| /* |
| * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <stdio.h> |
| #include <time.h> |
| #include <errno.h> |
| #include <limits.h> |
| |
| #include "crypto/ctype.h" |
| #include "internal/cryptlib.h" |
| #include <openssl/crypto.h> |
| #include <openssl/buffer.h> |
| #include <openssl/evp.h> |
| #include <openssl/asn1.h> |
| #include <openssl/x509.h> |
| #include <openssl/x509v3.h> |
| #include <openssl/objects.h> |
| #include "internal/dane.h" |
| #include "crypto/x509.h" |
| #include "x509_local.h" |
| |
| /* CRL score values */ |
| |
| /* No unhandled critical extensions */ |
| |
| #define CRL_SCORE_NOCRITICAL 0x100 |
| |
| /* certificate is within CRL scope */ |
| |
| #define CRL_SCORE_SCOPE 0x080 |
| |
| /* CRL times valid */ |
| |
| #define CRL_SCORE_TIME 0x040 |
| |
| /* Issuer name matches certificate */ |
| |
| #define CRL_SCORE_ISSUER_NAME 0x020 |
| |
| /* If this score or above CRL is probably valid */ |
| |
| #define CRL_SCORE_VALID (CRL_SCORE_NOCRITICAL|CRL_SCORE_TIME|CRL_SCORE_SCOPE) |
| |
| /* CRL issuer is certificate issuer */ |
| |
| #define CRL_SCORE_ISSUER_CERT 0x018 |
| |
| /* CRL issuer is on certificate path */ |
| |
| #define CRL_SCORE_SAME_PATH 0x008 |
| |
| /* CRL issuer matches CRL AKID */ |
| |
| #define CRL_SCORE_AKID 0x004 |
| |
| /* Have a delta CRL with valid times */ |
| |
| #define CRL_SCORE_TIME_DELTA 0x002 |
| |
| static int build_chain(X509_STORE_CTX *ctx); |
| static int verify_chain(X509_STORE_CTX *ctx); |
| static int dane_verify(X509_STORE_CTX *ctx); |
| static int null_callback(int ok, X509_STORE_CTX *e); |
| static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer); |
| static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x); |
| static int check_chain_extensions(X509_STORE_CTX *ctx); |
| static int check_name_constraints(X509_STORE_CTX *ctx); |
| static int check_id(X509_STORE_CTX *ctx); |
| static int check_trust(X509_STORE_CTX *ctx, int num_untrusted); |
| static int check_revocation(X509_STORE_CTX *ctx); |
| static int check_cert(X509_STORE_CTX *ctx); |
| static int check_policy(X509_STORE_CTX *ctx); |
| static int get_issuer_sk(X509 **issuer, X509_STORE_CTX *ctx, X509 *x); |
| static int check_dane_issuer(X509_STORE_CTX *ctx, int depth); |
| static int check_key_level(X509_STORE_CTX *ctx, X509 *cert); |
| static int check_sig_level(X509_STORE_CTX *ctx, X509 *cert); |
| |
| static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer, |
| unsigned int *preasons, X509_CRL *crl, X509 *x); |
| static int get_crl_delta(X509_STORE_CTX *ctx, |
| X509_CRL **pcrl, X509_CRL **pdcrl, X509 *x); |
| static void get_delta_sk(X509_STORE_CTX *ctx, X509_CRL **dcrl, |
| int *pcrl_score, X509_CRL *base, |
| STACK_OF(X509_CRL) *crls); |
| static void crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, X509 **pissuer, |
| int *pcrl_score); |
| static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score, |
| unsigned int *preasons); |
| static int check_crl_path(X509_STORE_CTX *ctx, X509 *x); |
| static int check_crl_chain(X509_STORE_CTX *ctx, |
| STACK_OF(X509) *cert_path, |
| STACK_OF(X509) *crl_path); |
| |
| static int internal_verify(X509_STORE_CTX *ctx); |
| |
| static int null_callback(int ok, X509_STORE_CTX *e) |
| { |
| return ok; |
| } |
| |
| /* Return 1 is a certificate is self signed */ |
| static int cert_self_signed(X509 *x) |
| { |
| /* |
| * FIXME: x509v3_cache_extensions() needs to detect more failures and not |
| * set EXFLAG_SET when that happens. Especially, if the failures are |
| * parse errors, rather than memory pressure! |
| */ |
| X509_check_purpose(x, -1, 0); |
| if (x->ex_flags & EXFLAG_SS) |
| return 1; |
| else |
| return 0; |
| } |
| |
| /* Given a certificate try and find an exact match in the store */ |
| |
| static X509 *lookup_cert_match(X509_STORE_CTX *ctx, X509 *x) |
| { |
| STACK_OF(X509) *certs; |
| X509 *xtmp = NULL; |
| int i; |
| /* Lookup all certs with matching subject name */ |
| certs = ctx->lookup_certs(ctx, X509_get_subject_name(x)); |
| if (certs == NULL) |
| return NULL; |
| /* Look for exact match */ |
| for (i = 0; i < sk_X509_num(certs); i++) { |
| xtmp = sk_X509_value(certs, i); |
| if (!X509_cmp(xtmp, x)) |
| break; |
| } |
| if (i < sk_X509_num(certs)) |
| X509_up_ref(xtmp); |
| else |
| xtmp = NULL; |
| sk_X509_pop_free(certs, X509_free); |
| return xtmp; |
| } |
| |
| /*- |
| * Inform the verify callback of an error. |
| * If B<x> is not NULL it is the error cert, otherwise use the chain cert at |
| * B<depth>. |
| * If B<err> is not X509_V_OK, that's the error value, otherwise leave |
| * unchanged (presumably set by the caller). |
| * |
| * Returns 0 to abort verification with an error, non-zero to continue. |
| */ |
| static int verify_cb_cert(X509_STORE_CTX *ctx, X509 *x, int depth, int err) |
| { |
| ctx->error_depth = depth; |
| ctx->current_cert = (x != NULL) ? x : sk_X509_value(ctx->chain, depth); |
| if (err != X509_V_OK) |
| ctx->error = err; |
| return ctx->verify_cb(0, ctx); |
| } |
| |
| /*- |
| * Inform the verify callback of an error, CRL-specific variant. Here, the |
| * error depth and certificate are already set, we just specify the error |
| * number. |
| * |
| * Returns 0 to abort verification with an error, non-zero to continue. |
| */ |
| static int verify_cb_crl(X509_STORE_CTX *ctx, int err) |
| { |
| ctx->error = err; |
| return ctx->verify_cb(0, ctx); |
| } |
| |
| static int check_auth_level(X509_STORE_CTX *ctx) |
| { |
| int i; |
| int num = sk_X509_num(ctx->chain); |
| |
| if (ctx->param->auth_level <= 0) |
| return 1; |
| |
| for (i = 0; i < num; ++i) { |
| X509 *cert = sk_X509_value(ctx->chain, i); |
| |
| /* |
| * We've already checked the security of the leaf key, so here we only |
| * check the security of issuer keys. |
| */ |
| if (i > 0 && !check_key_level(ctx, cert) && |
| verify_cb_cert(ctx, cert, i, X509_V_ERR_CA_KEY_TOO_SMALL) == 0) |
| return 0; |
| /* |
| * We also check the signature algorithm security of all certificates |
| * except those of the trust anchor at index num-1. |
| */ |
| if (i < num - 1 && !check_sig_level(ctx, cert) && |
| verify_cb_cert(ctx, cert, i, X509_V_ERR_CA_MD_TOO_WEAK) == 0) |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int verify_chain(X509_STORE_CTX *ctx) |
| { |
| int err; |
| int ok; |
| |
| /* |
| * Before either returning with an error, or continuing with CRL checks, |
| * instantiate chain public key parameters. |
| */ |
| if ((ok = build_chain(ctx)) == 0 || |
| (ok = check_chain_extensions(ctx)) == 0 || |
| (ok = check_auth_level(ctx)) == 0 || |
| (ok = check_id(ctx)) == 0 || 1) |
| X509_get_pubkey_parameters(NULL, ctx->chain); |
| if (ok == 0 || (ok = ctx->check_revocation(ctx)) == 0) |
| return ok; |
| |
| err = X509_chain_check_suiteb(&ctx->error_depth, NULL, ctx->chain, |
| ctx->param->flags); |
| if (err != X509_V_OK) { |
| if ((ok = verify_cb_cert(ctx, NULL, ctx->error_depth, err)) == 0) |
| return ok; |
| } |
| |
| /* Verify chain signatures and expiration times */ |
| ok = (ctx->verify != NULL) ? ctx->verify(ctx) : internal_verify(ctx); |
| if (!ok) |
| return ok; |
| |
| if ((ok = check_name_constraints(ctx)) == 0) |
| return ok; |
| |
| #ifndef OPENSSL_NO_RFC3779 |
| /* RFC 3779 path validation, now that CRL check has been done */ |
| if ((ok = X509v3_asid_validate_path(ctx)) == 0) |
| return ok; |
| if ((ok = X509v3_addr_validate_path(ctx)) == 0) |
| return ok; |
| #endif |
| |
| /* If we get this far evaluate policies */ |
| if (ctx->param->flags & X509_V_FLAG_POLICY_CHECK) |
| ok = ctx->check_policy(ctx); |
| return ok; |
| } |
| |
| int X509_verify_cert(X509_STORE_CTX *ctx) |
| { |
| SSL_DANE *dane = ctx->dane; |
| int ret; |
| |
| if (ctx->cert == NULL) { |
| X509err(X509_F_X509_VERIFY_CERT, X509_R_NO_CERT_SET_FOR_US_TO_VERIFY); |
| ctx->error = X509_V_ERR_INVALID_CALL; |
| return -1; |
| } |
| |
| if (ctx->chain != NULL) { |
| /* |
| * This X509_STORE_CTX has already been used to verify a cert. We |
| * cannot do another one. |
| */ |
| X509err(X509_F_X509_VERIFY_CERT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| ctx->error = X509_V_ERR_INVALID_CALL; |
| return -1; |
| } |
| |
| /* |
| * first we make sure the chain we are going to build is present and that |
| * the first entry is in place |
| */ |
| if (((ctx->chain = sk_X509_new_null()) == NULL) || |
| (!sk_X509_push(ctx->chain, ctx->cert))) { |
| X509err(X509_F_X509_VERIFY_CERT, ERR_R_MALLOC_FAILURE); |
| ctx->error = X509_V_ERR_OUT_OF_MEM; |
| return -1; |
| } |
| X509_up_ref(ctx->cert); |
| ctx->num_untrusted = 1; |
| |
| /* If the peer's public key is too weak, we can stop early. */ |
| if (!check_key_level(ctx, ctx->cert) && |
| !verify_cb_cert(ctx, ctx->cert, 0, X509_V_ERR_EE_KEY_TOO_SMALL)) |
| return 0; |
| |
| if (DANETLS_ENABLED(dane)) |
| ret = dane_verify(ctx); |
| else |
| ret = verify_chain(ctx); |
| |
| /* |
| * Safety-net. If we are returning an error, we must also set ctx->error, |
| * so that the chain is not considered verified should the error be ignored |
| * (e.g. TLS with SSL_VERIFY_NONE). |
| */ |
| if (ret <= 0 && ctx->error == X509_V_OK) |
| ctx->error = X509_V_ERR_UNSPECIFIED; |
| return ret; |
| } |
| |
| /* |
| * Given a STACK_OF(X509) find the issuer of cert (if any) |
| */ |
| static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x) |
| { |
| int i; |
| X509 *issuer, *rv = NULL; |
| |
| for (i = 0; i < sk_X509_num(sk); i++) { |
| issuer = sk_X509_value(sk, i); |
| if (ctx->check_issued(ctx, x, issuer)) { |
| rv = issuer; |
| if (x509_check_cert_time(ctx, rv, -1)) |
| break; |
| } |
| } |
| return rv; |
| } |
| |
| /* Given a possible certificate and issuer check them */ |
| |
| static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer) |
| { |
| int ret; |
| if (x == issuer) |
| return cert_self_signed(x); |
| ret = X509_check_issued(issuer, x); |
| if (ret == X509_V_OK) { |
| int i; |
| X509 *ch; |
| /* Special case: single self signed certificate */ |
| if (cert_self_signed(x) && sk_X509_num(ctx->chain) == 1) |
| return 1; |
| for (i = 0; i < sk_X509_num(ctx->chain); i++) { |
| ch = sk_X509_value(ctx->chain, i); |
| if (ch == issuer || !X509_cmp(ch, issuer)) { |
| ret = X509_V_ERR_PATH_LOOP; |
| break; |
| } |
| } |
| } |
| |
| return (ret == X509_V_OK); |
| } |
| |
| /* Alternative lookup method: look from a STACK stored in other_ctx */ |
| |
| static int get_issuer_sk(X509 **issuer, X509_STORE_CTX *ctx, X509 *x) |
| { |
| *issuer = find_issuer(ctx, ctx->other_ctx, x); |
| if (*issuer) { |
| X509_up_ref(*issuer); |
| return 1; |
| } else |
| return 0; |
| } |
| |
| static STACK_OF(X509) *lookup_certs_sk(X509_STORE_CTX *ctx, X509_NAME *nm) |
| { |
| STACK_OF(X509) *sk = NULL; |
| X509 *x; |
| int i; |
| |
| for (i = 0; i < sk_X509_num(ctx->other_ctx); i++) { |
| x = sk_X509_value(ctx->other_ctx, i); |
| if (X509_NAME_cmp(nm, X509_get_subject_name(x)) == 0) { |
| if (sk == NULL) |
| sk = sk_X509_new_null(); |
| if (sk == NULL || sk_X509_push(sk, x) == 0) { |
| sk_X509_pop_free(sk, X509_free); |
| X509err(X509_F_LOOKUP_CERTS_SK, ERR_R_MALLOC_FAILURE); |
| ctx->error = X509_V_ERR_OUT_OF_MEM; |
| return NULL; |
| } |
| X509_up_ref(x); |
| } |
| } |
| return sk; |
| } |
| |
| /* |
| * Check EE or CA certificate purpose. For trusted certificates explicit local |
| * auxiliary trust can be used to override EKU-restrictions. |
| */ |
| static int check_purpose(X509_STORE_CTX *ctx, X509 *x, int purpose, int depth, |
| int must_be_ca) |
| { |
| int tr_ok = X509_TRUST_UNTRUSTED; |
| |
| /* |
| * For trusted certificates we want to see whether any auxiliary trust |
| * settings trump the purpose constraints. |
| * |
| * This is complicated by the fact that the trust ordinals in |
| * ctx->param->trust are entirely independent of the purpose ordinals in |
| * ctx->param->purpose! |
| * |
| * What connects them is their mutual initialization via calls from |
| * X509_STORE_CTX_set_default() into X509_VERIFY_PARAM_lookup() which sets |
| * related values of both param->trust and param->purpose. It is however |
| * typically possible to infer associated trust values from a purpose value |
