|  | /* | 
|  | * Copyright 2016-2017 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * | 
|  | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/bio.h> | 
|  | #include <openssl/x509_vfy.h> | 
|  | #include <openssl/ssl.h> | 
|  | #ifndef OPENSSL_NO_SRP | 
|  | #include <openssl/srp.h> | 
|  | #endif | 
|  |  | 
|  | #ifndef OPENSSL_NO_SOCK | 
|  | # define USE_SOCKETS | 
|  | # include "e_os.h" | 
|  | #endif | 
|  |  | 
|  | #include "handshake_helper.h" | 
|  | #include "testutil.h" | 
|  |  | 
|  | HANDSHAKE_RESULT *HANDSHAKE_RESULT_new() | 
|  | { | 
|  | HANDSHAKE_RESULT *ret; | 
|  |  | 
|  | TEST_ptr(ret = OPENSSL_zalloc(sizeof(*ret))); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void HANDSHAKE_RESULT_free(HANDSHAKE_RESULT *result) | 
|  | { | 
|  | if (result == NULL) | 
|  | return; | 
|  | OPENSSL_free(result->client_npn_negotiated); | 
|  | OPENSSL_free(result->server_npn_negotiated); | 
|  | OPENSSL_free(result->client_alpn_negotiated); | 
|  | OPENSSL_free(result->server_alpn_negotiated); | 
|  | sk_X509_NAME_pop_free(result->server_ca_names, X509_NAME_free); | 
|  | sk_X509_NAME_pop_free(result->client_ca_names, X509_NAME_free); | 
|  | OPENSSL_free(result); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since there appears to be no way to extract the sent/received alert | 
|  | * from the SSL object directly, we use the info callback and stash | 
|  | * the result in ex_data. | 
|  | */ | 
|  | typedef struct handshake_ex_data_st { | 
|  | int alert_sent; | 
|  | int num_fatal_alerts_sent; | 
|  | int alert_received; | 
|  | int session_ticket_do_not_call; | 
|  | ssl_servername_t servername; | 
|  | } HANDSHAKE_EX_DATA; | 
|  |  | 
|  | typedef struct ctx_data_st { | 
|  | unsigned char *npn_protocols; | 
|  | size_t npn_protocols_len; | 
|  | unsigned char *alpn_protocols; | 
|  | size_t alpn_protocols_len; | 
|  | char *srp_user; | 
|  | char *srp_password; | 
|  | } CTX_DATA; | 
|  |  | 
|  | /* |ctx_data| itself is stack-allocated. */ | 
|  | static void ctx_data_free_data(CTX_DATA *ctx_data) | 
|  | { | 
|  | OPENSSL_free(ctx_data->npn_protocols); | 
|  | ctx_data->npn_protocols = NULL; | 
|  | OPENSSL_free(ctx_data->alpn_protocols); | 
|  | ctx_data->alpn_protocols = NULL; | 
|  | OPENSSL_free(ctx_data->srp_user); | 
|  | ctx_data->srp_user = NULL; | 
|  | OPENSSL_free(ctx_data->srp_password); | 
|  | ctx_data->srp_password = NULL; | 
|  | } | 
|  |  | 
|  | static int ex_data_idx; | 
|  |  | 
|  | static void info_cb(const SSL *s, int where, int ret) | 
|  | { | 
|  | if (where & SSL_CB_ALERT) { | 
|  | HANDSHAKE_EX_DATA *ex_data = | 
|  | (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx)); | 
|  | if (where & SSL_CB_WRITE) { | 
|  | ex_data->alert_sent = ret; | 
|  | if (strcmp(SSL_alert_type_string(ret), "F") == 0 | 
|  | || strcmp(SSL_alert_desc_string(ret), "CN") == 0) | 
|  | ex_data->num_fatal_alerts_sent++; | 
|  | } else { | 
|  | ex_data->alert_received = ret; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Select the appropriate server CTX. | 
|  | * Returns SSL_TLSEXT_ERR_OK if a match was found. | 
|  | * If |ignore| is 1, returns SSL_TLSEXT_ERR_NOACK on mismatch. | 
|  | * Otherwise, returns SSL_TLSEXT_ERR_ALERT_FATAL on mismatch. | 
|  | * An empty SNI extension also returns SSL_TSLEXT_ERR_NOACK. | 
|  | */ | 
|  | static int select_server_ctx(SSL *s, void *arg, int ignore) | 
|  | { | 
|  | const char *servername = SSL_get_servername(s, TLSEXT_NAMETYPE_host_name); | 
|  | HANDSHAKE_EX_DATA *ex_data = | 
|  | (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx)); | 
|  |  | 
|  | if (servername == NULL) { | 
|  | ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; | 
|  | return SSL_TLSEXT_ERR_NOACK; | 
|  | } | 
|  |  | 
|  | if (strcmp(servername, "server2") == 0) { | 
|  | SSL_CTX *new_ctx = (SSL_CTX*)arg; | 
|  | SSL_set_SSL_CTX(s, new_ctx); | 
|  | /* | 
|  | * Copy over all the SSL_CTX options - reasonable behavior | 
|  | * allows testing of cases where the options between two | 
|  | * contexts differ/conflict | 
|  | */ | 
|  | SSL_clear_options(s, 0xFFFFFFFFL); | 
|  | SSL_set_options(s, SSL_CTX_get_options(new_ctx)); | 
|  |  | 
|  | ex_data->servername = SSL_TEST_SERVERNAME_SERVER2; | 
|  | return SSL_TLSEXT_ERR_OK; | 
|  | } else if (strcmp(servername, "server1") == 0) { | 
|  | ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; | 
|  | return SSL_TLSEXT_ERR_OK; | 
|  | } else if (ignore) { | 
|  | ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; | 
|  | return SSL_TLSEXT_ERR_NOACK; | 
|  | } else { | 
|  | /* Don't set an explicit alert, to test library defaults. */ | 
|  | return SSL_TLSEXT_ERR_ALERT_FATAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int early_select_server_ctx(SSL *s, void *arg, int ignore) | 
|  | { | 
|  | const char *servername; | 
|  | const unsigned char *p; | 
|  | size_t len, remaining; | 
|  | HANDSHAKE_EX_DATA *ex_data = | 
|  | (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx)); | 
|  |  | 
|  | /* | 
|  | * The server_name extension was given too much extensibility when it | 
|  | * was written, so parsing the normal case is a bit complex. | 
|  | */ | 
|  | if (!SSL_early_get0_ext(s, TLSEXT_TYPE_server_name, &p, &remaining) || | 
|  | remaining <= 2) | 
|  | return 0; | 
|  | /* Extract the length of the supplied list of names. */ | 
|  | len = (*(p++) << 1); | 
|  | len += *(p++); | 
|  | if (len + 2 != remaining) | 
|  | return 0; | 
|  | remaining = len; | 
|  | /* | 
|  | * The list in practice only has a single element, so we only consider | 
|  | * the first one. | 
|  | */ | 
|  | if (remaining == 0 || *p++ != TLSEXT_NAMETYPE_host_name) | 
|  | return 0; | 
|  | remaining--; | 
|  | /* Now we can finally pull out the byte array with the actual hostname. */ | 
|  | if (remaining <= 2) | 
|  | return 0; | 
|  | len = (*(p++) << 1); | 
|  | len += *(p++); | 
|  | if (len + 2 > remaining) | 
|  | return 0; | 
|  | remaining = len; | 
|  | servername = (const char *)p; | 
|  |  | 
|  | if (len == strlen("server2") && strncmp(servername, "server2", len) == 0) { | 
|  | SSL_CTX *new_ctx = arg; | 
|  | SSL_set_SSL_CTX(s, new_ctx); | 
|  | /* | 
|  | * Copy over all the SSL_CTX options - reasonable behavior | 
|  | * allows testing of cases where the options between two | 
|  | * contexts differ/conflict | 
|  | */ | 
|  | SSL_clear_options(s, 0xFFFFFFFFL); | 
|  | SSL_set_options(s, SSL_CTX_get_options(new_ctx)); | 
|  |  | 
|  | ex_data->servername = SSL_TEST_SERVERNAME_SERVER2; | 
|  | return 1; | 
|  | } else if (len == strlen("server1") && | 
|  | strncmp(servername, "server1", len) == 0) { | 
|  | ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; | 
|  | return 1; | 
|  | } else if (ignore) { | 
|  | ex_data->servername = SSL_TEST_SERVERNAME_SERVER1; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * (RFC 6066): | 
|  | *  If the server understood the ClientHello extension but | 
