |
| /* |
| * The random value Xp must be between sqrt(2) * 2^(nbits-1) and 2^nbits |
| * - 1. By setting the top two bits we ensure that the lower bound is |
| * exceeded. |
| */ |
| if (!BN_priv_rand_ex(Xp, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY, ctx)) |
| goto err; |
| |
| BN_CTX_start(ctx); |
| t = BN_CTX_get(ctx); |
| if (t == NULL) |
| goto err; |
| |
| for (i = 0; i < 1000; i++) { |
| if (!BN_priv_rand_ex(Xq, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY, |
| ctx)) |
| goto err; |
| |
| /* Check that |Xp - Xq| > 2^(nbits - 100) */ |
| if (!BN_sub(t, Xp, Xq)) |
| goto err; |
| if (BN_num_bits(t) > (nbits - 100)) |
| break; |
| } |
| |
| BN_CTX_end(ctx); |
| |
| if (i < 1000) |
| return 1; |
| |
| return 0; |
| |
| err: |
| BN_CTX_end(ctx); |
| return 0; |
| } |
| |
| /* |
| * Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 and |
| * Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL the |
| * relevant parameter will be stored in it. Due to the fact that |Xp - Xq| > |
| * 2^(nbits - 100) must be satisfied Xp and Xq are generated using the |
| * previous function and supplied as input. |
| */ |
| |
| int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, |
| BIGNUM *Xp1, BIGNUM *Xp2, |
| const BIGNUM *Xp, |
| const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) |
| { |
| int ret = 0; |
| |
| BN_CTX_start(ctx); |
| if (Xp1 == NULL) |
| Xp1 = BN_CTX_get(ctx); |
| if (Xp2 == NULL) |
| Xp2 = BN_CTX_get(ctx); |
| if (Xp1 == NULL || Xp2 == NULL) |
| goto error; |
| |
| if (!BN_priv_rand_ex(Xp1, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY, ctx)) |
| goto error; |
| if (!BN_priv_rand_ex(Xp2, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY, ctx)) |
| goto error; |
| if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb)) |
| goto error; |
| |
| ret = 1; |
| |
| error: |
| BN_CTX_end(ctx); |
| |
| return ret; |
| |
| } |