| * via the X509_PURPOSE API. |
| * |
| * Therefore, we can only check for trust overrides when the purpose we're |
| * checking is the same as ctx->param->purpose and ctx->param->trust is |
| * also set. |
| */ |
| if (depth >= ctx->num_untrusted && purpose == ctx->param->purpose) |
| tr_ok = X509_check_trust(x, ctx->param->trust, X509_TRUST_NO_SS_COMPAT); |
| |
| switch (tr_ok) { |
| case X509_TRUST_TRUSTED: |
| return 1; |
| case X509_TRUST_REJECTED: |
| break; |
| default: |
| switch (X509_check_purpose(x, purpose, must_be_ca > 0)) { |
| case 1: |
| return 1; |
| case 0: |
| break; |
| default: |
| if ((ctx->param->flags & X509_V_FLAG_X509_STRICT) == 0) |
| return 1; |
| } |
| break; |
| } |
| |
| return verify_cb_cert(ctx, x, depth, X509_V_ERR_INVALID_PURPOSE); |
| } |
| |
| /* |
| * Check a certificate chains extensions for consistency with the supplied |
| * purpose |
| */ |
| |
| static int check_chain_extensions(X509_STORE_CTX *ctx) |
| { |
| int i, must_be_ca, plen = 0; |
| X509 *x; |
| int proxy_path_length = 0; |
| int purpose; |
| int allow_proxy_certs; |
| int num = sk_X509_num(ctx->chain); |
| |
| /*- |
| * must_be_ca can have 1 of 3 values: |
| * -1: we accept both CA and non-CA certificates, to allow direct |
| * use of self-signed certificates (which are marked as CA). |
| * 0: we only accept non-CA certificates. This is currently not |
| * used, but the possibility is present for future extensions. |
| * 1: we only accept CA certificates. This is currently used for |
| * all certificates in the chain except the leaf certificate. |
| */ |
| must_be_ca = -1; |
| |
| /* CRL path validation */ |
| if (ctx->parent) { |
| allow_proxy_certs = 0; |
| purpose = X509_PURPOSE_CRL_SIGN; |
| } else { |
| allow_proxy_certs = |
| ! !(ctx->param->flags & X509_V_FLAG_ALLOW_PROXY_CERTS); |
| purpose = ctx->param->purpose; |
| } |
| |
| for (i = 0; i < num; i++) { |
| int ret; |
| x = sk_X509_value(ctx->chain, i); |
| if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) |
| && (x->ex_flags & EXFLAG_CRITICAL)) { |
| if (!verify_cb_cert(ctx, x, i, |
| X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION)) |
| return 0; |
| } |
| if (!allow_proxy_certs && (x->ex_flags & EXFLAG_PROXY)) { |
| if (!verify_cb_cert(ctx, x, i, |
| X509_V_ERR_PROXY_CERTIFICATES_NOT_ALLOWED)) |
| return 0; |
| } |
| ret = X509_check_ca(x); |
| switch (must_be_ca) { |
| case -1: |
| if ((ctx->param->flags & X509_V_FLAG_X509_STRICT) |
| && (ret != 1) && (ret != 0)) { |
| ret = 0; |
| ctx->error = X509_V_ERR_INVALID_CA; |
| } else |
| ret = 1; |
| break; |
| case 0: |
| if (ret != 0) { |
| ret = 0; |
| ctx->error = X509_V_ERR_INVALID_NON_CA; |
| } else |
| ret = 1; |
| break; |
| default: |
| /* X509_V_FLAG_X509_STRICT is implicit for intermediate CAs */ |
| if ((ret == 0) |
| || ((i + 1 < num || ctx->param->flags & X509_V_FLAG_X509_STRICT) |
| && (ret != 1))) { |
| ret = 0; |
| ctx->error = X509_V_ERR_INVALID_CA; |
| } else |
| ret = 1; |
| break; |
| } |
| if (ret == 0 && !verify_cb_cert(ctx, x, i, X509_V_OK)) |
| return 0; |
| /* check_purpose() makes the callback as needed */ |
| if (purpose > 0 && !check_purpose(ctx, x, purpose, i, must_be_ca)) |
| return 0; |
| /* Check pathlen */ |
| if ((i > 1) && (x->ex_pathlen != -1) |
| && (plen > (x->ex_pathlen + proxy_path_length))) { |
| if (!verify_cb_cert(ctx, x, i, X509_V_ERR_PATH_LENGTH_EXCEEDED)) |
| return 0; |
| } |
| /* Increment path length if not a self issued intermediate CA */ |
| if (i > 0 && (x->ex_flags & EXFLAG_SI) == 0) |
| plen++; |
| /* |
| * If this certificate is a proxy certificate, the next certificate |
| * must be another proxy certificate or a EE certificate. If not, |
| * the next certificate must be a CA certificate. |
| */ |
| if (x->ex_flags & EXFLAG_PROXY) { |
| /* |
| * RFC3820, 4.1.3 (b)(1) stipulates that if pCPathLengthConstraint |
| * is less than max_path_length, the former should be copied to |
| * the latter, and 4.1.4 (a) stipulates that max_path_length |
| * should be verified to be larger than zero and decrement it. |
| * |
| * Because we're checking the certs in the reverse order, we start |
| * with verifying that proxy_path_length isn't larger than pcPLC, |
| * and copy the latter to the former if it is, and finally, |
| * increment proxy_path_length. |
| */ |
| if (x->ex_pcpathlen != -1) { |
| if (proxy_path_length > x->ex_pcpathlen) { |
| if (!verify_cb_cert(ctx, x, i, |
| X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED)) |
| return 0; |
| } |
| proxy_path_length = x->ex_pcpathlen; |
| } |
| proxy_path_length++; |
| must_be_ca = 0; |
| } else |
| must_be_ca = 1; |
| } |
| return 1; |
| } |
| |
| static int has_san_id(X509 *x, int gtype) |
| { |
| int i; |
| int ret = 0; |
| GENERAL_NAMES *gs = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL); |
| |
| if (gs == NULL) |
| return 0; |
| |
| for (i = 0; i < sk_GENERAL_NAME_num(gs); i++) { |
| GENERAL_NAME *g = sk_GENERAL_NAME_value(gs, i); |
| |
| if (g->type == gtype) { |
| ret = 1; |
| break; |
| } |
| } |
| GENERAL_NAMES_free(gs); |
| return ret; |
| } |
| |
| static int check_name_constraints(X509_STORE_CTX *ctx) |
| { |
| int i; |
| |
| /* Check name constraints for all certificates */ |
| for (i = sk_X509_num(ctx->chain) - 1; i >= 0; i--) { |
| X509 *x = sk_X509_value(ctx->chain, i); |
| int j; |
| |
| /* Ignore self issued certs unless last in chain */ |
| if (i && (x->ex_flags & EXFLAG_SI)) |
| continue; |
| |
| /* |
| * Proxy certificates policy has an extra constraint, where the |
| * certificate subject MUST be the issuer with a single CN entry |
| * added. |
| * (RFC 3820: 3.4, 4.1.3 (a)(4)) |
| */ |
| if (x->ex_flags & EXFLAG_PROXY) { |
| X509_NAME *tmpsubject = X509_get_subject_name(x); |
| X509_NAME *tmpissuer = X509_get_issuer_name(x); |
| X509_NAME_ENTRY *tmpentry = NULL; |
| int last_object_nid = 0; |
| int err = X509_V_OK; |
| int last_object_loc = X509_NAME_entry_count(tmpsubject) - 1; |
| |
| /* Check that there are at least two RDNs */ |
| if (last_object_loc < 1) { |
| err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION; |
| goto proxy_name_done; |
| } |
| |
| /* |
| * Check that there is exactly one more RDN in subject as |
| * there is in issuer. |
| */ |
| if (X509_NAME_entry_count(tmpsubject) |
| != X509_NAME_entry_count(tmpissuer) + 1) { |
| err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION; |
| goto proxy_name_done; |
| } |
| |
| /* |
| * Check that the last subject component isn't part of a |
| * multivalued RDN |
| */ |
| if (X509_NAME_ENTRY_set(X509_NAME_get_entry(tmpsubject, |
| last_object_loc)) |
| == X509_NAME_ENTRY_set(X509_NAME_get_entry(tmpsubject, |
| last_object_loc - 1))) { |
| err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION; |
| goto proxy_name_done; |
| } |
| |
| /* |
| * Check that the last subject RDN is a commonName, and that |
| * all the previous RDNs match the issuer exactly |
| */ |
| tmpsubject = X509_NAME_dup(tmpsubject); |
| if (tmpsubject == NULL) { |
| X509err(X509_F_CHECK_NAME_CONSTRAINTS, ERR_R_MALLOC_FAILURE); |
| ctx->error = X509_V_ERR_OUT_OF_MEM; |
| return 0; |
| } |
| |
| tmpentry = |
| X509_NAME_delete_entry(tmpsubject, last_object_loc); |
| last_object_nid = |
| OBJ_obj2nid(X509_NAME_ENTRY_get_object(tmpentry)); |
| |
| if (last_object_nid != NID_commonName |
| || X509_NAME_cmp(tmpsubject, tmpissuer) != 0) { |
| err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION; |
| } |
| |
| X509_NAME_ENTRY_free(tmpentry); |
| X509_NAME_free(tmpsubject); |
| |
| proxy_name_done: |
| if (err != X509_V_OK |
| && !verify_cb_cert(ctx, x, i, err)) |
| return 0; |
| } |
| |
| /* |
| * Check against constraints for all certificates higher in chain |
| * including trust anchor. Trust anchor not strictly speaking needed |
| * but if it includes constraints it is to be assumed it expects them |
| * to be obeyed. |
| */ |
| for (j = sk_X509_num(ctx->chain) - 1; j > i; j--) { |
| NAME_CONSTRAINTS *nc = sk_X509_value(ctx->chain, j)->nc; |
| |
| if (nc) { |
| int rv = NAME_CONSTRAINTS_check(x, nc); |
| |
| /* If EE certificate check commonName too */ |
| if (rv == X509_V_OK && i == 0 |
| && (ctx->param->hostflags |
| & X509_CHECK_FLAG_NEVER_CHECK_SUBJECT) == 0 |
| && ((ctx->param->hostflags |
| & X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT) != 0 |
| || !has_san_id(x, GEN_DNS))) |
| rv = NAME_CONSTRAINTS_check_CN(x, nc); |
| |
| switch (rv) { |
| case X509_V_OK: |
| break; |
| case X509_V_ERR_OUT_OF_MEM: |
| return 0; |
| default: |
| if (!verify_cb_cert(ctx, x, i, rv)) |
| return 0; |
| break; |
| } |
| } |
| } |
| } |
| return 1; |
| } |
| |
| static int check_id_error(X509_STORE_CTX *ctx, int errcode) |
| { |
| return verify_cb_cert(ctx, ctx->cert, 0, errcode); |
| } |
| |
| static int check_hosts(X509 *x, X509_VERIFY_PARAM *vpm) |
| { |
| int i; |
| int n = sk_OPENSSL_STRING_num(vpm->hosts); |
| char *name; |
| |
| if (vpm->peername != NULL) { |
| OPENSSL_free(vpm->peername); |
| vpm->peername = NULL; |
| } |
| for (i = 0; i < n; ++i) { |
| name = sk_OPENSSL_STRING_value(vpm->hosts, i); |
| if (X509_check_host(x, name, 0, vpm->hostflags, &vpm->peername) > 0) |
| return 1; |
| } |
| return n == 0; |
| } |
| |
| static int check_id(X509_STORE_CTX *ctx) |
| { |
| X509_VERIFY_PARAM *vpm = ctx->param; |
| X509 *x = ctx->cert; |
| if (vpm->hosts && check_hosts(x, vpm) <= 0) { |
| if (!check_id_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH)) |
| return 0; |
| } |
| if (vpm->email && X509_check_email(x, vpm->email, vpm->emaillen, 0) <= 0) { |
| if (!check_id_error(ctx, X509_V_ERR_EMAIL_MISMATCH)) |
| return 0; |
| } |
| if (vpm->ip && X509_check_ip(x, vpm->ip, vpm->iplen, 0) <= 0) { |
| if (!check_id_error(ctx, X509_V_ERR_IP_ADDRESS_MISMATCH)) |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int check_trust(X509_STORE_CTX *ctx, int num_untrusted) |
| { |
| int i; |
| X509 *x = NULL; |
| X509 *mx; |
| SSL_DANE *dane = ctx->dane; |
| int num = sk_X509_num(ctx->chain); |
| int trust; |
| |
| /* |
| * Check for a DANE issuer at depth 1 or greater, if it is a DANE-TA(2) |
| * match, we're done, otherwise we'll merely record the match depth. |
| */ |
| if (DANETLS_HAS_TA(dane) && num_untrusted > 0 && num_untrusted < num) { |
| switch (trust = check_dane_issuer(ctx, num_untrusted)) { |
| case X509_TRUST_TRUSTED: |
| case X509_TRUST_REJECTED: |
| return trust; |
| } |
| } |
| |
| /* |
| * Check trusted certificates in chain at depth num_untrusted and up. |
| * Note, that depths 0..num_untrusted-1 may also contain trusted |
| * certificates, but the caller is expected to have already checked those, |
| * and wants to incrementally check just any added since. |
| */ |
| for (i = num_untrusted; i < num; i++) { |
| x = sk_X509_value(ctx->chain, i); |
| trust = X509_check_trust(x, ctx->param->trust, 0); |
| /* If explicitly trusted return trusted */ |
| if (trust == X509_TRUST_TRUSTED) |
| goto trusted; |
| if (trust == X509_TRUST_REJECTED) |
| goto rejected; |
| } |
| |
| /* |
| * If we are looking at a trusted certificate, and accept partial chains, |
| * the chain is PKIX trusted. |
| */ |
| if (num_untrusted < num) { |
| if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) |
| goto trusted; |
| return X509_TRUST_UNTRUSTED; |
| } |
| |
| if (num_untrusted == num && ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) { |
| /* |
| * Last-resort call with no new trusted certificates, check the leaf |
| * for a direct trust store match. |
| */ |
| i = 0; |
| x = sk_X509_value(ctx->chain, i); |
| mx = lookup_cert_match(ctx, x); |
| if (!mx) |
| return X509_TRUST_UNTRUSTED; |
| |
| /* |
| * Check explicit auxiliary trust/reject settings. If none are set, |
| * we'll accept X509_TRUST_UNTRUSTED when not self-signed. |
| */ |
| trust = X509_check_trust(mx, ctx->param->trust, 0); |
| if (trust == X509_TRUST_REJECTED) { |
| X509_free(mx); |
| goto rejected; |
| } |
| |
| /* Replace leaf with trusted match */ |
| (void) sk_X509_set(ctx->chain, 0, mx); |
| X509_free(x); |
| ctx->num_untrusted = 0; |
| goto trusted; |
| } |
| |
| /* |
