| /* |
| * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| /* |
| * RSA low level APIs are deprecated for public use, but still ok for |
| * internal use. |
| */ |
| #include "internal/deprecated.h" |
| |
| #include "internal/constant_time.h" |
| |
| #include <stdio.h> |
| #include <openssl/bn.h> |
| #include <openssl/rsa.h> |
| #include <openssl/rand.h> |
| /* Just for the SSL_MAX_MASTER_KEY_LENGTH value */ |
| #include <openssl/prov_ssl.h> |
| #include "internal/cryptlib.h" |
| #include "crypto/rsa.h" |
| #include "rsa_local.h" |
| |
| int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen, |
| const unsigned char *from, int flen) |
| { |
| int j; |
| unsigned char *p; |
| |
| if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
| return 0; |
| } |
| |
| p = (unsigned char *)to; |
| |
| *(p++) = 0; |
| *(p++) = 1; /* Private Key BT (Block Type) */ |
| |
| /* pad out with 0xff data */ |
| j = tlen - 3 - flen; |
| memset(p, 0xff, j); |
| p += j; |
| *(p++) = '\0'; |
| memcpy(p, from, (unsigned int)flen); |
| return 1; |
| } |
| |
| int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen, |
| const unsigned char *from, int flen, |
| int num) |
| { |
| int i, j; |
| const unsigned char *p; |
| |
| p = from; |
| |
| /* |
| * The format is |
| * 00 || 01 || PS || 00 || D |
| * PS - padding string, at least 8 bytes of FF |
| * D - data. |
| */ |
| |
| if (num < RSA_PKCS1_PADDING_SIZE) |
| return -1; |
| |
| /* Accept inputs with and without the leading 0-byte. */ |
| if (num == flen) { |
| if ((*p++) != 0x00) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_PADDING); |
| return -1; |
| } |
| flen--; |
| } |
| |
| if ((num != (flen + 1)) || (*(p++) != 0x01)) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_BLOCK_TYPE_IS_NOT_01); |
| return -1; |
| } |
| |
| /* scan over padding data */ |
| j = flen - 1; /* one for type. */ |
| for (i = 0; i < j; i++) { |
| if (*p != 0xff) { /* should decrypt to 0xff */ |
| if (*p == 0) { |
| p++; |
| break; |
| } else { |
| ERR_raise(ERR_LIB_RSA, RSA_R_BAD_FIXED_HEADER_DECRYPT); |
| return -1; |
| } |
| } |
| p++; |
| } |
| |
| if (i == j) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_NULL_BEFORE_BLOCK_MISSING); |
| return -1; |
| } |
| |
| if (i < 8) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_BAD_PAD_BYTE_COUNT); |
| return -1; |
| } |
| i++; /* Skip over the '\0' */ |
| j -= i; |
| if (j > tlen) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE); |
| return -1; |
| } |
| memcpy(to, p, (unsigned int)j); |
| |
| return j; |
| } |
| |
| int ossl_rsa_padding_add_PKCS1_type_2_ex(OSSL_LIB_CTX *libctx, unsigned char *to, |
| int tlen, const unsigned char *from, |
| int flen) |
| { |
| int i, j; |
| unsigned char *p; |
| |
| if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
| return 0; |
| } else if (flen < 0) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH); |
| return 0; |
| } |
| |
| p = (unsigned char *)to; |
| |
| *(p++) = 0; |
| *(p++) = 2; /* Public Key BT (Block Type) */ |
| |
| /* pad out with non-zero random data */ |
| j = tlen - 3 - flen; |
| |
| if (RAND_bytes_ex(libctx, p, j, 0) <= 0) |
| return 0; |
| for (i = 0; i < j; i++) { |
| if (*p == '\0') |
| do { |
| if (RAND_bytes_ex(libctx, p, 1, 0) <= 0) |
| return 0; |
| } while (*p == '\0'); |
| p++; |
| } |
| |
| *(p++) = '\0'; |
| |
| memcpy(p, from, (unsigned int)flen); |
| return 1; |
| } |
| |
| int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen, |
| const unsigned char *from, int flen) |
| { |
| return ossl_rsa_padding_add_PKCS1_type_2_ex(NULL, to, tlen, from, flen); |
| } |
| |
| int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen, |
| const unsigned char *from, int flen, |
| int num) |
| { |
| int i; |
| /* |em| is the encoded message, zero-padded to exactly |num| bytes */ |
| unsigned char *em = NULL; |
| unsigned int good, found_zero_byte, mask; |
| int zero_index = 0, msg_index, mlen = -1; |
| |
| if (tlen <= 0 || flen <= 0) |
| return -1; |
| |
| /* |
| * PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard", |
| * section 7.2.2. |
| */ |
| |
| if (flen > num || num < RSA_PKCS1_PADDING_SIZE) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR); |
| return -1; |
| } |
| |
| em = OPENSSL_malloc(num); |
| if (em == NULL) { |
| ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); |
| return -1; |
| } |
| /* |
| * Caller is encouraged to pass zero-padded message created with |
| * BN_bn2binpad. Trouble is that since we can't read out of |from|'s |