|  | *  does not recognize the server name, the server SHOULD take one of two | 
|  | *  actions: either abort the handshake by sending a fatal-level | 
|  | *  unrecognized_name(112) alert or continue the handshake. | 
|  | * | 
|  | * This behaviour is up to the application to configure; we test both | 
|  | * configurations to ensure the state machine propagates the result | 
|  | * correctly. | 
|  | */ | 
|  | static int servername_ignore_cb(SSL *s, int *ad, void *arg) | 
|  | { | 
|  | return select_server_ctx(s, arg, 1); | 
|  | } | 
|  |  | 
|  | static int servername_reject_cb(SSL *s, int *ad, void *arg) | 
|  | { | 
|  | return select_server_ctx(s, arg, 0); | 
|  | } | 
|  |  | 
|  | static int early_ignore_cb(SSL *s, int *al, void *arg) | 
|  | { | 
|  | if (!early_select_server_ctx(s, arg, 1)) { | 
|  | *al = SSL_AD_UNRECOGNIZED_NAME; | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int early_reject_cb(SSL *s, int *al, void *arg) | 
|  | { | 
|  | if (!early_select_server_ctx(s, arg, 0)) { | 
|  | *al = SSL_AD_UNRECOGNIZED_NAME; | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int early_nov12_cb(SSL *s, int *al, void *arg) | 
|  | { | 
|  | int ret; | 
|  | unsigned int v; | 
|  | const unsigned char *p; | 
|  |  | 
|  | v = SSL_early_get0_legacy_version(s); | 
|  | if (v > TLS1_2_VERSION || v < SSL3_VERSION) { | 
|  | *al = SSL_AD_PROTOCOL_VERSION; | 
|  | return 0; | 
|  | } | 
|  | (void)SSL_early_get0_session_id(s, &p); | 
|  | if (p == NULL || | 
|  | SSL_early_get0_random(s, &p) == 0 || | 
|  | SSL_early_get0_ciphers(s, &p) == 0 || | 
|  | SSL_early_get0_compression_methods(s, &p) == 0) { | 
|  | *al = SSL_AD_INTERNAL_ERROR; | 
|  | return 0; | 
|  | } | 
|  | ret = early_select_server_ctx(s, arg, 0); | 
|  | SSL_set_max_proto_version(s, TLS1_1_VERSION); | 
|  | if (!ret) | 
|  | *al = SSL_AD_UNRECOGNIZED_NAME; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static unsigned char dummy_ocsp_resp_good_val = 0xff; | 
|  | static unsigned char dummy_ocsp_resp_bad_val = 0xfe; | 
|  |  | 
|  | static int server_ocsp_cb(SSL *s, void *arg) | 
|  | { | 
|  | unsigned char *resp; | 
|  |  | 
|  | resp = OPENSSL_malloc(1); | 
|  | if (resp == NULL) | 
|  | return SSL_TLSEXT_ERR_ALERT_FATAL; | 
|  | /* | 
|  | * For the purposes of testing we just send back a dummy OCSP response | 
|  | */ | 
|  | *resp = *(unsigned char *)arg; | 
|  | if (!SSL_set_tlsext_status_ocsp_resp(s, resp, 1)) | 
|  | return SSL_TLSEXT_ERR_ALERT_FATAL; | 
|  |  | 
|  | return SSL_TLSEXT_ERR_OK; | 
|  | } | 
|  |  | 
|  | static int client_ocsp_cb(SSL *s, void *arg) | 
|  | { | 
|  | const unsigned char *resp; | 
|  | int len; | 
|  |  | 
|  | len = SSL_get_tlsext_status_ocsp_resp(s, &resp); | 
|  | if (len != 1 || *resp != dummy_ocsp_resp_good_val) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int verify_reject_cb(X509_STORE_CTX *ctx, void *arg) { | 
|  | X509_STORE_CTX_set_error(ctx, X509_V_ERR_APPLICATION_VERIFICATION); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int verify_accept_cb(X509_STORE_CTX *ctx, void *arg) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int broken_session_ticket_cb(SSL *s, unsigned char *key_name, unsigned char *iv, | 
|  | EVP_CIPHER_CTX *ctx, HMAC_CTX *hctx, int enc) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int do_not_call_session_ticket_cb(SSL *s, unsigned char *key_name, | 
|  | unsigned char *iv, | 
|  | EVP_CIPHER_CTX *ctx, | 
|  | HMAC_CTX *hctx, int enc) | 
|  | { | 
|  | HANDSHAKE_EX_DATA *ex_data = | 
|  | (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx)); | 
|  | ex_data->session_ticket_do_not_call = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Parse the comma-separated list into TLS format. */ | 
|  | static int parse_protos(const char *protos, unsigned char **out, size_t *outlen) | 
|  | { | 
|  | size_t len, i, prefix; | 
|  |  | 
|  | len = strlen(protos); | 
|  |  | 
|  | /* Should never have reuse. */ | 
|  | if (!TEST_ptr_null(*out) | 
|  | /* Test values are small, so we omit length limit checks. */ | 
|  | || !TEST_ptr(*out = OPENSSL_malloc(len + 1))) | 
|  | return 0; | 
|  | *outlen = len + 1; | 
|  |  | 
|  | /* | 
|  | * foo => '3', 'f', 'o', 'o' | 
|  | * foo,bar => '3', 'f', 'o', 'o', '3', 'b', 'a', 'r' | 
|  | */ | 
|  | memcpy(*out + 1, protos, len); | 
|  |  | 
|  | prefix = 0; | 
|  | i = prefix + 1; | 
|  | while (i <= len) { | 
|  | if ((*out)[i] == ',') { | 
|  | if (!TEST_int_gt(i - 1, prefix)) | 
|  | goto err; | 
|  | (*out)[prefix] = i - 1 - prefix; | 
|  | prefix = i; | 
|  | } | 
|  | i++; | 
|  | } | 
|  | if (!TEST_int_gt(len, prefix)) | 
|  | goto err; | 
|  | (*out)[prefix] = len - prefix; | 
|  | return 1; | 
|  |  | 
|  | err: | 
|  | OPENSSL_free(*out); | 
|  | *out = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifndef OPENSSL_NO_NEXTPROTONEG | 
|  | /* | 
|  | * The client SHOULD select the first protocol advertised by the server that it | 
|  | * also supports.  In the event that the client doesn't support any of server's | 
|  | * protocols, or the server doesn't advertise any, it SHOULD select the first | 
|  | * protocol that it supports. | 
|  | */ | 
|  | static int client_npn_cb(SSL *s, unsigned char **out, unsigned char *outlen, | 
|  | const unsigned char *in, unsigned int inlen, | 
|  | void *arg) | 
|  | { | 
|  | CTX_DATA *ctx_data = (CTX_DATA*)(arg); | 
|  | int ret; | 
|  |  | 
|  | ret = SSL_select_next_proto(out, outlen, in, inlen, | 
|  | ctx_data->npn_protocols, | 
|  | ctx_data->npn_protocols_len); | 
|  | /* Accept both OPENSSL_NPN_NEGOTIATED and OPENSSL_NPN_NO_OVERLAP. */ | 
|  | return TEST_true(ret == OPENSSL_NPN_NEGOTIATED || ret == OPENSSL_NPN_NO_OVERLAP) | 
|  | ? SSL_TLSEXT_ERR_OK : SSL_TLSEXT_ERR_ALERT_FATAL; | 
|  | } | 
|  |  | 
|  | static int server_npn_cb(SSL *s, const unsigned char **data, | 
|  | unsigned int *len, void *arg) | 
|  | { | 
|  | CTX_DATA *ctx_data = (CTX_DATA*)(arg); | 
|  | *data = ctx_data->npn_protocols; | 
|  | *len = ctx_data->npn_protocols_len; | 
|  | return SSL_TLSEXT_ERR_OK; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The server SHOULD select the most highly preferred protocol that it supports | 
|  | * and that is also advertised by the client.  In the event that the server | 
|  | * supports no protocols that the client advertises, then the server SHALL | 
|  | * respond with a fatal "no_application_protocol" alert. | 
|  | */ | 
|  | static int server_alpn_cb(SSL *s, const unsigned char **out, | 
|  | unsigned char *outlen, const unsigned char *in, | 
|  | unsigned int inlen, void *arg) | 
|  | { | 
|  | CTX_DATA *ctx_data = (CTX_DATA*)(arg); | 
|  | int ret; | 
|  |  | 
|  | /* SSL_select_next_proto isn't const-correct... */ | 
|  | unsigned char *tmp_out; | 
|  |  | 
|  | /* | 
|  | * The result points either to |in| or to |ctx_data->alpn_protocols|. | 
|  | * The callback is allowed to point to |in| or to a long-lived buffer, | 
|  | * so we can return directly without storing a copy. | 
|  | */ | 