| * If no trusted certs in chain at all return untrusted and allow |
| * standard (no issuer cert) etc errors to be indicated. |
| */ |
| return X509_TRUST_UNTRUSTED; |
| |
| rejected: |
| if (!verify_cb_cert(ctx, x, i, X509_V_ERR_CERT_REJECTED)) |
| return X509_TRUST_REJECTED; |
| return X509_TRUST_UNTRUSTED; |
| |
| trusted: |
| if (!DANETLS_ENABLED(dane)) |
| return X509_TRUST_TRUSTED; |
| if (dane->pdpth < 0) |
| dane->pdpth = num_untrusted; |
| /* With DANE, PKIX alone is not trusted until we have both */ |
| if (dane->mdpth >= 0) |
| return X509_TRUST_TRUSTED; |
| return X509_TRUST_UNTRUSTED; |
| } |
| |
| static int check_revocation(X509_STORE_CTX *ctx) |
| { |
| int i = 0, last = 0, ok = 0; |
| if (!(ctx->param->flags & X509_V_FLAG_CRL_CHECK)) |
| return 1; |
| if (ctx->param->flags & X509_V_FLAG_CRL_CHECK_ALL) |
| last = sk_X509_num(ctx->chain) - 1; |
| else { |
| /* If checking CRL paths this isn't the EE certificate */ |
| if (ctx->parent) |
| return 1; |
| last = 0; |
| } |
| for (i = 0; i <= last; i++) { |
| ctx->error_depth = i; |
| ok = check_cert(ctx); |
| if (!ok) |
| return ok; |
| } |
| return 1; |
| } |
| |
| static int check_cert(X509_STORE_CTX *ctx) |
| { |
| X509_CRL *crl = NULL, *dcrl = NULL; |
| int ok = 0; |
| int cnum = ctx->error_depth; |
| X509 *x = sk_X509_value(ctx->chain, cnum); |
| |
| ctx->current_cert = x; |
| ctx->current_issuer = NULL; |
| ctx->current_crl_score = 0; |
| ctx->current_reasons = 0; |
| |
| if (x->ex_flags & EXFLAG_PROXY) |
| return 1; |
| |
| while (ctx->current_reasons != CRLDP_ALL_REASONS) { |
| unsigned int last_reasons = ctx->current_reasons; |
| |
| /* Try to retrieve relevant CRL */ |
| if (ctx->get_crl) |
| ok = ctx->get_crl(ctx, &crl, x); |
| else |
| ok = get_crl_delta(ctx, &crl, &dcrl, x); |
| /* |
| * If error looking up CRL, nothing we can do except notify callback |
| */ |
| if (!ok) { |
| ok = verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL); |
| goto done; |
| } |
| ctx->current_crl = crl; |
| ok = ctx->check_crl(ctx, crl); |
| if (!ok) |
| goto done; |
| |
| if (dcrl) { |
| ok = ctx->check_crl(ctx, dcrl); |
| if (!ok) |
| goto done; |
| ok = ctx->cert_crl(ctx, dcrl, x); |
| if (!ok) |
| goto done; |
| } else |
| ok = 1; |
| |
| /* Don't look in full CRL if delta reason is removefromCRL */ |
| if (ok != 2) { |
| ok = ctx->cert_crl(ctx, crl, x); |
| if (!ok) |
| goto done; |
| } |
| |
| X509_CRL_free(crl); |
| X509_CRL_free(dcrl); |
| crl = NULL; |
| dcrl = NULL; |
| /* |
| * If reasons not updated we won't get anywhere by another iteration, |
| * so exit loop. |
| */ |
| if (last_reasons == ctx->current_reasons) { |
| ok = verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL); |
| goto done; |
| } |
| } |
| done: |
| X509_CRL_free(crl); |
| X509_CRL_free(dcrl); |
| |
| ctx->current_crl = NULL; |
| return ok; |
| } |
| |
| /* Check CRL times against values in X509_STORE_CTX */ |
| |
| static int check_crl_time(X509_STORE_CTX *ctx, X509_CRL *crl, int notify) |
| { |
| time_t *ptime; |
| int i; |
| |
| if (notify) |
| ctx->current_crl = crl; |
| if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME) |
| ptime = &ctx->param->check_time; |
| else if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME) |
| return 1; |
| else |
| ptime = NULL; |
| |
| i = X509_cmp_time(X509_CRL_get0_lastUpdate(crl), ptime); |
| if (i == 0) { |
| if (!notify) |
| return 0; |
| if (!verify_cb_crl(ctx, X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD)) |
| return 0; |
| } |
| |
| if (i > 0) { |
| if (!notify) |
| return 0; |
| if (!verify_cb_crl(ctx, X509_V_ERR_CRL_NOT_YET_VALID)) |
| return 0; |
| } |
| |
| if (X509_CRL_get0_nextUpdate(crl)) { |
| i = X509_cmp_time(X509_CRL_get0_nextUpdate(crl), ptime); |
| |
| if (i == 0) { |
| if (!notify) |
| return 0; |
| if (!verify_cb_crl(ctx, X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD)) |
| return 0; |
| } |
| /* Ignore expiry of base CRL is delta is valid */ |
| if ((i < 0) && !(ctx->current_crl_score & CRL_SCORE_TIME_DELTA)) { |
| if (!notify) |
| return 0; |
| if (!verify_cb_crl(ctx, X509_V_ERR_CRL_HAS_EXPIRED)) |
| return 0; |
| } |
| } |
| |
| if (notify) |
| ctx->current_crl = NULL; |
| |
| return 1; |
| } |
| |
| static int get_crl_sk(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509_CRL **pdcrl, |
| X509 **pissuer, int *pscore, unsigned int *preasons, |
| STACK_OF(X509_CRL) *crls) |
| { |
| int i, crl_score, best_score = *pscore; |
| unsigned int reasons, best_reasons = 0; |
| X509 *x = ctx->current_cert; |
| X509_CRL *crl, *best_crl = NULL; |
| X509 *crl_issuer = NULL, *best_crl_issuer = NULL; |
| |
| for (i = 0; i < sk_X509_CRL_num(crls); i++) { |
| crl = sk_X509_CRL_value(crls, i); |
| reasons = *preasons; |
| crl_score = get_crl_score(ctx, &crl_issuer, &reasons, crl, x); |
| if (crl_score < best_score || crl_score == 0) |
| continue; |
| /* If current CRL is equivalent use it if it is newer */ |
| if (crl_score == best_score && best_crl != NULL) { |
| int day, sec; |
| if (ASN1_TIME_diff(&day, &sec, X509_CRL_get0_lastUpdate(best_crl), |
| X509_CRL_get0_lastUpdate(crl)) == 0) |
| continue; |
| /* |
| * ASN1_TIME_diff never returns inconsistent signs for |day| |
| * and |sec|. |
| */ |
| if (day <= 0 && sec <= 0) |
| continue; |
| } |
| best_crl = crl; |
| best_crl_issuer = crl_issuer; |
| best_score = crl_score; |
| best_reasons = reasons; |
| } |
| |
| if (best_crl) { |
| X509_CRL_free(*pcrl); |
| *pcrl = best_crl; |
| *pissuer = best_crl_issuer; |
| *pscore = best_score; |
| *preasons = best_reasons; |
| X509_CRL_up_ref(best_crl); |
| X509_CRL_free(*pdcrl); |
| *pdcrl = NULL; |
| get_delta_sk(ctx, pdcrl, pscore, best_crl, crls); |
| } |
| |
| if (best_score >= CRL_SCORE_VALID) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* |
| * Compare two CRL extensions for delta checking purposes. They should be |
| * both present or both absent. If both present all fields must be identical. |
| */ |
| |
| static int crl_extension_match(X509_CRL *a, X509_CRL *b, int nid) |
| { |
| ASN1_OCTET_STRING *exta, *extb; |
| int i; |
| i = X509_CRL_get_ext_by_NID(a, nid, -1); |
| if (i >= 0) { |
| /* Can't have multiple occurrences */ |
| if (X509_CRL_get_ext_by_NID(a, nid, i) != -1) |
| return 0; |
| exta = X509_EXTENSION_get_data(X509_CRL_get_ext(a, i)); |
| } else |
| exta = NULL; |
| |
| i = X509_CRL_get_ext_by_NID(b, nid, -1); |
| |
| if (i >= 0) { |
| |
| if (X509_CRL_get_ext_by_NID(b, nid, i) != -1) |
| return 0; |
| extb = X509_EXTENSION_get_data(X509_CRL_get_ext(b, i)); |
| } else |
| extb = NULL; |
| |
| if (!exta && !extb) |
| return 1; |
| |
| if (!exta || !extb) |
| return 0; |
| |
| if (ASN1_OCTET_STRING_cmp(exta, extb)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* See if a base and delta are compatible */ |
| |
| static int check_delta_base(X509_CRL *delta, X509_CRL *base) |
| { |
| /* Delta CRL must be a delta */ |
| if (!delta->base_crl_number) |
| return 0; |
| /* Base must have a CRL number */ |
| if (!base->crl_number) |
| return 0; |
| /* Issuer names must match */ |
| if (X509_NAME_cmp(X509_CRL_get_issuer(base), X509_CRL_get_issuer(delta))) |
| return 0; |
| /* AKID and IDP must match */ |
| if (!crl_extension_match(delta, base, NID_authority_key_identifier)) |
| return 0; |
| if (!crl_extension_match(delta, base, NID_issuing_distribution_point)) |
| return 0; |
| /* Delta CRL base number must not exceed Full CRL number. */ |
| if (ASN1_INTEGER_cmp(delta->base_crl_number, base->crl_number) > 0) |
| return 0; |
| /* Delta CRL number must exceed full CRL number */ |
| if (ASN1_INTEGER_cmp(delta->crl_number, base->crl_number) > 0) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * For a given base CRL find a delta... maybe extend to delta scoring or |
| * retrieve a chain of deltas... |
| */ |
| |
| static void get_delta_sk(X509_STORE_CTX *ctx, X509_CRL **dcrl, int *pscore, |
| X509_CRL *base, STACK_OF(X509_CRL) *crls) |
| { |
| X509_CRL *delta; |
| int i; |
| if (!(ctx->param->flags & X509_V_FLAG_USE_DELTAS)) |
| return; |
| if (!((ctx->current_cert->ex_flags | base->flags) & EXFLAG_FRESHEST)) |
| return; |
| for (i = 0; i < sk_X509_CRL_num(crls); i++) { |
| delta = sk_X509_CRL_value(crls, i); |
| if (check_delta_base(delta, base)) { |
| if (check_crl_time(ctx, delta, 0)) |
| *pscore |= CRL_SCORE_TIME_DELTA; |
| X509_CRL_up_ref(delta); |
| *dcrl = delta; |
| return; |
| } |
| } |
| *dcrl = NULL; |
| } |
| |
| /* |
| * For a given CRL return how suitable it is for the supplied certificate |
| * 'x'. The return value is a mask of several criteria. If the issuer is not |
| * the certificate issuer this is returned in *pissuer. The reasons mask is |
| * also used to determine if the CRL is suitable: if no new reasons the CRL |
| * is rejected, otherwise reasons is updated. |
| */ |
| |
| static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer, |
| unsigned int *preasons, X509_CRL *crl, X509 *x) |
| { |
| |
| int crl_score = 0; |
| unsigned int tmp_reasons = *preasons, crl_reasons; |
| |
| /* First see if we can reject CRL straight away */ |
| |
| /* Invalid IDP cannot be processed */ |
| if (crl->idp_flags & IDP_INVALID) |
| return 0; |
| /* Reason codes or indirect CRLs need extended CRL support */ |
| if (!(ctx->param->flags & X509_V_FLAG_EXTENDED_CRL_SUPPORT)) { |
| if (crl->idp_flags & (IDP_INDIRECT | IDP_REASONS)) |
| return 0; |
| } else if (crl->idp_flags & IDP_REASONS) { |
| /* If no new reasons reject */ |
| if (!(crl->idp_reasons & ~tmp_reasons)) |
| return 0; |
| } |
| /* Don't process deltas at this stage */ |
| else if (crl->base_crl_number) |
| return 0; |
| /* If issuer name doesn't match certificate need indirect CRL */ |
| if (X509_NAME_cmp(X509_get_issuer_name(x), X509_CRL_get_issuer(crl))) { |
| if (!(crl->idp_flags & IDP_INDIRECT)) |
| return 0; |
| } else |
| crl_score |= CRL_SCORE_ISSUER_NAME; |
| |
| if (!(crl->flags & EXFLAG_CRITICAL)) |
| crl_score |= CRL_SCORE_NOCRITICAL; |
| |
| /* Check expiry */ |
| if (check_crl_time(ctx, crl, 0)) |
| crl_score |= CRL_SCORE_TIME; |
| |
| /* Check authority key ID and locate certificate issuer */ |
| crl_akid_check(ctx, crl, pissuer, &crl_score); |
| |
| /* If we can't locate certificate issuer at this point forget it */ |
| |
| if (!(crl_score & CRL_SCORE_AKID)) |
| return 0; |
| |
| /* Check cert for matching CRL distribution points */ |
| |
| if (crl_crldp_check(x, crl, crl_score, &crl_reasons)) { |
| /* If no new reasons reject */ |
| if (!(crl_reasons & ~tmp_reasons)) |
| return 0; |
| tmp_reasons |= crl_reasons; |
| crl_score |= CRL_SCORE_SCOPE; |
| } |
| |
| *preasons = tmp_reasons; |
| |
| return crl_score; |
| |
| } |
| |
| static void crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, |
| X509 **pissuer, int *pcrl_score) |
| { |
| X509 *crl_issuer = NULL; |
| X509_NAME *cnm = X509_CRL_get_issuer(crl); |
| int cidx = ctx->error_depth; |
| int i; |
| |
| if (cidx != sk_X509_num(ctx->chain) - 1) |
| cidx++; |
| |
| crl_issuer = sk_X509_value(ctx->chain, cidx); |
| |
| if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) { |
| if (*pcrl_score & CRL_SCORE_ISSUER_NAME) { |
| *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_ISSUER_CERT; |
| *pissuer = crl_issuer; |
| return; |
| } |
| } |
| |
| for (cidx++; cidx < sk_X509_num(ctx->chain); cidx++) { |
| crl_issuer = sk_X509_value(ctx->chain, cidx); |
| if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm)) |
| continue; |
| if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) { |
| *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_SAME_PATH; |
| *pissuer = crl_issuer; |
| return; |
| } |
| } |
| |
| /* Anything else needs extended CRL support */ |
| |
| if (!(ctx->param->flags & X509_V_FLAG_EXTENDED_CRL_SUPPORT)) |
| return; |
| |
| /* |
| * Otherwise the CRL issuer is not on the path. Look for it in the set of |
| * untrusted certificates. |
| */ |
| for (i = 0; i < sk_X509_num(ctx->untrusted); i++) { |
| crl_issuer = sk_X509_value(ctx->untrusted, i); |
| if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm)) |
| continue; |
| if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) { |
| *pissuer = crl_issuer; |
| *pcrl_score |= CRL_SCORE_AKID; |
| return; |
| } |
| } |
| } |
| |
| /* |
| * Check the path of a CRL issuer certificate. This creates a new |
| * X509_STORE_CTX and populates it with most of the parameters from the |
| * parent. This could be optimised somewhat since a lot of path checking will |
| * be duplicated by the parent, but this will rarely be used in practice. |
| */ |
| |
| static int check_crl_path(X509_STORE_CTX *ctx, X509 *x) |
| { |
| X509_STORE_CTX crl_ctx; |
| int ret; |
| |
| /* Don't allow recursive CRL path validation */ |
| if (ctx->parent) |
| return 0; |
| if (!X509_STORE_CTX_init(&crl_ctx, ctx->store, x, ctx->untrusted)) |
| return -1; |
| |
| crl_ctx.crls = ctx->crls; |
| /* Copy verify params across */ |
| X509_STORE_CTX_set0_param(&crl_ctx, ctx->param); |
| |
| crl_ctx.parent = ctx; |
| crl_ctx.verify_cb = ctx->verify_cb; |
| |
| /* Verify CRL issuer */ |
| ret = X509_verify_cert(&crl_ctx); |
| if (ret <= 0) |
| goto err; |
| |
| /* Check chain is acceptable */ |
| ret = check_crl_chain(ctx, ctx->chain, crl_ctx.chain); |
| err: |
| X509_STORE_CTX_cleanup(&crl_ctx); |
| return ret; |
| } |
| |
| /* |
| * RFC3280 says nothing about the relationship between CRL path and |
| * certificate path, which could lead to situations where a certificate could |
| * be revoked or validated by a CA not authorised to do so. RFC5280 is more |
| * strict and states that the two paths must end in the same trust anchor, |
| * though some discussions remain... until this is resolved we use the |
| * RFC5280 version |
| */ |
| |
| static int check_crl_chain(X509_STORE_CTX *ctx, |
| STACK_OF(X509) *cert_path, |
| STACK_OF(X509) *crl_path) |
| { |
| X509 *cert_ta, *crl_ta; |
| cert_ta = sk_X509_value(cert_path, sk_X509_num(cert_path) - 1); |
| crl_ta = sk_X509_value(crl_path, sk_X509_num(crl_path) - 1); |
| if (!X509_cmp(cert_ta, crl_ta)) |
| return 1; |
| return 0; |
| } |
| |
| /*- |
| * Check for match between two dist point names: three separate cases. |
| * 1. Both are relative names and compare X509_NAME types. |
| * 2. One full, one relative. Compare X509_NAME to GENERAL_NAMES. |
| * 3. Both are full names and compare two GENERAL_NAMES. |
| * 4. One is NULL: automatic match. |
| */ |
| |
| static int idp_check_dp(DIST_POINT_NAME *a, DIST_POINT_NAME *b) |
| { |
| X509_NAME *nm = NULL; |
| GENERAL_NAMES *gens = NULL; |
| GENERAL_NAME *gena, *genb; |
| int i, j; |
| if (!a || !b) |
| return 1; |
| if (a->type == 1) { |
| if (!a->dpname) |
| return 0; |
| /* Case 1: two X509_NAME */ |
| if (b->type == 1) { |
| if (!b->dpname) |
| return 0; |
| if (!X509_NAME_cmp(a->dpname, b->dpname)) |
| return 1; |
| else |
| return 0; |
| } |
| /* Case 2: set name and GENERAL_NAMES appropriately */ |
| nm = a->dpname; |
| gens = b->name.fullname; |
| } else if (b->type == 1) { |
| if (!b->dpname) |
| return 0; |
| /* Case 2: set name and GENERAL_NAMES appropriately */ |
| gens = a->name.fullname; |
| nm = b->dpname; |
| } |
| |
| /* Handle case 2 with one GENERAL_NAMES and one X509_NAME */ |
| if (nm) { |
| for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) { |
| gena = sk_GENERAL_NAME_value(gens, i); |
| if (gena->type != GEN_DIRNAME) |
| continue; |
| if (!X509_NAME_cmp(nm, gena->d.directoryName)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Else case 3: two GENERAL_NAMES */ |
| |
| for (i = 0; i < sk_GENERAL_NAME_num(a->name.fullname); i++) { |
| gena = sk_GENERAL_NAME_value(a->name.fullname, i); |
| for (j = 0; j < sk_GENERAL_NAME_num(b->name.fullname); j++) { |
| genb = sk_GENERAL_NAME_value(b->name.fullname, j); |
| if (!GENERAL_NAME_cmp(gena, genb)) |
| return 1; |
| } |
| } |
| |
| return 0; |
| |
| } |
| |
| static int crldp_check_crlissuer(DIST_POINT *dp, X509_CRL *crl, int crl_score) |
| { |
| int i; |
| X509_NAME *nm = X509_CRL_get_issuer(crl); |
| /* If no CRLissuer return is successful iff don't need a match */ |
| if (!dp->CRLissuer) |
| return ! !(crl_score & CRL_SCORE_ISSUER_NAME); |
| for (i = 0; i < sk_GENERAL_NAME_num(dp->CRLissuer); i++) { |
| GENERAL_NAME *gen = sk_GENERAL_NAME_value(dp->CRLissuer, i); |
| if (gen->type != GEN_DIRNAME) |
| continue; |
| if (!X509_NAME_cmp(gen->d.directoryName, nm)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Check CRLDP and IDP */ |
| |
| static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score, |
| unsigned int *preasons) |
| { |
| int i; |
| if (crl->idp_flags & IDP_ONLYATTR) |
| return 0; |
| if (x->ex_flags & EXFLAG_CA) { |
| if (crl->idp_flags & IDP_ONLYUSER) |
| return 0; |
| } else { |
| if (crl->idp_flags & IDP_ONLYCA) |
| return 0; |
| } |
| *preasons = crl->idp_reasons; |
| for (i = 0; i < sk_DIST_POINT_num(x->crldp); i++) { |
| DIST_POINT *dp = sk_DIST_POINT_value(x->crldp, i); |
| if (crldp_check_crlissuer(dp, crl, crl_score)) { |
| if (!crl->idp || idp_check_dp(dp->distpoint, crl->idp->distpoint)) { |
| *preasons &= dp->dp_reasons; |
| return 1; |
| } |
| } |
| } |
| if ((!crl->idp || !crl->idp->distpoint) |
| && (crl_score & CRL_SCORE_ISSUER_NAME)) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * Retrieve CRL corresponding to current certificate. If deltas enabled try |
| * to find a delta CRL too |
| */ |
| |
| static int get_crl_delta(X509_STORE_CTX *ctx, |
| X509_CRL **pcrl, X509_CRL **pdcrl, X509 *x) |
| { |
| int ok; |
| X509 *issuer = NULL; |
| int crl_score = 0; |
| unsigned int reasons; |
| X509_CRL *crl = NULL, *dcrl = NULL; |
| STACK_OF(X509_CRL) *skcrl; |
| X509_NAME *nm = X509_get_issuer_name(x); |
| |
| reasons = ctx->current_reasons; |
| ok = get_crl_sk(ctx, &crl, &dcrl, |
| &issuer, &crl_score, &reasons, ctx->crls); |
| if (ok) |
| goto done; |
| |
| /* Lookup CRLs from store */ |
| |
| skcrl = ctx->lookup_crls(ctx, nm); |
| |
| /* If no CRLs found and a near match from get_crl_sk use that */ |
| if (!skcrl && crl) |
| goto done; |
| |
| get_crl_sk(ctx, &crl, &dcrl, &issuer, &crl_score, &reasons, skcrl); |
| |
| sk_X509_CRL_pop_free(skcrl, X509_CRL_free); |
| |
| done: |
| /* If we got any kind of CRL use it and return success */ |
| if (crl) { |
| ctx->current_issuer = issuer; |
| ctx->current_crl_score = crl_score; |
| ctx->current_reasons = reasons; |
| *pcrl = crl; |
| *pdcrl = dcrl; |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Check CRL validity */ |
| static int check_crl(X509_STORE_CTX *ctx, X509_CRL *crl) |
| { |
| X509 *issuer = NULL; |
| EVP_PKEY *ikey = NULL; |
| int cnum = ctx->error_depth; |
| int chnum = sk_X509_num(ctx->chain) - 1; |
| |
| /* if we have an alternative CRL issuer cert use that */ |
| if (ctx->current_issuer) |
| issuer = ctx->current_issuer; |
| /* |
| * Else find CRL issuer: if not last certificate then issuer is next |
| * certificate in chain. |
| */ |
| else if (cnum < chnum) |
| issuer = sk_X509_value(ctx->chain, cnum + 1); |
| else { |
| issuer = sk_X509_value(ctx->chain, chnum); |
| /* If not self signed, can't check signature */ |
| if (!ctx->check_issued(ctx, issuer, issuer) && |
| !verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER)) |
| return 0; |
| } |
| |
| if (issuer == NULL) |
| return 1; |
| |
| /* |
| * Skip most tests for deltas because they have already been done |
| */ |
| if (!crl->base_crl_number) { |
| /* Check for cRLSign bit if keyUsage present */ |
| if ((issuer->ex_flags & EXFLAG_KUSAGE) && |
| !(issuer->ex_kusage & KU_CRL_SIGN) && |
| !verify_cb_crl(ctx, X509_V_ERR_KEYUSAGE_NO_CRL_SIGN)) |
| return 0; |
| |
| if (!(ctx->current_crl_score & CRL_SCORE_SCOPE) && |
| !verify_cb_crl(ctx, X509_V_ERR_DIFFERENT_CRL_SCOPE)) |
| return 0; |
| |
| if (!(ctx->current_crl_score & CRL_SCORE_SAME_PATH) && |
| check_crl_path(ctx, ctx->current_issuer) <= 0 && |
| !verify_cb_crl(ctx, X509_V_ERR_CRL_PATH_VALIDATION_ERROR)) |
| return 0; |
| |
| if ((crl->idp_flags & IDP_INVALID) && |
| !verify_cb_crl(ctx, X509_V_ERR_INVALID_EXTENSION)) |
| return 0; |
| } |
| |
| if (!(ctx->current_crl_score & CRL_SCORE_TIME) && |
| !check_crl_time(ctx, crl, 1)) |
| return 0; |
| |
| /* Attempt to get issuer certificate public key */ |
| ikey = X509_get0_pubkey(issuer); |
| |
| if (!ikey && |
| !verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY)) |
| return 0; |
| |
| if (ikey) { |
| int rv = X509_CRL_check_suiteb(crl, ikey, ctx->param->flags); |
| |
| if (rv != X509_V_OK && !verify_cb_crl(ctx, rv)) |
| return 0; |
| /* Verify CRL signature */ |
| if (X509_CRL_verify(crl, ikey) <= 0 && |
| !verify_cb_crl(ctx, X509_V_ERR_CRL_SIGNATURE_FAILURE)) |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* Check certificate against CRL */ |
| static int cert_crl(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x) |
| { |
| X509_REVOKED *rev; |
| |
| /* |
| * The rules changed for this... previously if a CRL contained unhandled |
| * critical extensions it could still be used to indicate a certificate |
| * was revoked. This has since been changed since critical extensions can |
| * change the meaning of CRL entries. |
| */ |
| if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) |
| && (crl->flags & EXFLAG_CRITICAL) && |
| !verify_cb_crl(ctx, X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION)) |
| return 0; |
| /* |
| * Look for serial number of certificate in CRL. If found, make sure |
| * reason is not removeFromCRL. |
| */ |
| if (X509_CRL_get0_by_cert(crl, &rev, x)) { |
| if (rev->reason == CRL_REASON_REMOVE_FROM_CRL) |
| return 2; |
| if (!verify_cb_crl(ctx, X509_V_ERR_CERT_REVOKED)) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int check_policy(X509_STORE_CTX *ctx) |
| { |
| int ret; |
| |
| if (ctx->parent) |
| return 1; |
| /* |
| * With DANE, the trust anchor might be a bare public key, not a |
| * certificate! In that case our chain does not have the trust anchor |
| * certificate as a top-most element. This comports well with RFC5280 |
| * chain verification, since there too, the trust anchor is not part of the |
| * chain to be verified. In particular, X509_policy_check() does not look |
| * at the TA cert, but assumes that it is present as the top-most chain |
| * element. We therefore temporarily push a NULL cert onto the chain if it |
| * was verified via a bare public key, and pop it off right after the |
| * X509_policy_check() call. |
| */ |
| if (ctx->bare_ta_signed && !sk_X509_push(ctx->chain, NULL)) { |
| X509err(X509_F_CHECK_POLICY, ERR_R_MALLOC_FAILURE); |
| ctx->error = X509_V_ERR_OUT_OF_MEM; |
| return 0; |
| } |
| ret = X509_policy_check(&ctx->tree, &ctx->explicit_policy, ctx->chain, |
| ctx->param->policies, ctx->param->flags); |
| if (ctx->bare_ta_signed) |
| sk_X509_pop(ctx->chain); |
| |
| if (ret == X509_PCY_TREE_INTERNAL) { |
| X509err(X509_F_CHECK_POLICY, ERR_R_MALLOC_FAILURE); |
| ctx->error = X509_V_ERR_OUT_OF_MEM; |
| return 0; |
| } |
| /* Invalid or inconsistent extensions */ |
| if (ret == X509_PCY_TREE_INVALID) { |
| int i; |
| |
| /* Locate certificates with bad extensions and notify callback. */ |
| for (i = 1; i < sk_X509_num(ctx->chain); i++) { |
| X509 *x = sk_X509_value(ctx->chain, i); |
| |
| if (!(x->ex_flags & EXFLAG_INVALID_POLICY)) |
| continue; |
| if (!verify_cb_cert(ctx, x, i, |
| X509_V_ERR_INVALID_POLICY_EXTENSION)) |
| return 0; |
| } |
| return 1; |
| } |
| if (ret == X509_PCY_TREE_FAILURE) { |
| ctx->current_cert = NULL; |
| ctx->error = X509_V_ERR_NO_EXPLICIT_POLICY; |
| return ctx->verify_cb(0, ctx); |
| } |
| if (ret != X509_PCY_TREE_VALID) { |
| X509err(X509_F_CHECK_POLICY, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| if (ctx->param->flags & X509_V_FLAG_NOTIFY_POLICY) { |
| ctx->current_cert = NULL; |
| /* |
| * Verification errors need to be "sticky", a callback may have allowed |
| * an SSL handshake to continue despite an error, and we must then |
| * remain in an error state. Therefore, we MUST NOT clear earlier |
| * verification errors by setting the error to X509_V_OK. |
| */ |
| if (!ctx->verify_cb(2, ctx)) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /*- |
| * Check certificate validity times. |
| * If depth >= 0, invoke verification callbacks on error, otherwise just return |