|  | ret = SSL_select_next_proto(&tmp_out, outlen, | 
|  | ctx_data->alpn_protocols, | 
|  | ctx_data->alpn_protocols_len, in, inlen); | 
|  |  | 
|  | *out = tmp_out; | 
|  | /* Unlike NPN, we don't tolerate a mismatch. */ | 
|  | return ret == OPENSSL_NPN_NEGOTIATED ? SSL_TLSEXT_ERR_OK | 
|  | : SSL_TLSEXT_ERR_ALERT_FATAL; | 
|  | } | 
|  |  | 
|  | #ifndef OPENSSL_NO_SRP | 
|  | static char *client_srp_cb(SSL *s, void *arg) | 
|  | { | 
|  | CTX_DATA *ctx_data = (CTX_DATA*)(arg); | 
|  | return OPENSSL_strdup(ctx_data->srp_password); | 
|  | } | 
|  |  | 
|  | static int server_srp_cb(SSL *s, int *ad, void *arg) | 
|  | { | 
|  | CTX_DATA *ctx_data = (CTX_DATA*)(arg); | 
|  | if (strcmp(ctx_data->srp_user, SSL_get_srp_username(s)) != 0) | 
|  | return SSL3_AL_FATAL; | 
|  | if (SSL_set_srp_server_param_pw(s, ctx_data->srp_user, | 
|  | ctx_data->srp_password, | 
|  | "2048" /* known group */) < 0) { | 
|  | *ad = SSL_AD_INTERNAL_ERROR; | 
|  | return SSL3_AL_FATAL; | 
|  | } | 
|  | return SSL_ERROR_NONE; | 
|  | } | 
|  | #endif  /* !OPENSSL_NO_SRP */ | 
|  |  | 
|  | /* | 
|  | * Configure callbacks and other properties that can't be set directly | 
|  | * in the server/client CONF. | 
|  | */ | 
|  | static int configure_handshake_ctx(SSL_CTX *server_ctx, SSL_CTX *server2_ctx, | 
|  | SSL_CTX *client_ctx, | 
|  | const SSL_TEST_CTX *test, | 
|  | const SSL_TEST_EXTRA_CONF *extra, | 
|  | CTX_DATA *server_ctx_data, | 
|  | CTX_DATA *server2_ctx_data, | 
|  | CTX_DATA *client_ctx_data) | 
|  | { | 
|  | unsigned char *ticket_keys; | 
|  | size_t ticket_key_len; | 
|  |  | 
|  | if (!TEST_int_eq(SSL_CTX_set_max_send_fragment(server_ctx, | 
|  | test->max_fragment_size), 1)) | 
|  | goto err; | 
|  | if (server2_ctx != NULL) { | 
|  | if (!TEST_int_eq(SSL_CTX_set_max_send_fragment(server2_ctx, | 
|  | test->max_fragment_size), | 
|  | 1)) | 
|  | goto err; | 
|  | } | 
|  | if (!TEST_int_eq(SSL_CTX_set_max_send_fragment(client_ctx, | 
|  | test->max_fragment_size), 1)) | 
|  | goto err; | 
|  |  | 
|  | switch (extra->client.verify_callback) { | 
|  | case SSL_TEST_VERIFY_ACCEPT_ALL: | 
|  | SSL_CTX_set_cert_verify_callback(client_ctx, &verify_accept_cb, NULL); | 
|  | break; | 
|  | case SSL_TEST_VERIFY_REJECT_ALL: | 
|  | SSL_CTX_set_cert_verify_callback(client_ctx, &verify_reject_cb, NULL); | 
|  | break; | 
|  | case SSL_TEST_VERIFY_NONE: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Link the two contexts for SNI purposes. | 
|  | * Also do early callbacks here, as setting both early and SNI is bad. | 
|  | */ | 
|  | switch (extra->server.servername_callback) { | 
|  | case SSL_TEST_SERVERNAME_IGNORE_MISMATCH: | 
|  | SSL_CTX_set_tlsext_servername_callback(server_ctx, servername_ignore_cb); | 
|  | SSL_CTX_set_tlsext_servername_arg(server_ctx, server2_ctx); | 
|  | break; | 
|  | case SSL_TEST_SERVERNAME_REJECT_MISMATCH: | 
|  | SSL_CTX_set_tlsext_servername_callback(server_ctx, servername_reject_cb); | 
|  | SSL_CTX_set_tlsext_servername_arg(server_ctx, server2_ctx); | 
|  | break; | 
|  | case SSL_TEST_SERVERNAME_CB_NONE: | 
|  | break; | 
|  | case SSL_TEST_SERVERNAME_EARLY_IGNORE_MISMATCH: | 
|  | SSL_CTX_set_early_cb(server_ctx, early_ignore_cb, server2_ctx); | 
|  | break; | 
|  | case SSL_TEST_SERVERNAME_EARLY_REJECT_MISMATCH: | 
|  | SSL_CTX_set_early_cb(server_ctx, early_reject_cb, server2_ctx); | 
|  | break; | 
|  | case SSL_TEST_SERVERNAME_EARLY_NO_V12: | 
|  | SSL_CTX_set_early_cb(server_ctx, early_nov12_cb, server2_ctx); | 
|  | } | 
|  |  | 
|  | if (extra->server.cert_status != SSL_TEST_CERT_STATUS_NONE) { | 
|  | SSL_CTX_set_tlsext_status_type(client_ctx, TLSEXT_STATUSTYPE_ocsp); | 
|  | SSL_CTX_set_tlsext_status_cb(client_ctx, client_ocsp_cb); | 
|  | SSL_CTX_set_tlsext_status_arg(client_ctx, NULL); | 
|  | SSL_CTX_set_tlsext_status_cb(server_ctx, server_ocsp_cb); | 
|  | SSL_CTX_set_tlsext_status_arg(server_ctx, | 
|  | ((extra->server.cert_status == SSL_TEST_CERT_STATUS_GOOD_RESPONSE) | 
|  | ? &dummy_ocsp_resp_good_val : &dummy_ocsp_resp_bad_val)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The initial_ctx/session_ctx always handles the encrypt/decrypt of the | 
|  | * session ticket. This ticket_key callback is assigned to the second | 
|  | * session (assigned via SNI), and should never be invoked | 
|  | */ | 
|  | if (server2_ctx != NULL) | 
|  | SSL_CTX_set_tlsext_ticket_key_cb(server2_ctx, | 
|  | do_not_call_session_ticket_cb); | 
|  |  | 
|  | if (extra->server.broken_session_ticket) { | 
|  | SSL_CTX_set_tlsext_ticket_key_cb(server_ctx, broken_session_ticket_cb); | 
|  | } | 
|  | #ifndef OPENSSL_NO_NEXTPROTONEG | 
|  | if (extra->server.npn_protocols != NULL) { | 
|  | if (!TEST_true(parse_protos(extra->server.npn_protocols, | 
|  | &server_ctx_data->npn_protocols, | 
|  | &server_ctx_data->npn_protocols_len))) | 
|  | goto err; | 
|  | SSL_CTX_set_npn_advertised_cb(server_ctx, server_npn_cb, | 
|  | server_ctx_data); | 
|  | } | 
|  | if (extra->server2.npn_protocols != NULL) { | 
|  | if (!TEST_true(parse_protos(extra->server2.npn_protocols, | 
|  | &server2_ctx_data->npn_protocols, | 
|  | &server2_ctx_data->npn_protocols_len)) | 
|  | || !TEST_ptr(server2_ctx)) | 
|  | goto err; | 
|  | SSL_CTX_set_npn_advertised_cb(server2_ctx, server_npn_cb, | 
|  | server2_ctx_data); | 
|  | } | 
|  | if (extra->client.npn_protocols != NULL) { | 
|  | if (!TEST_true(parse_protos(extra->client.npn_protocols, | 
|  | &client_ctx_data->npn_protocols, | 
|  | &client_ctx_data->npn_protocols_len))) | 
|  | goto err; | 
|  | SSL_CTX_set_next_proto_select_cb(client_ctx, client_npn_cb, | 
|  | client_ctx_data); | 
|  | } | 
|  | #endif | 
|  | if (extra->server.alpn_protocols != NULL) { | 
|  | if (!TEST_true(parse_protos(extra->server.alpn_protocols, | 
|  | &server_ctx_data->alpn_protocols, | 
|  | &server_ctx_data->alpn_protocols_len))) | 
|  | goto err; | 
|  | SSL_CTX_set_alpn_select_cb(server_ctx, server_alpn_cb, server_ctx_data); | 
|  | } | 
|  | if (extra->server2.alpn_protocols != NULL) { | 
|  | if (!TEST_ptr(server2_ctx) | 
|  | || !TEST_true(parse_protos(extra->server2.alpn_protocols, | 
|  | &server2_ctx_data->alpn_protocols, | 
|  | &server2_ctx_data->alpn_protocols_len | 
|  | ))) | 
|  | goto err; | 
|  | SSL_CTX_set_alpn_select_cb(server2_ctx, server_alpn_cb, | 
|  | server2_ctx_data); | 
|  | } | 
|  | if (extra->client.alpn_protocols != NULL) { | 
|  | unsigned char *alpn_protos = NULL; | 
|  | size_t alpn_protos_len; | 
|  | if (!TEST_true(parse_protos(extra->client.alpn_protocols, | 
|  | &alpn_protos, &alpn_protos_len)) | 
|  | /* Reversed return value convention... */ | 
|  | || !TEST_int_eq(SSL_CTX_set_alpn_protos(client_ctx, alpn_protos, | 
|  | alpn_protos_len), 0)) | 
|  | goto err; | 
|  | OPENSSL_free(alpn_protos); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use fixed session ticket keys so that we can decrypt a ticket created with | 
|  | * one CTX in another CTX. Don't address server2 for the moment. | 
|  | */ | 
|  | ticket_key_len = SSL_CTX_set_tlsext_ticket_keys(server_ctx, NULL, 0); | 
|  | if (!TEST_ptr(ticket_keys = OPENSSL_zalloc(ticket_key_len)) | 
|  | || !TEST_int_eq(SSL_CTX_set_tlsext_ticket_keys(server_ctx, | 
|  | ticket_keys, | 
|  | ticket_key_len), 1)) { | 
|  | OPENSSL_free(ticket_keys); | 
|  | goto err; | 
|  | } | 
|  | OPENSSL_free(ticket_keys); | 
|  |  | 
|  | /* The default log list includes EC keys, so CT can't work without EC. */ | 
|  | #if !defined(OPENSSL_NO_CT) && !defined(OPENSSL_NO_EC) | 
|  | if (!TEST_true(SSL_CTX_set_default_ctlog_list_file(client_ctx))) | 
|  | goto err; | 
|  | switch (extra->client.ct_validation) { | 
|  | case SSL_TEST_CT_VALIDATION_PERMISSIVE: | 
|  | if (!TEST_true(SSL_CTX_enable_ct(client_ctx, | 
|  | SSL_CT_VALIDATION_PERMISSIVE))) | 
|  | goto err; | 
|  | break; | 
|  | case SSL_TEST_CT_VALIDATION_STRICT: | 
|  | if (!TEST_true(SSL_CTX_enable_ct(client_ctx, SSL_CT_VALIDATION_STRICT))) | 
|  | goto err; | 
|  | break; | 
|  | case SSL_TEST_CT_VALIDATION_NONE: | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_SRP | 
|  | if (extra->server.srp_user != NULL) { | 
|  | SSL_CTX_set_srp_username_callback(server_ctx, server_srp_cb); | 
|  | server_ctx_data->srp_user = OPENSSL_strdup(extra->server.srp_user); | 
|  | server_ctx_data->srp_password = OPENSSL_strdup(extra->server.srp_password); | 
|  | SSL_CTX_set_srp_cb_arg(server_ctx, server_ctx_data); | 
|  | } | 
|  | if (extra->server2.srp_user != NULL) { | 
|  | if (!TEST_ptr(server2_ctx)) | 
|  | goto err; | 
|  | SSL_CTX_set_srp_username_callback(server2_ctx, server_srp_cb); | 
|  | server2_ctx_data->srp_user = OPENSSL_strdup(extra->server2.srp_user); | 
|  | server2_ctx_data->srp_password = OPENSSL_strdup(extra->server2.srp_password); | 
|  | SSL_CTX_set_srp_cb_arg(server2_ctx, server2_ctx_data); | 
|  | } | 
|  | if (extra->client.srp_user != NULL) { | 
|  | if (!TEST_true(SSL_CTX_set_srp_username(client_ctx, | 
|  | extra->client.srp_user))) | 
|  | goto err; | 
|  | SSL_CTX_set_srp_client_pwd_callback(client_ctx, client_srp_cb); | 
|  | client_ctx_data->srp_password = OPENSSL_strdup(extra->client.srp_password); | 
|  | SSL_CTX_set_srp_cb_arg(client_ctx, client_ctx_data); | 
|  | } | 
|  | #endif  /* !OPENSSL_NO_SRP */ | 
|  | return 1; | 
|  | err: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Configure per-SSL callbacks and other properties. */ | 
|  | static void configure_handshake_ssl(SSL *server, SSL *client, | 
|  | const SSL_TEST_EXTRA_CONF *extra) | 
|  | { | 
|  | if (extra->client.servername != SSL_TEST_SERVERNAME_NONE) | 
|  | SSL_set_tlsext_host_name(client, | 
|  | ssl_servername_name(extra->client.servername)); | 
|  | } | 
|  |  | 
|  | /* The status for each connection phase. */ | 
|  | typedef enum { | 
|  | PEER_SUCCESS, | 
|  | PEER_RETRY, | 
|  | PEER_ERROR, | 
|  | PEER_WAITING, | 
|  | PEER_TEST_FAILURE | 
|  | } peer_status_t; | 
|  |  | 
|  | /* An SSL object and associated read-write buffers. */ | 
|  | typedef struct peer_st { | 
|  | SSL *ssl; | 
|  | /* Buffer lengths are int to match the SSL read/write API. */ | 
|  | unsigned char *write_buf; | 
|  | int write_buf_len; | 
|  | unsigned char *read_buf; | 
|  | int read_buf_len; | 
|  | int bytes_to_write; | 
|  | int bytes_to_read; | 
|  | peer_status_t status; | 
|  | } PEER; | 
|  |  | 
|  | static int create_peer(PEER *peer, SSL_CTX *ctx) | 
|  | { | 
|  | static const int peer_buffer_size = 64 * 1024; | 
|  | SSL *ssl = NULL; | 
|  | unsigned char *read_buf = NULL, *write_buf = NULL; | 
|  |  | 
|  | if (!TEST_ptr(ssl = SSL_new(ctx)) | 
|  | || !TEST_ptr(write_buf = OPENSSL_zalloc(peer_buffer_size)) | 
|  | || !TEST_ptr(read_buf = OPENSSL_zalloc(peer_buffer_size))) | 
|  | goto err; | 
|  |  | 
|  | peer->ssl = ssl; | 
|  | peer->write_buf = write_buf; | 
|  | peer->read_buf = read_buf; | 
|  | peer->write_buf_len = peer->read_buf_len = peer_buffer_size; | 
|  | return 1; | 
|  | err: | 
|  | SSL_free(ssl); | 
|  | OPENSSL_free(write_buf); | 
|  | OPENSSL_free(read_buf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void peer_free_data(PEER *peer) | 
|  | { | 
|  | SSL_free(peer->ssl); | 
|  | OPENSSL_free(peer->write_buf); | 
|  | OPENSSL_free(peer->read_buf); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that we could do the handshake transparently under an SSL_write, | 
|  | * but separating the steps is more helpful for debugging test failures. | 
|  | */ | 
|  | static void do_handshake_step(PEER *peer) | 
|  | { | 
|  | if (!TEST_int_eq(peer->status, PEER_RETRY)) { | 
|  | peer->status = PEER_TEST_FAILURE; | 
|  | } else { | 
|  | int ret = SSL_do_handshake(peer->ssl); | 
|  |  | 
|  | if (ret == 1) { | 
|  | peer->status = PEER_SUCCESS; | 
|  | } else if (ret == 0) { | 
|  | peer->status = PEER_ERROR; | 
|  | } else { | 
|  | int error = SSL_get_error(peer->ssl, ret); | 
|  | /* Memory bios should never block with SSL_ERROR_WANT_WRITE. */ | 
|  | if (error != SSL_ERROR_WANT_READ) | 
|  | peer->status = PEER_ERROR; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /*- | 
|  | * Send/receive some application data. The read-write sequence is | 
|  | * Peer A: (R) W - first read will yield no data | 
|  | * Peer B:  R  W | 
|  | * ... | 
|  | * Peer A:  R  W | 
|  | * Peer B:  R  W | 
|  | * Peer A:  R | 
|  | */ | 
|  | static void do_app_data_step(PEER *peer) | 
|  | { | 
|  | int ret = 1, write_bytes; | 
|  |  | 
|  | if (!TEST_int_eq(peer->status, PEER_RETRY)) { | 
|  | peer->status = PEER_TEST_FAILURE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* We read everything available... */ | 
|  | while (ret > 0 && peer->bytes_to_read) { | 
|  | ret = SSL_read(peer->ssl, peer->read_buf, peer->read_buf_len); | 
|  | if (ret > 0) { | 
|  | if (!TEST_int_le(ret, peer->bytes_to_read)) { | 
|  | peer->status = PEER_TEST_FAILURE; | 
|  | return; | 
|  | } | 
|  | peer->bytes_to_read -= ret; | 
|  | } else if (ret == 0) { | 
|  | peer->status = PEER_ERROR; | 
|  | return; | 
|  | } else { | 
|  | int error = SSL_get_error(peer->ssl, ret); | 
|  | if (error != SSL_ERROR_WANT_READ) { | 
|  | peer->status = PEER_ERROR; | 
|  | return; | 
|  | } /* Else continue with write. */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* ... but we only write one write-buffer-full of data. */ | 
|  | write_bytes = peer->bytes_to_write < peer->write_buf_len ? peer->bytes_to_write : | 
|  | peer->write_buf_len; | 
|  | if (write_bytes) { | 
|  | ret = SSL_write(peer->ssl, peer->write_buf, write_bytes); | 
|  | if (ret > 0) { | 
|  | /* SSL_write will only succeed with a complete write. */ | 
|  | if (!TEST_int_eq(ret, write_bytes)) { | 
|  | peer->status = PEER_TEST_FAILURE; | 
|  | return; | 
|  | } | 
|  | peer->bytes_to_write -= ret; | 
|  | } else { | 
|  | /* | 
|  | * We should perhaps check for SSL_ERROR_WANT_READ/WRITE here | 
|  | * but this doesn't yet occur with current app data sizes. | 
|  | */ | 