| * the validation status. |
| * |
| * Return 1 on success, 0 otherwise. |
| */ |
| int x509_check_cert_time(X509_STORE_CTX *ctx, X509 *x, int depth) |
| { |
| time_t *ptime; |
| int i; |
| |
| if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME) |
| ptime = &ctx->param->check_time; |
| else if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME) |
| return 1; |
| else |
| ptime = NULL; |
| |
| i = X509_cmp_time(X509_get0_notBefore(x), ptime); |
| if (i >= 0 && depth < 0) |
| return 0; |
| if (i == 0 && !verify_cb_cert(ctx, x, depth, |
| X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD)) |
| return 0; |
| if (i > 0 && !verify_cb_cert(ctx, x, depth, X509_V_ERR_CERT_NOT_YET_VALID)) |
| return 0; |
| |
| i = X509_cmp_time(X509_get0_notAfter(x), ptime); |
| if (i <= 0 && depth < 0) |
| return 0; |
| if (i == 0 && !verify_cb_cert(ctx, x, depth, |
| X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD)) |
| return 0; |
| if (i < 0 && !verify_cb_cert(ctx, x, depth, X509_V_ERR_CERT_HAS_EXPIRED)) |
| return 0; |
| return 1; |
| } |
| |
| static int internal_verify(X509_STORE_CTX *ctx) |
| { |
| int n = sk_X509_num(ctx->chain) - 1; |
| X509 *xi = sk_X509_value(ctx->chain, n); |
| X509 *xs; |
| |
| /* |
| * With DANE-verified bare public key TA signatures, it remains only to |
| * check the timestamps of the top certificate. We report the issuer as |
| * NULL, since all we have is a bare key. |
| */ |
| if (ctx->bare_ta_signed) { |
| xs = xi; |
| xi = NULL; |
| goto check_cert; |
| } |
| |
| if (ctx->check_issued(ctx, xi, xi)) |
| xs = xi; |
| else { |
| if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) { |
| xs = xi; |
| goto check_cert; |
| } |
| if (n <= 0) |
| return verify_cb_cert(ctx, xi, 0, |
| X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE); |
| n--; |
| ctx->error_depth = n; |
| xs = sk_X509_value(ctx->chain, n); |
| } |
| |
| /* |
| * Do not clear ctx->error=0, it must be "sticky", only the user's callback |
| * is allowed to reset errors (at its own peril). |
| */ |
| while (n >= 0) { |
| EVP_PKEY *pkey; |
| |
| /* |
| * Skip signature check for self signed certificates unless explicitly |
| * asked for. It doesn't add any security and just wastes time. If |
| * the issuer's public key is unusable, report the issuer certificate |
| * and its depth (rather than the depth of the subject). |
| */ |
| if (xs != xi || (ctx->param->flags & X509_V_FLAG_CHECK_SS_SIGNATURE)) { |
| if ((pkey = X509_get0_pubkey(xi)) == NULL) { |
| if (!verify_cb_cert(ctx, xi, xi != xs ? n+1 : n, |
| X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY)) |
| return 0; |
| } else if (X509_verify(xs, pkey) <= 0) { |
| if (!verify_cb_cert(ctx, xs, n, |
| X509_V_ERR_CERT_SIGNATURE_FAILURE)) |
| return 0; |
| } |
| } |
| |
| check_cert: |
| /* Calls verify callback as needed */ |
| if (!x509_check_cert_time(ctx, xs, n)) |
| return 0; |
| |
| /* |
| * Signal success at this depth. However, the previous error (if any) |
| * is retained. |
| */ |
| ctx->current_issuer = xi; |
| ctx->current_cert = xs; |
| ctx->error_depth = n; |
| if (!ctx->verify_cb(1, ctx)) |
| return 0; |
| |
| if (--n >= 0) { |
| xi = xs; |
| xs = sk_X509_value(ctx->chain, n); |
| } |
| } |
| return 1; |
| } |
| |
| int X509_cmp_current_time(const ASN1_TIME *ctm) |
| { |
| return X509_cmp_time(ctm, NULL); |
| } |
| |
| int X509_cmp_time(const ASN1_TIME *ctm, time_t *cmp_time) |
| { |
| static const size_t utctime_length = sizeof("YYMMDDHHMMSSZ") - 1; |
| static const size_t generalizedtime_length = sizeof("YYYYMMDDHHMMSSZ") - 1; |
| ASN1_TIME *asn1_cmp_time = NULL; |
| int i, day, sec, ret = 0; |
| #ifdef CHARSET_EBCDIC |
| const char upper_z = 0x5A; |
| #else |
| const char upper_z = 'Z'; |
| #endif |
| /* |
| * Note that ASN.1 allows much more slack in the time format than RFC5280. |
| * In RFC5280, the representation is fixed: |
| * UTCTime: YYMMDDHHMMSSZ |
| * GeneralizedTime: YYYYMMDDHHMMSSZ |
| * |
| * We do NOT currently enforce the following RFC 5280 requirement: |
| * "CAs conforming to this profile MUST always encode certificate |
| * validity dates through the year 2049 as UTCTime; certificate validity |
| * dates in 2050 or later MUST be encoded as GeneralizedTime." |
| */ |
| switch (ctm->type) { |
| case V_ASN1_UTCTIME: |
| if (ctm->length != (int)(utctime_length)) |
| return 0; |
| break; |
| case V_ASN1_GENERALIZEDTIME: |
| if (ctm->length != (int)(generalizedtime_length)) |
| return 0; |
| break; |
| default: |
| return 0; |
| } |
| |
| /** |
| * Verify the format: the ASN.1 functions we use below allow a more |
| * flexible format than what's mandated by RFC 5280. |
| * Digit and date ranges will be verified in the conversion methods. |
| */ |
| for (i = 0; i < ctm->length - 1; i++) { |
| if (!ascii_isdigit(ctm->data[i])) |
| return 0; |
| } |
| if (ctm->data[ctm->length - 1] != upper_z) |
| return 0; |
| |
| /* |
| * There is ASN1_UTCTIME_cmp_time_t but no |
| * ASN1_GENERALIZEDTIME_cmp_time_t or ASN1_TIME_cmp_time_t, |
| * so we go through ASN.1 |
| */ |
| asn1_cmp_time = X509_time_adj(NULL, 0, cmp_time); |
| if (asn1_cmp_time == NULL) |
| goto err; |
| if (!ASN1_TIME_diff(&day, &sec, ctm, asn1_cmp_time)) |
| goto err; |
| |
| /* |
| * X509_cmp_time comparison is <=. |
| * The return value 0 is reserved for errors. |
| */ |
| ret = (day >= 0 && sec >= 0) ? -1 : 1; |
| |
| err: |
| ASN1_TIME_free(asn1_cmp_time); |
| return ret; |
| } |
| |
| ASN1_TIME *X509_gmtime_adj(ASN1_TIME *s, long adj) |
| { |
| return X509_time_adj(s, adj, NULL); |
| } |
| |
| ASN1_TIME *X509_time_adj(ASN1_TIME *s, long offset_sec, time_t *in_tm) |
| { |
| return X509_time_adj_ex(s, 0, offset_sec, in_tm); |
| } |
| |
| ASN1_TIME *X509_time_adj_ex(ASN1_TIME *s, |
| int offset_day, long offset_sec, time_t *in_tm) |
| { |
| time_t t; |
| |
| if (in_tm) |
| t = *in_tm; |
| else |
| time(&t); |
| |
| if (s && !(s->flags & ASN1_STRING_FLAG_MSTRING)) { |
| if (s->type == V_ASN1_UTCTIME) |
| return ASN1_UTCTIME_adj(s, t, offset_day, offset_sec); |
| if (s->type == V_ASN1_GENERALIZEDTIME) |
| return ASN1_GENERALIZEDTIME_adj(s, t, offset_day, offset_sec); |
| } |
| return ASN1_TIME_adj(s, t, offset_day, offset_sec); |
| } |
| |
| int X509_get_pubkey_parameters(EVP_PKEY *pkey, STACK_OF(X509) *chain) |
| { |
| EVP_PKEY *ktmp = NULL, *ktmp2; |
| int i, j; |
| |
| if ((pkey != NULL) && !EVP_PKEY_missing_parameters(pkey)) |
| return 1; |
| |
| for (i = 0; i < sk_X509_num(chain); i++) { |
| ktmp = X509_get0_pubkey(sk_X509_value(chain, i)); |
| if (ktmp == NULL) { |
| X509err(X509_F_X509_GET_PUBKEY_PARAMETERS, |
| X509_R_UNABLE_TO_GET_CERTS_PUBLIC_KEY); |
| return 0; |
| } |
| if (!EVP_PKEY_missing_parameters(ktmp)) |
| break; |
| } |
| if (ktmp == NULL) { |
| X509err(X509_F_X509_GET_PUBKEY_PARAMETERS, |
| X509_R_UNABLE_TO_FIND_PARAMETERS_IN_CHAIN); |
| return 0; |
| } |
| |
| /* first, populate the other certs */ |
| for (j = i - 1; j >= 0; j--) { |
| ktmp2 = X509_get0_pubkey(sk_X509_value(chain, j)); |
| EVP_PKEY_copy_parameters(ktmp2, ktmp); |
| } |
| |
| if (pkey != NULL) |
| EVP_PKEY_copy_parameters(pkey, ktmp); |
| return 1; |
| } |
| |
| /* Make a delta CRL as the diff between two full CRLs */ |
| |
| X509_CRL *X509_CRL_diff(X509_CRL *base, X509_CRL *newer, |
| EVP_PKEY *skey, const EVP_MD *md, unsigned int flags) |
| { |
| X509_CRL *crl = NULL; |
| int i; |
| STACK_OF(X509_REVOKED) *revs = NULL; |
| /* CRLs can't be delta already */ |
| if (base->base_crl_number || newer->base_crl_number) { |
| X509err(X509_F_X509_CRL_DIFF, X509_R_CRL_ALREADY_DELTA); |
| return NULL; |
| } |
| /* Base and new CRL must have a CRL number */ |
| if (!base->crl_number || !newer->crl_number) { |
| X509err(X509_F_X509_CRL_DIFF, X509_R_NO_CRL_NUMBER); |
| return NULL; |
| } |
| /* Issuer names must match */ |
| if (X509_NAME_cmp(X509_CRL_get_issuer(base), X509_CRL_get_issuer(newer))) { |
| X509err(X509_F_X509_CRL_DIFF, X509_R_ISSUER_MISMATCH); |
| return NULL; |
| } |
| /* AKID and IDP must match */ |
| if (!crl_extension_match(base, newer, NID_authority_key_identifier)) { |
| X509err(X509_F_X509_CRL_DIFF, X509_R_AKID_MISMATCH); |
| return NULL; |
| } |
| if (!crl_extension_match(base, newer, NID_issuing_distribution_point)) { |
| X509err(X509_F_X509_CRL_DIFF, X509_R_IDP_MISMATCH); |
| return NULL; |
| } |
| /* Newer CRL number must exceed full CRL number */ |
| if (ASN1_INTEGER_cmp(newer->crl_number, base->crl_number) <= 0) { |
| X509err(X509_F_X509_CRL_DIFF, X509_R_NEWER_CRL_NOT_NEWER); |
| return NULL; |
| } |
| /* CRLs must verify */ |
| if (skey && (X509_CRL_verify(base, skey) <= 0 || |
| X509_CRL_verify(newer, skey) <= 0)) { |
| X509err(X509_F_X509_CRL_DIFF, X509_R_CRL_VERIFY_FAILURE); |
| return NULL; |
| } |
| /* Create new CRL */ |
| crl = X509_CRL_new(); |
| if (crl == NULL || !X509_CRL_set_version(crl, 1)) |
| goto memerr; |
| /* Set issuer name */ |
| if (!X509_CRL_set_issuer_name(crl, X509_CRL_get_issuer(newer))) |
| goto memerr; |
| |
| if (!X509_CRL_set1_lastUpdate(crl, X509_CRL_get0_lastUpdate(newer))) |
| goto memerr; |
| if (!X509_CRL_set1_nextUpdate(crl, X509_CRL_get0_nextUpdate(newer))) |
| goto memerr; |
| |
| /* Set base CRL number: must be critical */ |
| |
| if (!X509_CRL_add1_ext_i2d(crl, NID_delta_crl, base->crl_number, 1, 0)) |
| goto memerr; |
| |
| /* |
| * Copy extensions across from newest CRL to delta: this will set CRL |
| * number to correct value too. |
| */ |
| |
| for (i = 0; i < X509_CRL_get_ext_count(newer); i++) { |
| X509_EXTENSION *ext; |
| ext = X509_CRL_get_ext(newer, i); |
| if (!X509_CRL_add_ext(crl, ext, -1)) |
| goto memerr; |
| } |
| |
| /* Go through revoked entries, copying as needed */ |
| |
| revs = X509_CRL_get_REVOKED(newer); |
| |
| for (i = 0; i < sk_X509_REVOKED_num(revs); i++) { |
| X509_REVOKED *rvn, *rvtmp; |
| rvn = sk_X509_REVOKED_value(revs, i); |
| /* |
| * Add only if not also in base. TODO: need something cleverer here |
| * for some more complex CRLs covering multiple CAs. |
| */ |
| if (!X509_CRL_get0_by_serial(base, &rvtmp, &rvn->serialNumber)) { |
| rvtmp = X509_REVOKED_dup(rvn); |
| if (!rvtmp) |
| goto memerr; |
| if (!X509_CRL_add0_revoked(crl, rvtmp)) { |
| X509_REVOKED_free(rvtmp); |
| goto memerr; |
| } |
| } |
| } |
| /* TODO: optionally prune deleted entries */ |
| |
| if (skey && md && !X509_CRL_sign(crl, skey, md)) |
| goto memerr; |
| |
| return crl; |
| |
| memerr: |
| X509err(X509_F_X509_CRL_DIFF, ERR_R_MALLOC_FAILURE); |
| X509_CRL_free(crl); |
| return NULL; |
| } |
| |
| int X509_STORE_CTX_set_ex_data(X509_STORE_CTX *ctx, int idx, void *data) |
| { |
| return CRYPTO_set_ex_data(&ctx->ex_data, idx, data); |
| } |
| |
| void *X509_STORE_CTX_get_ex_data(X509_STORE_CTX *ctx, int idx) |
| { |
| return CRYPTO_get_ex_data(&ctx->ex_data, idx); |
| } |
| |
| int X509_STORE_CTX_get_error(X509_STORE_CTX *ctx) |
| { |
| return ctx->error; |
| } |
| |
| void X509_STORE_CTX_set_error(X509_STORE_CTX *ctx, int err) |
| { |
| ctx->error = err; |
| } |
| |
| int X509_STORE_CTX_get_error_depth(X509_STORE_CTX *ctx) |
| { |
| return ctx->error_depth; |
| } |
| |
| void X509_STORE_CTX_set_error_depth(X509_STORE_CTX *ctx, int depth) |
| { |
| ctx->error_depth = depth; |
| } |
| |
| X509 *X509_STORE_CTX_get_current_cert(X509_STORE_CTX *ctx) |
| { |
| return ctx->current_cert; |
| } |
| |
| void X509_STORE_CTX_set_current_cert(X509_STORE_CTX *ctx, X509 *x) |
| { |
| ctx->current_cert = x; |
| } |
| |
| STACK_OF(X509) *X509_STORE_CTX_get0_chain(X509_STORE_CTX *ctx) |
| { |
| return ctx->chain; |
| } |
| |
| STACK_OF(X509) *X509_STORE_CTX_get1_chain(X509_STORE_CTX *ctx) |
| { |
| if (!ctx->chain) |
| return NULL; |
| return X509_chain_up_ref(ctx->chain); |
| } |
| |
| X509 *X509_STORE_CTX_get0_current_issuer(X509_STORE_CTX *ctx) |
| { |
| return ctx->current_issuer; |
| } |
| |
| X509_CRL *X509_STORE_CTX_get0_current_crl(X509_STORE_CTX *ctx) |
| { |
| return ctx->current_crl; |
| } |
| |
| X509_STORE_CTX *X509_STORE_CTX_get0_parent_ctx(X509_STORE_CTX *ctx) |
| { |
| return ctx->parent; |
| } |
| |
| void X509_STORE_CTX_set_cert(X509_STORE_CTX *ctx, X509 *x) |