|  | peer->status = PEER_ERROR; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We could simply finish when there was nothing to read, and we have | 
|  | * nothing left to write. But keeping track of the expected number of bytes | 
|  | * to read gives us somewhat better guarantees that all data sent is in fact | 
|  | * received. | 
|  | */ | 
|  | if (!peer->bytes_to_write && !peer->bytes_to_read) { | 
|  | peer->status = PEER_SUCCESS; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void do_reneg_setup_step(const SSL_TEST_CTX *test_ctx, PEER *peer) | 
|  | { | 
|  | int ret; | 
|  | char buf; | 
|  |  | 
|  | if (peer->status == PEER_SUCCESS) { | 
|  | /* | 
|  | * We are a client that succeeded this step previously, but the server | 
|  | * wanted to retry. Probably there is a no_renegotiation warning alert | 
|  | * waiting for us. Attempt to continue the handshake. | 
|  | */ | 
|  | peer->status = PEER_RETRY; | 
|  | do_handshake_step(peer); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!TEST_int_eq(peer->status, PEER_RETRY) | 
|  | || !TEST_true(test_ctx->handshake_mode | 
|  | == SSL_TEST_HANDSHAKE_RENEG_SERVER | 
|  | || test_ctx->handshake_mode | 
|  | == SSL_TEST_HANDSHAKE_RENEG_CLIENT | 
|  | || test_ctx->handshake_mode | 
|  | == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER | 
|  | || test_ctx->handshake_mode | 
|  | == SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT)) { | 
|  | peer->status = PEER_TEST_FAILURE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Reset the count of the amount of app data we need to read/write */ | 
|  | peer->bytes_to_write = peer->bytes_to_read = test_ctx->app_data_size; | 
|  |  | 
|  | /* Check if we are the peer that is going to initiate */ | 
|  | if ((test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_SERVER | 
|  | && SSL_is_server(peer->ssl)) | 
|  | || (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_CLIENT | 
|  | && !SSL_is_server(peer->ssl))) { | 
|  | /* | 
|  | * If we already asked for a renegotiation then fall through to the | 
|  | * SSL_read() below. | 
|  | */ | 
|  | if (!SSL_renegotiate_pending(peer->ssl)) { | 
|  | /* | 
|  | * If we are the client we will always attempt to resume the | 
|  | * session. The server may or may not resume dependant on the | 
|  | * setting of SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION | 
|  | */ | 
|  | if (SSL_is_server(peer->ssl)) { | 
|  | ret = SSL_renegotiate(peer->ssl); | 
|  | } else { | 
|  | if (test_ctx->extra.client.reneg_ciphers != NULL) { | 
|  | if (!SSL_set_cipher_list(peer->ssl, | 
|  | test_ctx->extra.client.reneg_ciphers)) { | 
|  | peer->status = PEER_ERROR; | 
|  | return; | 
|  | } | 
|  | ret = SSL_renegotiate(peer->ssl); | 
|  | } else { | 
|  | ret = SSL_renegotiate_abbreviated(peer->ssl); | 
|  | } | 
|  | } | 
|  | if (!ret) { | 
|  | peer->status = PEER_ERROR; | 
|  | return; | 
|  | } | 
|  | do_handshake_step(peer); | 
|  | /* | 
|  | * If status is PEER_RETRY it means we're waiting on the peer to | 
|  | * continue the handshake. As far as setting up the renegotiation is | 
|  | * concerned that is a success. The next step will continue the | 
|  | * handshake to its conclusion. | 
|  | * | 
|  | * If status is PEER_SUCCESS then we are the server and we have | 
|  | * successfully sent the HelloRequest. We need to continue to wait | 
|  | * until the handshake arrives from the client. | 
|  | */ | 
|  | if (peer->status == PEER_RETRY) | 
|  | peer->status = PEER_SUCCESS; | 
|  | else if (peer->status == PEER_SUCCESS) | 
|  | peer->status = PEER_RETRY; | 
|  | return; | 
|  | } | 
|  | } else if (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER | 
|  | || test_ctx->handshake_mode | 
|  | == SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT) { | 
|  | if (SSL_is_server(peer->ssl) | 
|  | != (test_ctx->handshake_mode | 
|  | == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER)) { | 
|  | peer->status = PEER_SUCCESS; | 
|  | return; | 
|  | } | 
|  |  | 
|  | ret = SSL_key_update(peer->ssl, test_ctx->key_update_type); | 
|  | if (!ret) { | 
|  | peer->status = PEER_ERROR; | 
|  | return; | 
|  | } | 
|  | do_handshake_step(peer); | 
|  | /* | 
|  | * This is a one step handshake. We shouldn't get anything other than | 
|  | * PEER_SUCCESS | 
|  | */ | 
|  | if (peer->status != PEER_SUCCESS) | 
|  | peer->status = PEER_ERROR; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The SSL object is still expecting app data, even though it's going to | 
|  | * get a handshake message. We try to read, and it should fail - after which | 
|  | * we should be in a handshake | 
|  | */ | 
|  | ret = SSL_read(peer->ssl, &buf, sizeof(buf)); | 
|  | if (ret >= 0) { | 
|  | /* | 
|  | * We're not actually expecting data - we're expecting a reneg to | 
|  | * start | 
|  | */ | 
|  | peer->status = PEER_ERROR; | 
|  | return; | 
|  | } else { | 
|  | int error = SSL_get_error(peer->ssl, ret); | 
|  | if (error != SSL_ERROR_WANT_READ) { | 
|  | peer->status = PEER_ERROR; | 
|  | return; | 
|  | } | 
|  | /* If we're not in init yet then we're not done with setup yet */ | 
|  | if (!SSL_in_init(peer->ssl)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | peer->status = PEER_SUCCESS; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * RFC 5246 says: | 
|  | * | 
|  | * Note that as of TLS 1.1, | 
|  | *     failure to properly close a connection no longer requires that a | 
|  | *     session not be resumed.  This is a change from TLS 1.0 to conform | 
|  | *     with widespread implementation practice. | 
|  | * | 
|  | * However, | 
|  | * (a) OpenSSL requires that a connection be shutdown for all protocol versions. | 
|  | * (b) We test lower versions, too. | 
|  | * So we just implement shutdown. We do a full bidirectional shutdown so that we | 
|  | * can compare sent and received close_notify alerts and get some test coverage | 
|  | * for SSL_shutdown as a bonus. | 
|  | */ | 
|  | static void do_shutdown_step(PEER *peer) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!TEST_int_eq(peer->status, PEER_RETRY)) { | 
|  | peer->status = PEER_TEST_FAILURE; | 
|  | return; | 
|  | } | 
|  | ret = SSL_shutdown(peer->ssl); | 
|  |  | 
|  | if (ret == 1) { | 
|  | peer->status = PEER_SUCCESS; | 
|  | } else if (ret < 0) { /* On 0, we retry. */ | 
|  | int error = SSL_get_error(peer->ssl, ret); | 
|  |  | 
|  | if (error != SSL_ERROR_WANT_READ && error != SSL_ERROR_WANT_WRITE) | 
|  | peer->status = PEER_ERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef enum { | 
|  | HANDSHAKE, | 
|  | RENEG_APPLICATION_DATA, | 
|  | RENEG_SETUP, | 
|  | RENEG_HANDSHAKE, | 
|  | APPLICATION_DATA, | 
|  | SHUTDOWN, | 
|  | CONNECTION_DONE | 
|  | } connect_phase_t; | 
|  |  | 
|  | static connect_phase_t next_phase(const SSL_TEST_CTX *test_ctx, | 
|  | connect_phase_t phase) | 
|  | { | 
|  | switch (phase) { | 
|  | case HANDSHAKE: | 
|  | if (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_SERVER | 