| { |
| ctx->cert = x; |
| } |
| |
| void X509_STORE_CTX_set0_crls(X509_STORE_CTX *ctx, STACK_OF(X509_CRL) *sk) |
| { |
| ctx->crls = sk; |
| } |
| |
| int X509_STORE_CTX_set_purpose(X509_STORE_CTX *ctx, int purpose) |
| { |
| /* |
| * XXX: Why isn't this function always used to set the associated trust? |
| * Should there even be a VPM->trust field at all? Or should the trust |
| * always be inferred from the purpose by X509_STORE_CTX_init(). |
| */ |
| return X509_STORE_CTX_purpose_inherit(ctx, 0, purpose, 0); |
| } |
| |
| int X509_STORE_CTX_set_trust(X509_STORE_CTX *ctx, int trust) |
| { |
| /* |
| * XXX: See above, this function would only be needed when the default |
| * trust for the purpose needs an override in a corner case. |
| */ |
| return X509_STORE_CTX_purpose_inherit(ctx, 0, 0, trust); |
| } |
| |
| /* |
| * This function is used to set the X509_STORE_CTX purpose and trust values. |
| * This is intended to be used when another structure has its own trust and |
| * purpose values which (if set) will be inherited by the ctx. If they aren't |
| * set then we will usually have a default purpose in mind which should then |
| * be used to set the trust value. An example of this is SSL use: an SSL |
| * structure will have its own purpose and trust settings which the |
| * application can set: if they aren't set then we use the default of SSL |
| * client/server. |
| */ |
| |
| int X509_STORE_CTX_purpose_inherit(X509_STORE_CTX *ctx, int def_purpose, |
| int purpose, int trust) |
| { |
| int idx; |
| /* If purpose not set use default */ |
| if (!purpose) |
| purpose = def_purpose; |
| /* If we have a purpose then check it is valid */ |
| if (purpose) { |
| X509_PURPOSE *ptmp; |
| idx = X509_PURPOSE_get_by_id(purpose); |
| if (idx == -1) { |
| X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT, |
| X509_R_UNKNOWN_PURPOSE_ID); |
| return 0; |
| } |
| ptmp = X509_PURPOSE_get0(idx); |
| if (ptmp->trust == X509_TRUST_DEFAULT) { |
| idx = X509_PURPOSE_get_by_id(def_purpose); |
| /* |
| * XXX: In the two callers above def_purpose is always 0, which is |
| * not a known value, so idx will always be -1. How is the |
| * X509_TRUST_DEFAULT case actually supposed to be handled? |
| */ |
| if (idx == -1) { |
| X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT, |
| X509_R_UNKNOWN_PURPOSE_ID); |
| return 0; |
| } |
| ptmp = X509_PURPOSE_get0(idx); |
| } |
| /* If trust not set then get from purpose default */ |
| if (!trust) |
| trust = ptmp->trust; |
| } |
| if (trust) { |
| idx = X509_TRUST_get_by_id(trust); |
| if (idx == -1) { |
| X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT, |
| X509_R_UNKNOWN_TRUST_ID); |
| return 0; |
| } |
| } |
| |
| if (purpose && !ctx->param->purpose) |
| ctx->param->purpose = purpose; |
| if (trust && !ctx->param->trust) |
| ctx->param->trust = trust; |
| return 1; |
| } |
| |
| X509_STORE_CTX *X509_STORE_CTX_new(void) |
| { |
| X509_STORE_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx)); |
| |
| if (ctx == NULL) { |
| X509err(X509_F_X509_STORE_CTX_NEW, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| return ctx; |
| } |
| |
| void X509_STORE_CTX_free(X509_STORE_CTX *ctx) |
| { |
| if (ctx == NULL) |
| return; |
| |
| X509_STORE_CTX_cleanup(ctx); |
| OPENSSL_free(ctx); |
| } |
| |
| int X509_STORE_CTX_init(X509_STORE_CTX *ctx, X509_STORE *store, X509 *x509, |
| STACK_OF(X509) *chain) |
| { |
| int ret = 1; |
| |
| ctx->store = store; |
| ctx->cert = x509; |
| ctx->untrusted = chain; |
| ctx->crls = NULL; |
| ctx->num_untrusted = 0; |
| ctx->other_ctx = NULL; |
| ctx->valid = 0; |
| ctx->chain = NULL; |
| ctx->error = 0; |
| ctx->explicit_policy = 0; |
| ctx->error_depth = 0; |
| ctx->current_cert = NULL; |
| ctx->current_issuer = NULL; |
| ctx->current_crl = NULL; |
| ctx->current_crl_score = 0; |
| ctx->current_reasons = 0; |
| ctx->tree = NULL; |
| ctx->parent = NULL; |
| ctx->dane = NULL; |
| ctx->bare_ta_signed = 0; |
| /* Zero ex_data to make sure we're cleanup-safe */ |
| memset(&ctx->ex_data, 0, sizeof(ctx->ex_data)); |
| |
| /* store->cleanup is always 0 in OpenSSL, if set must be idempotent */ |
| if (store) |
| ctx->cleanup = store->cleanup; |
| else |
| ctx->cleanup = 0; |
| |
| if (store && store->check_issued) |
| ctx->check_issued = store->check_issued; |
| else |
| ctx->check_issued = check_issued; |
| |
| if (store && store->get_issuer) |
| ctx->get_issuer = store->get_issuer; |
| else |
| ctx->get_issuer = X509_STORE_CTX_get1_issuer; |
| |
| if (store && store->verify_cb) |
| ctx->verify_cb = store->verify_cb; |
| else |
| ctx->verify_cb = null_callback; |
| |
| if (store && store->verify) |
| ctx->verify = store->verify; |
| else |
| ctx->verify = internal_verify; |
| |
| if (store && store->check_revocation) |
| ctx->check_revocation = store->check_revocation; |
| else |
| ctx->check_revocation = check_revocation; |
| |
| if (store && store->get_crl) |
| ctx->get_crl = store->get_crl; |
| else |
| ctx->get_crl = NULL; |
| |
| if (store && store->check_crl) |
| ctx->check_crl = store->check_crl; |
| else |
| ctx->check_crl = check_crl; |
| |
| if (store && store->cert_crl) |
| ctx->cert_crl = store->cert_crl; |
| else |
| ctx->cert_crl = cert_crl; |
| |
| if (store && store->check_policy) |
| ctx->check_policy = store->check_policy; |
| else |
| ctx->check_policy = check_policy; |
| |
| if (store && store->lookup_certs) |
| ctx->lookup_certs = store->lookup_certs; |
| else |
| ctx->lookup_certs = X509_STORE_CTX_get1_certs; |
| |
| if (store && store->lookup_crls) |
| ctx->lookup_crls = store->lookup_crls; |
| else |
| ctx->lookup_crls = X509_STORE_CTX_get1_crls; |
| |
| ctx->param = X509_VERIFY_PARAM_new(); |
| if (ctx->param == NULL) { |
| X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| /* |
| * Inherit callbacks and flags from X509_STORE if not set use defaults. |
| */ |
| if (store) |
| ret = X509_VERIFY_PARAM_inherit(ctx->param, store->param); |
| else |
| ctx->param->inh_flags |= X509_VP_FLAG_DEFAULT | X509_VP_FLAG_ONCE; |
| |
| if (ret) |
| ret = X509_VERIFY_PARAM_inherit(ctx->param, |
| X509_VERIFY_PARAM_lookup("default")); |
| |
| if (ret == 0) { |
| X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| /* |
| * XXX: For now, continue to inherit trust from VPM, but infer from the |
| * purpose if this still yields the default value. |
| */ |
| if (ctx->param->trust == X509_TRUST_DEFAULT) { |
| int idx = X509_PURPOSE_get_by_id(ctx->param->purpose); |
| X509_PURPOSE *xp = X509_PURPOSE_get0(idx); |
| |
| if (xp != NULL) |
| ctx->param->trust = X509_PURPOSE_get_trust(xp); |
| } |
| |
| if (CRYPTO_new_ex_data(CRYPTO_EX_INDEX_X509_STORE_CTX, ctx, |
| &ctx->ex_data)) |
| return 1; |
| X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE); |
| |
| err: |
| /* |
| * On error clean up allocated storage, if the store context was not |
| * allocated with X509_STORE_CTX_new() this is our last chance to do so. |
| */ |
| X509_STORE_CTX_cleanup(ctx); |
| return 0; |
| } |
| |
| /* |
| * Set alternative lookup method: just a STACK of trusted certificates. This |
| * avoids X509_STORE nastiness where it isn't needed. |
| */ |
| void X509_STORE_CTX_set0_trusted_stack(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) |
| { |
| ctx->other_ctx = sk; |
| ctx->get_issuer = get_issuer_sk; |
| ctx->lookup_certs = lookup_certs_sk; |
| } |
| |
| void X509_STORE_CTX_cleanup(X509_STORE_CTX *ctx) |
| { |
| /* |
| * We need to be idempotent because, unfortunately, free() also calls |
| * cleanup(), so the natural call sequence new(), init(), cleanup(), free() |
| * calls cleanup() for the same object twice! Thus we must zero the |
| * pointers below after they're freed! |
| */ |
| /* Seems to always be 0 in OpenSSL, do this at most once. */ |
| if (ctx->cleanup != NULL) { |
| ctx->cleanup(ctx); |
| ctx->cleanup = NULL; |
| } |
| if (ctx->param != NULL) { |
| if (ctx->parent == NULL) |
| X509_VERIFY_PARAM_free(ctx->param); |
| ctx->param = NULL; |
| } |
| X509_policy_tree_free(ctx->tree); |
| ctx->tree = NULL; |
| sk_X509_pop_free(ctx->chain, X509_free); |
| ctx->chain = NULL; |
| CRYPTO_free_ex_data(CRYPTO_EX_INDEX_X509_STORE_CTX, ctx, &(ctx->ex_data)); |
| memset(&ctx->ex_data, 0, sizeof(ctx->ex_data)); |
| } |
| |
| void X509_STORE_CTX_set_depth(X509_STORE_CTX *ctx, int depth) |
| { |
| X509_VERIFY_PARAM_set_depth(ctx->param, depth); |
| } |
| |
| void X509_STORE_CTX_set_flags(X509_STORE_CTX *ctx, unsigned long flags) |
| { |
| X509_VERIFY_PARAM_set_flags(ctx->param, flags); |
| } |
| |
| void X509_STORE_CTX_set_time(X509_STORE_CTX *ctx, unsigned long flags, |
| time_t t) |
| { |
| X509_VERIFY_PARAM_set_time(ctx->param, t); |
| } |
| |
| X509 *X509_STORE_CTX_get0_cert(X509_STORE_CTX *ctx) |
| { |
| return ctx->cert; |
| } |
| |
| STACK_OF(X509) *X509_STORE_CTX_get0_untrusted(X509_STORE_CTX *ctx) |
| { |
| return ctx->untrusted; |
| } |
| |
| void X509_STORE_CTX_set0_untrusted(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) |
| { |
| ctx->untrusted = sk; |
| } |
| |
| void X509_STORE_CTX_set0_verified_chain(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) |
| { |
| sk_X509_pop_free(ctx->chain, X509_free); |
| ctx->chain = sk; |
| } |
| |
| void X509_STORE_CTX_set_verify_cb(X509_STORE_CTX *ctx, |
| X509_STORE_CTX_verify_cb verify_cb) |
| { |
| ctx->verify_cb = verify_cb; |
| } |
| |
| X509_STORE_CTX_verify_cb X509_STORE_CTX_get_verify_cb(X509_STORE_CTX *ctx) |
| { |
| return ctx->verify_cb; |
| } |
| |
| void X509_STORE_CTX_set_verify(X509_STORE_CTX *ctx, |
| X509_STORE_CTX_verify_fn verify) |
| { |
| ctx->verify = verify; |
| } |
| |
| X509_STORE_CTX_verify_fn X509_STORE_CTX_get_verify(X509_STORE_CTX *ctx) |
| { |
| return ctx->verify; |
| } |
| |
| X509_STORE_CTX_get_issuer_fn X509_STORE_CTX_get_get_issuer(X509_STORE_CTX *ctx) |
| { |
| return ctx->get_issuer; |
| } |
| |
| X509_STORE_CTX_check_issued_fn X509_STORE_CTX_get_check_issued(X509_STORE_CTX *ctx) |
| { |
| return ctx->check_issued; |
| } |
| |
| X509_STORE_CTX_check_revocation_fn X509_STORE_CTX_get_check_revocation(X509_STORE_CTX *ctx) |
| { |
| return ctx->check_revocation; |
| } |
| |
| X509_STORE_CTX_get_crl_fn X509_STORE_CTX_get_get_crl(X509_STORE_CTX *ctx) |
| { |
| return ctx->get_crl; |
| } |
| |
| X509_STORE_CTX_check_crl_fn X509_STORE_CTX_get_check_crl(X509_STORE_CTX *ctx) |
| { |
| return ctx->check_crl; |
| } |
| |
| X509_STORE_CTX_cert_crl_fn X509_STORE_CTX_get_cert_crl(X509_STORE_CTX *ctx) |
| { |
| return ctx->cert_crl; |
| } |
| |
| X509_STORE_CTX_check_policy_fn X509_STORE_CTX_get_check_policy(X509_STORE_CTX *ctx) |
| { |
| return ctx->check_policy; |
| } |
| |
| X509_STORE_CTX_lookup_certs_fn X509_STORE_CTX_get_lookup_certs(X509_STORE_CTX *ctx) |
| { |
| return ctx->lookup_certs; |
| } |
| |
| X509_STORE_CTX_lookup_crls_fn X509_STORE_CTX_get_lookup_crls(X509_STORE_CTX *ctx) |
| { |
| return ctx->lookup_crls; |
| } |
| |
| X509_STORE_CTX_cleanup_fn X509_STORE_CTX_get_cleanup(X509_STORE_CTX *ctx) |
| { |
| return ctx->cleanup; |
| } |
| |
| X509_POLICY_TREE *X509_STORE_CTX_get0_policy_tree(X509_STORE_CTX *ctx) |
| { |
| return ctx->tree; |
| } |
| |
| int X509_STORE_CTX_get_explicit_policy(X509_STORE_CTX *ctx) |
| { |
| return ctx->explicit_policy; |
| } |
| |
| int X509_STORE_CTX_get_num_untrusted(X509_STORE_CTX *ctx) |
| { |
| return ctx->num_untrusted; |
| } |
| |
| int X509_STORE_CTX_set_default(X509_STORE_CTX *ctx, const char *name) |
| { |
| const X509_VERIFY_PARAM *param; |
| param = X509_VERIFY_PARAM_lookup(name); |
| if (!param) |
| return 0; |
| return X509_VERIFY_PARAM_inherit(ctx->param, param); |
| } |
| |
| X509_VERIFY_PARAM *X509_STORE_CTX_get0_param(X509_STORE_CTX *ctx) |
| { |
| return ctx->param; |
| } |
| |
| void X509_STORE_CTX_set0_param(X509_STORE_CTX *ctx, X509_VERIFY_PARAM *param) |
| { |
| X509_VERIFY_PARAM_free(ctx->param); |
| ctx->param = param; |
| } |
| |
| void X509_STORE_CTX_set0_dane(X509_STORE_CTX *ctx, SSL_DANE *dane) |
| { |
| ctx->dane = dane; |
| } |
| |
| static unsigned char *dane_i2d( |
| X509 *cert, |
| uint8_t selector, |
| unsigned int *i2dlen) |
| { |