|  | || test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_CLIENT | 
|  | || test_ctx->handshake_mode | 
|  | == SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT | 
|  | || test_ctx->handshake_mode | 
|  | == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER) | 
|  | return RENEG_APPLICATION_DATA; | 
|  | return APPLICATION_DATA; | 
|  | case RENEG_APPLICATION_DATA: | 
|  | return RENEG_SETUP; | 
|  | case RENEG_SETUP: | 
|  | if (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER | 
|  | || test_ctx->handshake_mode | 
|  | == SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT) | 
|  | return APPLICATION_DATA; | 
|  | return RENEG_HANDSHAKE; | 
|  | case RENEG_HANDSHAKE: | 
|  | return APPLICATION_DATA; | 
|  | case APPLICATION_DATA: | 
|  | return SHUTDOWN; | 
|  | case SHUTDOWN: | 
|  | return CONNECTION_DONE; | 
|  | case CONNECTION_DONE: | 
|  | TEST_error("Trying to progress after connection done"); | 
|  | break; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static void do_connect_step(const SSL_TEST_CTX *test_ctx, PEER *peer, | 
|  | connect_phase_t phase) | 
|  | { | 
|  | switch (phase) { | 
|  | case HANDSHAKE: | 
|  | do_handshake_step(peer); | 
|  | break; | 
|  | case RENEG_APPLICATION_DATA: | 
|  | do_app_data_step(peer); | 
|  | break; | 
|  | case RENEG_SETUP: | 
|  | do_reneg_setup_step(test_ctx, peer); | 
|  | break; | 
|  | case RENEG_HANDSHAKE: | 
|  | do_handshake_step(peer); | 
|  | break; | 
|  | case APPLICATION_DATA: | 
|  | do_app_data_step(peer); | 
|  | break; | 
|  | case SHUTDOWN: | 
|  | do_shutdown_step(peer); | 
|  | break; | 
|  | case CONNECTION_DONE: | 
|  | TEST_error("Action after connection done"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef enum { | 
|  | /* Both parties succeeded. */ | 
|  | HANDSHAKE_SUCCESS, | 
|  | /* Client errored. */ | 
|  | CLIENT_ERROR, | 
|  | /* Server errored. */ | 
|  | SERVER_ERROR, | 
|  | /* Peers are in inconsistent state. */ | 
|  | INTERNAL_ERROR, | 
|  | /* One or both peers not done. */ | 
|  | HANDSHAKE_RETRY | 
|  | } handshake_status_t; | 
|  |  | 
|  | /* | 
|  | * Determine the handshake outcome. | 
|  | * last_status: the status of the peer to have acted last. | 
|  | * previous_status: the status of the peer that didn't act last. | 
|  | * client_spoke_last: 1 if the client went last. | 
|  | */ | 
|  | static handshake_status_t handshake_status(peer_status_t last_status, | 
|  | peer_status_t previous_status, | 
|  | int client_spoke_last) | 
|  | { | 
|  | switch (last_status) { | 
|  | case PEER_TEST_FAILURE: | 
|  | return INTERNAL_ERROR; | 
|  |  | 
|  | case PEER_WAITING: | 
|  | /* Shouldn't ever happen */ | 
|  | return INTERNAL_ERROR; | 
|  |  | 
|  | case PEER_SUCCESS: | 
|  | switch (previous_status) { | 
|  | case PEER_TEST_FAILURE: | 
|  | return INTERNAL_ERROR; | 
|  | case PEER_SUCCESS: | 
|  | /* Both succeeded. */ | 
|  | return HANDSHAKE_SUCCESS; | 
|  | case PEER_WAITING: | 
|  | case PEER_RETRY: | 
|  | /* Let the first peer finish. */ | 
|  | return HANDSHAKE_RETRY; | 
|  | case PEER_ERROR: | 
|  | /* | 
|  | * Second peer succeeded despite the fact that the first peer | 
|  | * already errored. This shouldn't happen. | 
|  | */ | 
|  | return INTERNAL_ERROR; | 
|  | } | 
|  |  | 
|  | case PEER_RETRY: | 
|  | return HANDSHAKE_RETRY; | 
|  |  | 
|  | case PEER_ERROR: | 
|  | switch (previous_status) { | 
|  | case PEER_TEST_FAILURE: | 
|  | return INTERNAL_ERROR; | 
|  | case PEER_WAITING: | 
|  | /* The client failed immediately before sending the ClientHello */ | 
|  | return client_spoke_last ? CLIENT_ERROR : INTERNAL_ERROR; | 
|  | case PEER_SUCCESS: | 
|  | /* | 
|  | * First peer succeeded but second peer errored. | 
|  | * TODO(emilia): we should be able to continue here (with some | 
|  | * application data?) to ensure the first peer receives the | 
|  | * alert / close_notify. | 
|  | * (No tests currently exercise this branch.) | 
|  | */ | 
|  | return client_spoke_last ? CLIENT_ERROR : SERVER_ERROR; | 
|  | case PEER_RETRY: | 
|  | /* We errored; let the peer finish. */ | 
|  | return HANDSHAKE_RETRY; | 
|  | case PEER_ERROR: | 
|  | /* Both peers errored. Return the one that errored first. */ | 
|  | return client_spoke_last ? SERVER_ERROR : CLIENT_ERROR; | 
|  | } | 
|  | } | 
|  | /* Control should never reach here. */ | 
|  | return INTERNAL_ERROR; | 
|  | } | 
|  |  | 
|  | /* Convert unsigned char buf's that shouldn't contain any NUL-bytes to char. */ | 
|  | static char *dup_str(const unsigned char *in, size_t len) | 
|  | { | 
|  | char *ret = NULL; | 
|  |  | 
|  | if (len == 0) | 
|  | return NULL; | 
|  |  | 
|  | /* Assert that the string does not contain NUL-bytes. */ | 
|  | if (TEST_size_t_eq(OPENSSL_strnlen((const char*)(in), len), len)) | 
|  | TEST_ptr(ret = OPENSSL_strndup((const char*)(in), len)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int pkey_type(EVP_PKEY *pkey) | 
|  | { | 
|  | int nid = EVP_PKEY_id(pkey); | 
|  |  | 
|  | #ifndef OPENSSL_NO_EC | 
|  | if (nid == EVP_PKEY_EC) { | 
|  | const EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey); | 
|  | return EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); | 
|  | } | 
|  | #endif | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | static int peer_pkey_type(SSL *s) | 
|  | { | 
|  | X509 *x = SSL_get_peer_certificate(s); | 
|  |  | 
|  | if (x != NULL) { | 
|  | int nid = pkey_type(X509_get0_pubkey(x)); | 
|  |  | 
|  | X509_free(x); | 
|  | return nid; | 
|  | } | 
|  | return NID_undef; | 
|  | } | 
|  |  | 
|  | #if !defined(OPENSSL_NO_SCTP) && !defined(OPENSSL_NO_SOCK) | 
|  | static int set_sock_as_sctp(int sock) | 
|  | { | 
|  | /* | 
|  | * For SCTP we have to set various options on the socket prior to | 
|  | * connecting. This is done automatically by BIO_new_dgram_sctp(). | 
|  | * We don't actually need the created BIO though so we free it again | 
|  | * immediately. | 
|  | */ | 
|  | BIO *tmpbio = BIO_new_dgram_sctp(sock, BIO_NOCLOSE); | 
|  |  | 
|  | if (tmpbio == NULL) | 
|  | return 0; | 
|  | BIO_free(tmpbio); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int create_sctp_socks(int *ssock, int *csock) | 
|  | { | 
|  | BIO_ADDRINFO *res = NULL; | 
|  | const BIO_ADDRINFO *ai = NULL; | 
|  | int lsock = INVALID_SOCKET, asock = INVALID_SOCKET; | 
|  | int consock = INVALID_SOCKET; | 
|  | int ret = 0; | 
|  | int family = 0; | 
|  |  | 
|  | if (BIO_sock_init() != 1) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Port is 4463. It could be anything. It will fail if it's already being | 
|  | * used for some other SCTP service. It seems unlikely though so we don't | 
|  | * worry about it here. | 
|  | */ | 
|  | if (!BIO_lookup_ex(NULL, "4463", BIO_LOOKUP_SERVER, family, SOCK_STREAM, | 
|  | IPPROTO_SCTP, &res)) | 
|  | return 0; | 
|  |  | 
|  | for (ai = res; ai != NULL; ai = BIO_ADDRINFO_next(ai)) { | 
|  | family = BIO_ADDRINFO_family(ai); | 
|  | lsock = BIO_socket(family, SOCK_STREAM, IPPROTO_SCTP, 0); | 
|  | if (lsock == INVALID_SOCKET) { | 
|  | /* Maybe the kernel doesn't support the socket family, even if | 
|  | * BIO_lookup() added it in the returned result... | 
|  | */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!set_sock_as_sctp(lsock) | 
|  | || !BIO_listen(lsock, BIO_ADDRINFO_address(ai), | 
|  | BIO_SOCK_REUSEADDR)) { | 
|  | BIO_closesocket(lsock); | 
|  | lsock = INVALID_SOCKET; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Success, don't try any more addresses */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (lsock == INVALID_SOCKET) | 
|  | goto err; | 
|  |  | 
|  | BIO_ADDRINFO_free(res); | 
|  | res = NULL; | 
|  |  | 
|  | if (!BIO_lookup_ex(NULL, "4463", BIO_LOOKUP_CLIENT, family, SOCK_STREAM, | 
|  | IPPROTO_SCTP, &res)) | 
|  | goto err; | 
|  |  | 
|  | consock = BIO_socket(family, SOCK_STREAM, IPPROTO_SCTP, 0); | 
|  | if (consock == INVALID_SOCKET) | 
|  | goto err; | 
|  |  | 
|  | if (!set_sock_as_sctp(consock) | 
|  | || !BIO_connect(consock, BIO_ADDRINFO_address(res), 0) | 
|  | || !BIO_socket_nbio(consock, 1)) | 
|  | goto err; | 
|  |  | 
|  | asock = BIO_accept_ex(lsock, NULL, BIO_SOCK_NONBLOCK); | 
|  | if (asock == INVALID_SOCKET) | 
|  | goto err; | 
|  |  | 
|  | *csock = consock; | 
|  | *ssock = asock; | 
|  | consock = asock = INVALID_SOCKET; | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BIO_ADDRINFO_free(res); | 
|  | if (consock != INVALID_SOCKET) | 
|  | BIO_closesocket(consock); | 
|  | if (lsock != INVALID_SOCKET) | 
|  | BIO_closesocket(lsock); | 
|  | if (asock != INVALID_SOCKET) | 
|  | BIO_closesocket(asock); | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Note that |extra| points to the correct client/server configuration | 
|  | * within |test_ctx|. When configuring the handshake, general mode settings | 
|  | * are taken from |test_ctx|, and client/server-specific settings should be | 
|  | * taken from |extra|. | 
|  | * | 
|  | * The configuration code should never reach into |test_ctx->extra| or | 
|  | * |test_ctx->resume_extra| directly. | 
|  | * | 
|  | * (We could refactor test mode settings into a substructure. This would result | 
|  | * in cleaner argument passing but would complicate the test configuration | 
|  | * parsing.) | 
|  | */ | 
|  | static HANDSHAKE_RESULT *do_handshake_internal( | 
|  | SSL_CTX *server_ctx, SSL_CTX *server2_ctx, SSL_CTX *client_ctx, | 
|  | const SSL_TEST_CTX *test_ctx, const SSL_TEST_EXTRA_CONF *extra, | 
|  | SSL_SESSION *session_in, SSL_SESSION **session_out) | 
|  | { | 
|  | PEER server, client; | 
|  | BIO *client_to_server = NULL, *server_to_client = NULL; | 
|  | HANDSHAKE_EX_DATA server_ex_data, client_ex_data; | 
|  | CTX_DATA client_ctx_data, server_ctx_data, server2_ctx_data; | 
|  | HANDSHAKE_RESULT *ret = HANDSHAKE_RESULT_new(); | 
|  | int client_turn = 1, client_turn_count = 0; | 
|  | connect_phase_t phase = HANDSHAKE; | 
|  | handshake_status_t status = HANDSHAKE_RETRY; | 
|  | const unsigned char* tick = NULL; | 
|  | size_t tick_len = 0; | 
|  | SSL_SESSION* sess = NULL; | 
|  | const unsigned char *proto = NULL; | 
|  | /* API dictates unsigned int rather than size_t. */ | 
|  | unsigned int proto_len = 0; | 
|  | EVP_PKEY *tmp_key; | 
|  | const STACK_OF(X509_NAME) *names; | 
|  | time_t start; | 
|  |  | 
|  | if (ret == NULL) | 
|  | return NULL; | 
|  |  | 
|  | memset(&server_ctx_data, 0, sizeof(server_ctx_data)); | 
|  | memset(&server2_ctx_data, 0, sizeof(server2_ctx_data)); | 
|  | memset(&client_ctx_data, 0, sizeof(client_ctx_data)); | 
|  | memset(&server, 0, sizeof(server)); | 
|  | memset(&client, 0, sizeof(client)); | 
|  | memset(&server_ex_data, 0, sizeof(server_ex_data)); | 
|  | memset(&client_ex_data, 0, sizeof(client_ex_data)); | 
|  |  | 
|  | if (!configure_handshake_ctx(server_ctx, server2_ctx, client_ctx, | 
|  | test_ctx, extra, &server_ctx_data, | 
|  | &server2_ctx_data, &client_ctx_data)) { | 
|  | TEST_note("configure_handshake_ctx"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Setup SSL and buffers; additional configuration happens below. */ | 
|  | if (!create_peer(&server, server_ctx)) { | 
|  | TEST_note("creating server context"); | 
|  | goto err; | 
|  | } | 
|  | if (!create_peer(&client, client_ctx)) { | 
|  | TEST_note("creating client context"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | server.bytes_to_write = client.bytes_to_read = test_ctx->app_data_size; | 
|  | client.bytes_to_write = server.bytes_to_read = test_ctx->app_data_size; | 
|  |  | 
|  | configure_handshake_ssl(server.ssl, client.ssl, extra); | 
|  | if (session_in != NULL) { | 
|  | /* In case we're testing resumption without tickets. */ | 
|  | if (!TEST_true(SSL_CTX_add_session(server_ctx, session_in)) | 
|  | || !TEST_true(SSL_set_session(client.ssl, session_in))) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret->result = SSL_TEST_INTERNAL_ERROR; | 
|  |  | 
|  | if (test_ctx->use_sctp) { | 
|  | #if !defined(OPENSSL_NO_SCTP) && !defined(OPENSSL_NO_SOCK) | 
|  | int csock, ssock; | 
|  |  | 
|  | if (create_sctp_socks(&ssock, &csock)) { | 
|  | client_to_server = BIO_new_dgram_sctp(csock, BIO_CLOSE); | 
|  | server_to_client = BIO_new_dgram_sctp(ssock, BIO_CLOSE); | 
|  | } | 
|  | #endif | 
|  | } else { | 
|  | client_to_server = BIO_new(BIO_s_mem()); | 
|  | server_to_client = BIO_new(BIO_s_mem()); | 
|  | } | 
|  |  | 
|  | if (!TEST_ptr(client_to_server) | 
|  | || !TEST_ptr(server_to_client)) | 
|  | goto err; | 
|  |  | 
|  | /* Non-blocking bio. */ | 
|  | BIO_set_nbio(client_to_server, 1); | 
|  | BIO_set_nbio(server_to_client, 1); | 
|  |  | 
|  | SSL_set_connect_state(client.ssl); | 
|  | SSL_set_accept_state(server.ssl); | 
|  |  | 
|  | /* The bios are now owned by the SSL object. */ | 
|  | if (test_ctx->use_sctp) { | 
|  | SSL_set_bio(client.ssl, client_to_server, client_to_server); | 
|  | SSL_set_bio(server.ssl, server_to_client, server_to_client); | 
|  | } else { | 
|  | SSL_set_bio(client.ssl, server_to_client, client_to_server); | 
|  | if (!TEST_int_gt(BIO_up_ref(server_to_client), 0) | 
|  | || !TEST_int_gt(BIO_up_ref(client_to_server), 0)) | 
|  | goto err; | 
|  | SSL_set_bio(server.ssl, client_to_server, server_to_client); | 
|  | } | 
|  |  | 
|  | ex_data_idx = SSL_get_ex_new_index(0, "ex data", NULL, NULL, NULL); | 
|  | if (!TEST_int_ge(ex_data_idx, 0) | 
|  | || !TEST_int_eq(SSL_set_ex_data(server.ssl, ex_data_idx, &server_ex_data), 1) | 
|  | || !TEST_int_eq(SSL_set_ex_data(client.ssl, ex_data_idx, &client_ex_data), 1)) | 
|  | goto err; | 
|  |  | 
|  | SSL_set_info_callback(server.ssl, &info_cb); | 
|  | SSL_set_info_callback(client.ssl, &info_cb); | 
|  |  | 
|  | client.status = PEER_RETRY; | 
|  | server.status = PEER_WAITING; | 
|  |  | 
|  | start = time(NULL); | 
|  |  | 
|  | /* | 
|  | * Half-duplex handshake loop. | 
|  | * Client and server speak to each other synchronously in the same process. | 