| unsigned char *buf = NULL; |
| int len; |
| |
| /* |
| * Extract ASN.1 DER form of certificate or public key. |
| */ |
| switch (selector) { |
| case DANETLS_SELECTOR_CERT: |
| len = i2d_X509(cert, &buf); |
| break; |
| case DANETLS_SELECTOR_SPKI: |
| len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &buf); |
| break; |
| default: |
| X509err(X509_F_DANE_I2D, X509_R_BAD_SELECTOR); |
| return NULL; |
| } |
| |
| if (len < 0 || buf == NULL) { |
| X509err(X509_F_DANE_I2D, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| |
| *i2dlen = (unsigned int)len; |
| return buf; |
| } |
| |
| #define DANETLS_NONE 256 /* impossible uint8_t */ |
| |
| static int dane_match(X509_STORE_CTX *ctx, X509 *cert, int depth) |
| { |
| SSL_DANE *dane = ctx->dane; |
| unsigned usage = DANETLS_NONE; |
| unsigned selector = DANETLS_NONE; |
| unsigned ordinal = DANETLS_NONE; |
| unsigned mtype = DANETLS_NONE; |
| unsigned char *i2dbuf = NULL; |
| unsigned int i2dlen = 0; |
| unsigned char mdbuf[EVP_MAX_MD_SIZE]; |
| unsigned char *cmpbuf = NULL; |
| unsigned int cmplen = 0; |
| int i; |
| int recnum; |
| int matched = 0; |
| danetls_record *t = NULL; |
| uint32_t mask; |
| |
| mask = (depth == 0) ? DANETLS_EE_MASK : DANETLS_TA_MASK; |
| |
| /* |
| * The trust store is not applicable with DANE-TA(2) |
| */ |
| if (depth >= ctx->num_untrusted) |
| mask &= DANETLS_PKIX_MASK; |
| |
| /* |
| * If we've previously matched a PKIX-?? record, no need to test any |
| * further PKIX-?? records, it remains to just build the PKIX chain. |
| * Had the match been a DANE-?? record, we'd be done already. |
| */ |
| if (dane->mdpth >= 0) |
| mask &= ~DANETLS_PKIX_MASK; |
| |
| /*- |
| * https://tools.ietf.org/html/rfc7671#section-5.1 |
| * https://tools.ietf.org/html/rfc7671#section-5.2 |
| * https://tools.ietf.org/html/rfc7671#section-5.3 |
| * https://tools.ietf.org/html/rfc7671#section-5.4 |
| * |
| * We handle DANE-EE(3) records first as they require no chain building |
| * and no expiration or hostname checks. We also process digests with |
| * higher ordinals first and ignore lower priorities except Full(0) which |
| * is always processed (last). If none match, we then process PKIX-EE(1). |
| * |
| * NOTE: This relies on DANE usages sorting before the corresponding PKIX |
| * usages in SSL_dane_tlsa_add(), and also on descending sorting of digest |
| * priorities. See twin comment in ssl/ssl_lib.c. |
| * |
| * We expect that most TLSA RRsets will have just a single usage, so we |
| * don't go out of our way to cache multiple selector-specific i2d buffers |
| * across usages, but if the selector happens to remain the same as switch |
| * usages, that's OK. Thus, a set of "3 1 1", "3 0 1", "1 1 1", "1 0 1", |
| * records would result in us generating each of the certificate and public |
| * key DER forms twice, but more typically we'd just see multiple "3 1 1" |
| * or multiple "3 0 1" records. |
| * |
| * As soon as we find a match at any given depth, we stop, because either |
| * we've matched a DANE-?? record and the peer is authenticated, or, after |
| * exhausting all DANE-?? records, we've matched a PKIX-?? record, which is |
| * sufficient for DANE, and what remains to do is ordinary PKIX validation. |
| */ |
| recnum = (dane->umask & mask) ? sk_danetls_record_num(dane->trecs) : 0; |
| for (i = 0; matched == 0 && i < recnum; ++i) { |
| t = sk_danetls_record_value(dane->trecs, i); |
| if ((DANETLS_USAGE_BIT(t->usage) & mask) == 0) |
| continue; |
| if (t->usage != usage) { |
| usage = t->usage; |
| |
| /* Reset digest agility for each usage/selector pair */ |
| mtype = DANETLS_NONE; |
| ordinal = dane->dctx->mdord[t->mtype]; |
| } |
| if (t->selector != selector) { |
| selector = t->selector; |
| |
| /* Update per-selector state */ |
| OPENSSL_free(i2dbuf); |
| i2dbuf = dane_i2d(cert, selector, &i2dlen); |
| if (i2dbuf == NULL) |
| return -1; |
| |
| /* Reset digest agility for each usage/selector pair */ |
| mtype = DANETLS_NONE; |
| ordinal = dane->dctx->mdord[t->mtype]; |
| } else if (t->mtype != DANETLS_MATCHING_FULL) { |
| /*- |
| * Digest agility: |
| * |
| * <https://tools.ietf.org/html/rfc7671#section-9> |
| * |
| * For a fixed selector, after processing all records with the |
| * highest mtype ordinal, ignore all mtypes with lower ordinals |
| * other than "Full". |
| */ |
| if (dane->dctx->mdord[t->mtype] < ordinal) |
| continue; |
| } |
| |
| /* |
| * Each time we hit a (new selector or) mtype, re-compute the relevant |
| * digest, more complex caching is not worth the code space. |
| */ |
| if (t->mtype != mtype) { |
| const EVP_MD *md = dane->dctx->mdevp[mtype = t->mtype]; |
| cmpbuf = i2dbuf; |
| cmplen = i2dlen; |
| |
| if (md != NULL) { |
| cmpbuf = mdbuf; |
| if (!EVP_Digest(i2dbuf, i2dlen, cmpbuf, &cmplen, md, 0)) { |
| matched = -1; |
| break; |
| } |
| } |
| } |
| |
| /* |
| * Squirrel away the certificate and depth if we have a match. Any |
| * DANE match is dispositive, but with PKIX we still need to build a |
| * full chain. |
| */ |
| if (cmplen == t->dlen && |
| memcmp(cmpbuf, t->data, cmplen) == 0) { |
| if (DANETLS_USAGE_BIT(usage) & DANETLS_DANE_MASK) |
| matched = 1; |
| if (matched || dane->mdpth < 0) { |
| dane->mdpth = depth; |
| dane->mtlsa = t; |
| OPENSSL_free(dane->mcert); |
| dane->mcert = cert; |
| X509_up_ref(cert); |
| } |
| break; |
| } |
| } |
| |
| /* Clear the one-element DER cache */ |
| OPENSSL_free(i2dbuf); |
| return matched; |
| } |
| |
| static int check_dane_issuer(X509_STORE_CTX *ctx, int depth) |
| { |
| SSL_DANE *dane = ctx->dane; |
| int matched = 0; |
| X509 *cert; |
| |
| if (!DANETLS_HAS_TA(dane) || depth == 0) |
| return X509_TRUST_UNTRUSTED; |
| |
| /* |
| * Record any DANE trust-anchor matches, for the first depth to test, if |
| * there's one at that depth. (This'll be false for length 1 chains looking |
| * for an exact match for the leaf certificate). |
| */ |
| cert = sk_X509_value(ctx->chain, depth); |
| if (cert != NULL && (matched = dane_match(ctx, cert, depth)) < 0) |
| return X509_TRUST_REJECTED; |
| if (matched > 0) { |
| ctx->num_untrusted = depth - 1; |
| return X509_TRUST_TRUSTED; |
| } |
| |
| return X509_TRUST_UNTRUSTED; |
| } |
| |
| static int check_dane_pkeys(X509_STORE_CTX *ctx) |
| { |
| SSL_DANE *dane = ctx->dane; |
| danetls_record *t; |
| int num = ctx->num_untrusted; |
| X509 *cert = sk_X509_value(ctx->chain, num - 1); |
| int recnum = sk_danetls_record_num(dane->trecs); |
| int i; |
| |
| for (i = 0; i < recnum; ++i) { |
| t = sk_danetls_record_value(dane->trecs, i); |
| if (t->usage != DANETLS_USAGE_DANE_TA || |
| t->selector != DANETLS_SELECTOR_SPKI || |
| t->mtype != DANETLS_MATCHING_FULL || |
| X509_verify(cert, t->spki) <= 0) |
| continue; |
| |
| /* Clear any PKIX-?? matches that failed to extend to a full chain */ |
| X509_free(dane->mcert); |
| dane->mcert = NULL; |
| |
| /* Record match via a bare TA public key */ |
| ctx->bare_ta_signed = 1; |
| dane->mdpth = num - 1; |
| dane->mtlsa = t; |
| |
| /* Prune any excess chain certificates */ |
| num = sk_X509_num(ctx->chain); |
| for (; num > ctx->num_untrusted; --num) |
| X509_free(sk_X509_pop(ctx->chain)); |
| |
| return X509_TRUST_TRUSTED; |
| } |
| |
| return X509_TRUST_UNTRUSTED; |
| } |
| |
| static void dane_reset(SSL_DANE *dane) |
| { |
| /* |
| * Reset state to verify another chain, or clear after failure. |
| */ |
| X509_free(dane->mcert); |
| dane->mcert = NULL; |
| dane->mtlsa = NULL; |
| dane->mdpth = -1; |
| dane->pdpth = -1; |
| } |
| |
| static int check_leaf_suiteb(X509_STORE_CTX *ctx, X509 *cert) |
| { |
| int err = X509_chain_check_suiteb(NULL, cert, NULL, ctx->param->flags); |
| |
| if (err == X509_V_OK) |
| return 1; |
| return verify_cb_cert(ctx, cert, 0, err); |
| } |
| |
| static int dane_verify(X509_STORE_CTX *ctx) |
| { |
| X509 *cert = ctx->cert; |
| SSL_DANE *dane = ctx->dane; |
| int matched; |
| int done; |
| |
| dane_reset(dane); |
| |
| /*- |
| * When testing the leaf certificate, if we match a DANE-EE(3) record, |
| * dane_match() returns 1 and we're done. If however we match a PKIX-EE(1) |
| * record, the match depth and matching TLSA record are recorded, but the |
| * return value is 0, because we still need to find a PKIX trust-anchor. |
| * Therefore, when DANE authentication is enabled (required), we're done |
| * if: |
| * + matched < 0, internal error. |
| * + matched == 1, we matched a DANE-EE(3) record |
| * + matched == 0, mdepth < 0 (no PKIX-EE match) and there are no |
| * DANE-TA(2) or PKIX-TA(0) to test. |
| */ |
| matched = dane_match(ctx, ctx->cert, 0); |
| done = matched != 0 || (!DANETLS_HAS_TA(dane) && dane->mdpth < 0); |
| |
| if (done) |
| X509_get_pubkey_parameters(NULL, ctx->chain); |
| |
| if (matched > 0) { |
| /* Callback invoked as needed */ |
| if (!check_leaf_suiteb(ctx, cert)) |
| return 0; |
| /* Callback invoked as needed */ |
| if ((dane->flags & DANE_FLAG_NO_DANE_EE_NAMECHECKS) == 0 && |
| !check_id(ctx)) |
| return 0; |
| /* Bypass internal_verify(), issue depth 0 success callback */ |
| ctx->error_depth = 0; |
| ctx->current_cert = cert; |
| return ctx->verify_cb(1, ctx); |
| } |
| |
| if (matched < 0) { |
| ctx->error_depth = 0; |
| ctx->current_cert = cert; |
| ctx->error = X509_V_ERR_OUT_OF_MEM; |
| return -1; |
| } |
| |
| if (done) { |
| /* Fail early, TA-based success is not possible */ |
| if (!check_leaf_suiteb(ctx, cert)) |
| return 0; |
| return verify_cb_cert(ctx, cert, 0, X509_V_ERR_DANE_NO_MATCH); |
| } |
| |
| /* |
| * Chain verification for usages 0/1/2. TLSA record matching of depth > 0 |
| * certificates happens in-line with building the rest of the chain. |
| */ |
| return verify_chain(ctx); |
| } |
| |
| /* Get issuer, without duplicate suppression */ |
| static int get_issuer(X509 **issuer, X509_STORE_CTX *ctx, X509 *cert) |
| { |
| STACK_OF(X509) *saved_chain = ctx->chain; |
| int ok; |
| |
| ctx->chain = NULL; |
| ok = ctx->get_issuer(issuer, ctx, cert); |
| ctx->chain = saved_chain; |
| |
| return ok; |
| } |
| |
| static int build_chain(X509_STORE_CTX *ctx) |
| { |
| SSL_DANE *dane = ctx->dane; |
| int num = sk_X509_num(ctx->chain); |
| X509 *cert = sk_X509_value(ctx->chain, num - 1); |
| int ss = cert_self_signed(cert); |
| STACK_OF(X509) *sktmp = NULL; |
| unsigned int search; |
| int may_trusted = 0; |
| int may_alternate = 0; |
| int trust = X509_TRUST_UNTRUSTED; |
| int alt_untrusted = 0; |
| int depth; |
| int ok = 0; |
| int i; |
| |
| /* Our chain starts with a single untrusted element. */ |
| if (!ossl_assert(num == 1 && ctx->num_untrusted == num)) { |
| X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR); |
| ctx->error = X509_V_ERR_UNSPECIFIED; |
| return 0; |
| } |
| |
| #define S_DOUNTRUSTED (1 << 0) /* Search untrusted chain */ |
| #define S_DOTRUSTED (1 << 1) /* Search trusted store */ |
| #define S_DOALTERNATE (1 << 2) /* Retry with pruned alternate chain */ |
| /* |
| * Set up search policy, untrusted if possible, trusted-first if enabled. |
| * If we're doing DANE and not doing PKIX-TA/PKIX-EE, we never look in the |
| * trust_store, otherwise we might look there first. If not trusted-first, |
| * and alternate chains are not disabled, try building an alternate chain |
| * if no luck with untrusted first. |
| */ |
| search = (ctx->untrusted != NULL) ? S_DOUNTRUSTED : 0; |
| if (DANETLS_HAS_PKIX(dane) || !DANETLS_HAS_DANE(dane)) { |
| if (search == 0 || ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST) |
| search |= S_DOTRUSTED; |
| else if (!(ctx->param->flags & X509_V_FLAG_NO_ALT_CHAINS)) |
| may_alternate = 1; |
| may_trusted = 1; |
| } |
| |
| /* |
| * Shallow-copy the stack of untrusted certificates (with TLS, this is |
| * typically the content of the peer's certificate message) so can make |
| * multiple passes over it, while free to remove elements as we go. |
| */ |
| if (ctx->untrusted && (sktmp = sk_X509_dup(ctx->untrusted)) == NULL) { |
| X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); |
| ctx->error = X509_V_ERR_OUT_OF_MEM; |
| return 0; |
| } |
| |
| /* |
| * If we got any "DANE-TA(2) Cert(0) Full(0)" trust-anchors from DNS, add |