|  | * We use non-blocking BIOs, so whenever one peer blocks for read, it | 
|  | * returns PEER_RETRY to indicate that it's the other peer's turn to write. | 
|  | * The handshake succeeds once both peers have succeeded. If one peer | 
|  | * errors out, we also let the other peer retry (and presumably fail). | 
|  | */ | 
|  | for(;;) { | 
|  | if (client_turn) { | 
|  | do_connect_step(test_ctx, &client, phase); | 
|  | status = handshake_status(client.status, server.status, | 
|  | 1 /* client went last */); | 
|  | if (server.status == PEER_WAITING) | 
|  | server.status = PEER_RETRY; | 
|  | } else { | 
|  | do_connect_step(test_ctx, &server, phase); | 
|  | status = handshake_status(server.status, client.status, | 
|  | 0 /* server went last */); | 
|  | } | 
|  |  | 
|  | switch (status) { | 
|  | case HANDSHAKE_SUCCESS: | 
|  | client_turn_count = 0; | 
|  | phase = next_phase(test_ctx, phase); | 
|  | if (phase == CONNECTION_DONE) { | 
|  | ret->result = SSL_TEST_SUCCESS; | 
|  | goto err; | 
|  | } else { | 
|  | client.status = server.status = PEER_RETRY; | 
|  | /* | 
|  | * For now, client starts each phase. Since each phase is | 
|  | * started separately, we can later control this more | 
|  | * precisely, for example, to test client-initiated and | 
|  | * server-initiated shutdown. | 
|  | */ | 
|  | client_turn = 1; | 
|  | break; | 
|  | } | 
|  | case CLIENT_ERROR: | 
|  | ret->result = SSL_TEST_CLIENT_FAIL; | 
|  | goto err; | 
|  | case SERVER_ERROR: | 
|  | ret->result = SSL_TEST_SERVER_FAIL; | 
|  | goto err; | 
|  | case INTERNAL_ERROR: | 
|  | ret->result = SSL_TEST_INTERNAL_ERROR; | 
|  | goto err; | 
|  | case HANDSHAKE_RETRY: | 
|  | if (test_ctx->use_sctp) { | 
|  | if (time(NULL) - start > 3) { | 
|  | /* | 
|  | * We've waited for too long. Give up. | 
|  | */ | 
|  | ret->result = SSL_TEST_INTERNAL_ERROR; | 
|  | goto err; | 
|  | } | 
|  | /* | 
|  | * With "real" sockets we only swap to processing the peer | 
|  | * if they are expecting to retry. Otherwise we just retry the | 
|  | * same endpoint again. | 
|  | */ | 
|  | if ((client_turn && server.status == PEER_RETRY) | 
|  | || (!client_turn && client.status == PEER_RETRY)) | 
|  | client_turn ^= 1; | 
|  | } else { | 
|  | if (client_turn_count++ >= 2000) { | 
|  | /* | 
|  | * At this point, there's been so many PEER_RETRY in a row | 
|  | * that it's likely both sides are stuck waiting for a read. | 
|  | * It's time to give up. | 
|  | */ | 
|  | ret->result = SSL_TEST_INTERNAL_ERROR; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* Continue. */ | 
|  | client_turn ^= 1; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | err: | 
|  | ret->server_alert_sent = server_ex_data.alert_sent; | 
|  | ret->server_num_fatal_alerts_sent = server_ex_data.num_fatal_alerts_sent; | 
|  | ret->server_alert_received = client_ex_data.alert_received; | 
|  | ret->client_alert_sent = client_ex_data.alert_sent; | 
|  | ret->client_num_fatal_alerts_sent = client_ex_data.num_fatal_alerts_sent; | 
|  | ret->client_alert_received = server_ex_data.alert_received; | 
|  | ret->server_protocol = SSL_version(server.ssl); | 
|  | ret->client_protocol = SSL_version(client.ssl); | 
|  | ret->servername = server_ex_data.servername; | 
|  | if ((sess = SSL_get0_session(client.ssl)) != NULL) | 
|  | SSL_SESSION_get0_ticket(sess, &tick, &tick_len); | 
|  | if (tick == NULL || tick_len == 0) | 
|  | ret->session_ticket = SSL_TEST_SESSION_TICKET_NO; | 
|  | else | 
|  | ret->session_ticket = SSL_TEST_SESSION_TICKET_YES; | 
|  | ret->compression = (SSL_get_current_compression(client.ssl) == NULL) | 
|  | ? SSL_TEST_COMPRESSION_NO | 
|  | : SSL_TEST_COMPRESSION_YES; | 
|  | ret->session_ticket_do_not_call = server_ex_data.session_ticket_do_not_call; | 
|  |  | 
|  | #ifndef OPENSSL_NO_NEXTPROTONEG | 
|  | SSL_get0_next_proto_negotiated(client.ssl, &proto, &proto_len); | 
|  | ret->client_npn_negotiated = dup_str(proto, proto_len); | 
|  |  | 
|  | SSL_get0_next_proto_negotiated(server.ssl, &proto, &proto_len); | 
|  | ret->server_npn_negotiated = dup_str(proto, proto_len); | 
|  | #endif | 
|  |  | 
|  | SSL_get0_alpn_selected(client.ssl, &proto, &proto_len); | 
|  | ret->client_alpn_negotiated = dup_str(proto, proto_len); | 
|  |  | 
|  | SSL_get0_alpn_selected(server.ssl, &proto, &proto_len); | 
|  | ret->server_alpn_negotiated = dup_str(proto, proto_len); | 
|  |  | 
|  | ret->client_resumed = SSL_session_reused(client.ssl); | 
|  | ret->server_resumed = SSL_session_reused(server.ssl); | 
|  |  | 
|  | if (session_out != NULL) | 
|  | *session_out = SSL_get1_session(client.ssl); | 
|  |  | 
|  | if (SSL_get_server_tmp_key(client.ssl, &tmp_key)) { | 
|  | ret->tmp_key_type = pkey_type(tmp_key); | 
|  | EVP_PKEY_free(tmp_key); | 
|  | } | 
|  |  | 
|  | SSL_get_peer_signature_nid(client.ssl, &ret->server_sign_hash); | 
|  | SSL_get_peer_signature_nid(server.ssl, &ret->client_sign_hash); | 
|  |  | 
|  | SSL_get_peer_signature_type_nid(client.ssl, &ret->server_sign_type); | 
|  | SSL_get_peer_signature_type_nid(server.ssl, &ret->client_sign_type); | 
|  |  | 
|  | names = SSL_get0_peer_CA_list(client.ssl); | 
|  | if (names == NULL) | 
|  | ret->client_ca_names = NULL; | 
|  | else | 
|  | ret->client_ca_names = SSL_dup_CA_list(names); | 
|  |  | 
|  | names = SSL_get0_peer_CA_list(server.ssl); | 
|  | if (names == NULL) | 
|  | ret->server_ca_names = NULL; | 
|  | else | 
|  | ret->server_ca_names = SSL_dup_CA_list(names); | 
|  |  | 
|  | ret->server_cert_type = peer_pkey_type(client.ssl); | 
|  | ret->client_cert_type = peer_pkey_type(server.ssl); | 
|  |  | 
|  | ctx_data_free_data(&server_ctx_data); | 
|  | ctx_data_free_data(&server2_ctx_data); | 
|  | ctx_data_free_data(&client_ctx_data); | 
|  |  | 
|  | peer_free_data(&server); | 
|  | peer_free_data(&client); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | HANDSHAKE_RESULT *do_handshake(SSL_CTX *server_ctx, SSL_CTX *server2_ctx, | 
|  | SSL_CTX *client_ctx, SSL_CTX *resume_server_ctx, | 
|  | SSL_CTX *resume_client_ctx, | 
|  | const SSL_TEST_CTX *test_ctx) | 
|  | { | 
|  | HANDSHAKE_RESULT *result; | 
|  | SSL_SESSION *session = NULL; | 
|  |  | 
|  | result = do_handshake_internal(server_ctx, server2_ctx, client_ctx, | 
|  | test_ctx, &test_ctx->extra, | 
|  | NULL, &session); | 
|  | if (result == NULL | 
|  | || test_ctx->handshake_mode != SSL_TEST_HANDSHAKE_RESUME | 
|  | || result->result == SSL_TEST_INTERNAL_ERROR) | 
|  | goto end; | 
|  |  | 
|  | if (result->result != SSL_TEST_SUCCESS) { | 
|  | result->result = SSL_TEST_FIRST_HANDSHAKE_FAILED; | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | HANDSHAKE_RESULT_free(result); | 
|  | /* We don't support SNI on second handshake yet, so server2_ctx is NULL. */ | 
|  | result = do_handshake_internal(resume_server_ctx, NULL, resume_client_ctx, | 
|  | test_ctx, &test_ctx->resume_extra, | 
|  | session, NULL); | 
|  | end: | 
|  | SSL_SESSION_free(session); | 
|  | return result; | 
|  | } |