| * them to our working copy of the untrusted certificate stack. Since the |
| * caller of X509_STORE_CTX_init() may have provided only a leaf cert with |
| * no corresponding stack of untrusted certificates, we may need to create |
| * an empty stack first. [ At present only the ssl library provides DANE |
| * support, and ssl_verify_cert_chain() always provides a non-null stack |
| * containing at least the leaf certificate, but we must be prepared for |
| * this to change. ] |
| */ |
| if (DANETLS_ENABLED(dane) && dane->certs != NULL) { |
| if (sktmp == NULL && (sktmp = sk_X509_new_null()) == NULL) { |
| X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); |
| ctx->error = X509_V_ERR_OUT_OF_MEM; |
| return 0; |
| } |
| for (i = 0; i < sk_X509_num(dane->certs); ++i) { |
| if (!sk_X509_push(sktmp, sk_X509_value(dane->certs, i))) { |
| sk_X509_free(sktmp); |
| X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); |
| ctx->error = X509_V_ERR_OUT_OF_MEM; |
| return 0; |
| } |
| } |
| } |
| |
| /* |
| * Still absurdly large, but arithmetically safe, a lower hard upper bound |
| * might be reasonable. |
| */ |
| if (ctx->param->depth > INT_MAX/2) |
| ctx->param->depth = INT_MAX/2; |
| |
| /* |
| * Try to Extend the chain until we reach an ultimately trusted issuer. |
| * Build chains up to one longer the limit, later fail if we hit the limit, |
| * with an X509_V_ERR_CERT_CHAIN_TOO_LONG error code. |
| */ |
| depth = ctx->param->depth + 1; |
| |
| while (search != 0) { |
| X509 *x; |
| X509 *xtmp = NULL; |
| |
| /* |
| * Look in the trust store if enabled for first lookup, or we've run |
| * out of untrusted issuers and search here is not disabled. When we |
| * reach the depth limit, we stop extending the chain, if by that point |
| * we've not found a trust-anchor, any trusted chain would be too long. |
| * |
| * The error reported to the application verify callback is at the |
| * maximal valid depth with the current certificate equal to the last |
| * not ultimately-trusted issuer. For example, with verify_depth = 0, |
| * the callback will report errors at depth=1 when the immediate issuer |
| * of the leaf certificate is not a trust anchor. No attempt will be |
| * made to locate an issuer for that certificate, since such a chain |
| * would be a-priori too long. |
| */ |
| if ((search & S_DOTRUSTED) != 0) { |
| i = num = sk_X509_num(ctx->chain); |
| if ((search & S_DOALTERNATE) != 0) { |
| /* |
| * As high up the chain as we can, look for an alternative |
| * trusted issuer of an untrusted certificate that currently |
| * has an untrusted issuer. We use the alt_untrusted variable |
| * to track how far up the chain we find the first match. It |
| * is only if and when we find a match, that we prune the chain |
| * and reset ctx->num_untrusted to the reduced count of |
| * untrusted certificates. While we're searching for such a |
| * match (which may never be found), it is neither safe nor |
| * wise to preemptively modify either the chain or |
| * ctx->num_untrusted. |
| * |
| * Note, like ctx->num_untrusted, alt_untrusted is a count of |
| * untrusted certificates, not a "depth". |
| */ |
| i = alt_untrusted; |
| } |
| x = sk_X509_value(ctx->chain, i-1); |
| |
| ok = (depth < num) ? 0 : get_issuer(&xtmp, ctx, x); |
| |
| if (ok < 0) { |
| trust = X509_TRUST_REJECTED; |
| ctx->error = X509_V_ERR_STORE_LOOKUP; |
| search = 0; |
| continue; |
| } |
| |
| if (ok > 0) { |
| /* |
| * Alternative trusted issuer for a mid-chain untrusted cert? |
| * Pop the untrusted cert's successors and retry. We might now |
| * be able to complete a valid chain via the trust store. Note |
| * that despite the current trust-store match we might still |
| * fail complete the chain to a suitable trust-anchor, in which |
| * case we may prune some more untrusted certificates and try |
| * again. Thus the S_DOALTERNATE bit may yet be turned on |
| * again with an even shorter untrusted chain! |
| * |
| * If in the process we threw away our matching PKIX-TA trust |
| * anchor, reset DANE trust. We might find a suitable trusted |
| * certificate among the ones from the trust store. |
| */ |
| if ((search & S_DOALTERNATE) != 0) { |
| if (!ossl_assert(num > i && i > 0 && ss == 0)) { |
| X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR); |
| X509_free(xtmp); |
| trust = X509_TRUST_REJECTED; |
| ctx->error = X509_V_ERR_UNSPECIFIED; |
| search = 0; |
| continue; |
| } |
| search &= ~S_DOALTERNATE; |
| for (; num > i; --num) |
| X509_free(sk_X509_pop(ctx->chain)); |
| ctx->num_untrusted = num; |
| |
| if (DANETLS_ENABLED(dane) && |
| dane->mdpth >= ctx->num_untrusted) { |
| dane->mdpth = -1; |
| X509_free(dane->mcert); |
| dane->mcert = NULL; |
| } |
| if (DANETLS_ENABLED(dane) && |
| dane->pdpth >= ctx->num_untrusted) |
| dane->pdpth = -1; |
| } |
| |
| /* |
| * Self-signed untrusted certificates get replaced by their |
| * trusted matching issuer. Otherwise, grow the chain. |
| */ |
| if (ss == 0) { |
| if (!sk_X509_push(ctx->chain, x = xtmp)) { |
| X509_free(xtmp); |
| X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); |
| trust = X509_TRUST_REJECTED; |
| ctx->error = X509_V_ERR_OUT_OF_MEM; |
| search = 0; |
| continue; |
| } |
| ss = cert_self_signed(x); |
| } else if (num == ctx->num_untrusted) { |
| /* |
| * We have a self-signed certificate that has the same |
| * subject name (and perhaps keyid and/or serial number) as |
| * a trust-anchor. We must have an exact match to avoid |
| * possible impersonation via key substitution etc. |
| */ |
| if (X509_cmp(x, xtmp) != 0) { |
| /* Self-signed untrusted mimic. */ |
| X509_free(xtmp); |
| ok = 0; |
| } else { |
| X509_free(x); |
| ctx->num_untrusted = --num; |
| (void) sk_X509_set(ctx->chain, num, x = xtmp); |
| } |
| } |
| |
| /* |
| * We've added a new trusted certificate to the chain, recheck |
| * trust. If not done, and not self-signed look deeper. |
| * Whether or not we're doing "trusted first", we no longer |
| * look for untrusted certificates from the peer's chain. |
| * |
| * At this point ctx->num_trusted and num must reflect the |
| * correct number of untrusted certificates, since the DANE |
| * logic in check_trust() depends on distinguishing CAs from |
| * "the wire" from CAs from the trust store. In particular, the |
| * certificate at depth "num" should be the new trusted |
| * certificate with ctx->num_untrusted <= num. |
| */ |
| if (ok) { |
| if (!ossl_assert(ctx->num_untrusted <= num)) { |
| X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR); |
| trust = X509_TRUST_REJECTED; |
| ctx->error = X509_V_ERR_UNSPECIFIED; |
| search = 0; |
| continue; |
| } |
| search &= ~S_DOUNTRUSTED; |
| switch (trust = check_trust(ctx, num)) { |
| case X509_TRUST_TRUSTED: |
| case X509_TRUST_REJECTED: |
| search = 0; |
| continue; |
| } |
| if (ss == 0) |
| continue; |
| } |
| } |
| |
| /* |
| * No dispositive decision, and either self-signed or no match, if |
| * we were doing untrusted-first, and alt-chains are not disabled, |
| * do that, by repeatedly losing one untrusted element at a time, |
| * and trying to extend the shorted chain. |
| */ |
| if ((search & S_DOUNTRUSTED) == 0) { |
| /* Continue search for a trusted issuer of a shorter chain? */ |
| if ((search & S_DOALTERNATE) != 0 && --alt_untrusted > 0) |
| continue; |
| /* Still no luck and no fallbacks left? */ |
| if (!may_alternate || (search & S_DOALTERNATE) != 0 || |
| ctx->num_untrusted < 2) |
| break; |
| /* Search for a trusted issuer of a shorter chain */ |
| search |= S_DOALTERNATE; |
| alt_untrusted = ctx->num_untrusted - 1; |
| ss = 0; |
| } |
| } |
| |
| /* |
| * Extend chain with peer-provided certificates |
| */ |
| if ((search & S_DOUNTRUSTED) != 0) { |
| num = sk_X509_num(ctx->chain); |
| if (!ossl_assert(num == ctx->num_untrusted)) { |
| X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR); |
| trust = X509_TRUST_REJECTED; |
| ctx->error = X509_V_ERR_UNSPECIFIED; |
| search = 0; |
| continue; |
| } |
| x = sk_X509_value(ctx->chain, num-1); |
| |
| /* |
| * Once we run out of untrusted issuers, we stop looking for more |
| * and start looking only in the trust store if enabled. |
| */ |
| xtmp = (ss || depth < num) ? NULL : find_issuer(ctx, sktmp, x); |
| if (xtmp == NULL) { |
| search &= ~S_DOUNTRUSTED; |
| if (may_trusted) |
| search |= S_DOTRUSTED; |
| continue; |
| } |
| |
| /* Drop this issuer from future consideration */ |
| (void) sk_X509_delete_ptr(sktmp, xtmp); |
| |
| if (!sk_X509_push(ctx->chain, xtmp)) { |
| X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE); |
| trust = X509_TRUST_REJECTED; |
| ctx->error = X509_V_ERR_OUT_OF_MEM; |
| search = 0; |
| continue; |
| } |
| |
| X509_up_ref(x = xtmp); |
| ++ctx->num_untrusted; |
| ss = cert_self_signed(xtmp); |
| |
| /* |
| * Check for DANE-TA trust of the topmost untrusted certificate. |
| */ |
| switch (trust = check_dane_issuer(ctx, ctx->num_untrusted - 1)) { |
| case X509_TRUST_TRUSTED: |
| case X509_TRUST_REJECTED: |
| search = 0; |
| continue; |
| } |
| } |
| } |
| sk_X509_free(sktmp); |
| |
| /* |
| * Last chance to make a trusted chain, either bare DANE-TA public-key |
| * signers, or else direct leaf PKIX trust. |
| */ |
| num = sk_X509_num(ctx->chain); |
| if (num <= depth) { |
| if (trust == X509_TRUST_UNTRUSTED && DANETLS_HAS_DANE_TA(dane)) |
| trust = check_dane_pkeys(ctx); |
| if (trust == X509_TRUST_UNTRUSTED && num == ctx->num_untrusted) |
| trust = check_trust(ctx, num); |
| } |
| |
| switch (trust) { |
| case X509_TRUST_TRUSTED: |
| return 1; |
| case X509_TRUST_REJECTED: |
| /* Callback already issued */ |
| return 0; |
| case X509_TRUST_UNTRUSTED: |
| default: |
| num = sk_X509_num(ctx->chain); |
| if (num > depth) |
| return verify_cb_cert(ctx, NULL, num-1, |
| X509_V_ERR_CERT_CHAIN_TOO_LONG); |
| if (DANETLS_ENABLED(dane) && |
| (!DANETLS_HAS_PKIX(dane) || dane->pdpth >= 0)) |
| return verify_cb_cert(ctx, NULL, num-1, X509_V_ERR_DANE_NO_MATCH); |
| if (ss && sk_X509_num(ctx->chain) == 1) |
| return verify_cb_cert(ctx, NULL, num-1, |
| X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT); |
| if (ss) |
| return verify_cb_cert(ctx, NULL, num-1, |
| X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN); |
| if (ctx->num_untrusted < num) |
| return verify_cb_cert(ctx, NULL, num-1, |
| X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT); |
| return verify_cb_cert(ctx, NULL, num-1, |
| X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY); |
| } |
| } |
| |
| static const int minbits_table[] = { 80, 112, 128, 192, 256 }; |
| static const int NUM_AUTH_LEVELS = OSSL_NELEM(minbits_table); |
| |
| /* |
| * Check whether the public key of ``cert`` meets the security level of |
| * ``ctx``. |
| * |
| * Returns 1 on success, 0 otherwise. |
| */ |
| static int check_key_level(X509_STORE_CTX *ctx, X509 *cert) |
| { |
| EVP_PKEY *pkey = X509_get0_pubkey(cert); |
| int level = ctx->param->auth_level; |
| |
| /* |
| * At security level zero, return without checking for a supported public |
| * key type. Some engines support key types not understood outside the |
| * engine, and we only need to understand the key when enforcing a security |
| * floor. |
| */ |
| if (level <= 0) |
| return 1; |
| |
| /* Unsupported or malformed keys are not secure */ |
| if (pkey == NULL) |
| return 0; |
| |
| if (level > NUM_AUTH_LEVELS) |
| level = NUM_AUTH_LEVELS; |
| |
| return EVP_PKEY_security_bits(pkey) >= minbits_table[level - 1]; |
| } |
| |
| /* |
| * Check whether the signature digest algorithm of ``cert`` meets the security |
| * level of ``ctx``. Should not be checked for trust anchors (whether |
| * self-signed or otherwise). |
| * |
| * Returns 1 on success, 0 otherwise. |
| */ |
| static int check_sig_level(X509_STORE_CTX *ctx, X509 *cert) |
| { |
| int secbits = -1; |
| int level = ctx->param->auth_level; |
| |
| if (level <= 0) |
| return 1; |
| if (level > NUM_AUTH_LEVELS) |
| level = NUM_AUTH_LEVELS; |
| |
| if (!X509_get_signature_info(cert, NULL, NULL, &secbits, NULL)) |
| return 0; |
| |
| return secbits >= minbits_table[level - 1]; |
| } |