| * bounds, it's impossible to have an invariant memory access pattern |
| * in case |from| was not zero-padded in advance. |
| */ |
| for (from += flen, em += num, i = 0; i < num; i++) { |
| mask = ~constant_time_is_zero(flen); |
| flen -= 1 & mask; |
| from -= 1 & mask; |
| *--em = *from & mask; |
| } |
| |
| good = constant_time_is_zero(em[0]); |
| good &= constant_time_eq(em[1], 2); |
| |
| /* scan over padding data */ |
| found_zero_byte = 0; |
| for (i = 2; i < num; i++) { |
| unsigned int equals0 = constant_time_is_zero(em[i]); |
| |
| zero_index = constant_time_select_int(~found_zero_byte & equals0, |
| i, zero_index); |
| found_zero_byte |= equals0; |
| } |
| |
| /* |
| * PS must be at least 8 bytes long, and it starts two bytes into |em|. |
| * If we never found a 0-byte, then |zero_index| is 0 and the check |
| * also fails. |
| */ |
| good &= constant_time_ge(zero_index, 2 + 8); |
| |
| /* |
| * Skip the zero byte. This is incorrect if we never found a zero-byte |
| * but in this case we also do not copy the message out. |
| */ |
| msg_index = zero_index + 1; |
| mlen = num - msg_index; |
| |
| /* |
| * For good measure, do this check in constant time as well. |
| */ |
| good &= constant_time_ge(tlen, mlen); |
| |
| /* |
| * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left. |
| * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|. |
| * Otherwise leave |to| unchanged. |
| * Copy the memory back in a way that does not reveal the size of |
| * the data being copied via a timing side channel. This requires copying |
| * parts of the buffer multiple times based on the bits set in the real |
| * length. Clear bits do a non-copy with identical access pattern. |
| * The loop below has overall complexity of O(N*log(N)). |
| */ |
| tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen), |
| num - RSA_PKCS1_PADDING_SIZE, tlen); |
| for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) { |
| mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0); |
| for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++) |
| em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]); |
| } |
| for (i = 0; i < tlen; i++) { |
| mask = good & constant_time_lt(i, mlen); |
| to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]); |
| } |
| |
| OPENSSL_clear_free(em, num); |
| #ifndef FIPS_MODULE |
| /* |
| * This trick doesn't work in the FIPS provider because libcrypto manages |
| * the error stack. Instead we opt not to put an error on the stack at all |
| * in case of padding failure in the FIPS provider. |
| */ |
| ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR); |
| err_clear_last_constant_time(1 & good); |
| #endif |
| |
| return constant_time_select_int(good, mlen, -1); |
| } |
| |
| /* |
| * ossl_rsa_padding_check_PKCS1_type_2_TLS() checks and removes the PKCS1 type 2 |
| * padding from a decrypted RSA message in a TLS signature. The result is stored |
| * in the buffer pointed to by |to| which should be |tlen| bytes long. |tlen| |
| * must be at least SSL_MAX_MASTER_KEY_LENGTH. The original decrypted message |
| * should be stored in |from| which must be |flen| bytes in length and padded |
| * such that |flen == RSA_size()|. The TLS protocol version that the client |
| * originally requested should be passed in |client_version|. Some buggy clients |
| * can exist which use the negotiated version instead of the originally |
| * requested protocol version. If it is necessary to work around this bug then |
| * the negotiated protocol version can be passed in |alt_version|, otherwise 0 |
| * should be passed. |
| * |
| * If the passed message is publicly invalid or some other error that can be |
| * treated in non-constant time occurs then -1 is returned. On success the |
| * length of the decrypted data is returned. This will always be |
| * SSL_MAX_MASTER_KEY_LENGTH. If an error occurs that should be treated in |
| * constant time then this function will appear to return successfully, but the |
| * decrypted data will be randomly generated (as per |
| * https://tools.ietf.org/html/rfc5246#section-7.4.7.1). |
| */ |
| int ossl_rsa_padding_check_PKCS1_type_2_TLS(OSSL_LIB_CTX *libctx, |
| unsigned char *to, size_t tlen, |
| const unsigned char *from, |
| size_t flen, int client_version, |
| int alt_version) |
| { |
| unsigned int i, good, version_good; |
| unsigned char rand_premaster_secret[SSL_MAX_MASTER_KEY_LENGTH]; |
| |
| /* |
| * If these checks fail then either the message in publicly invalid, or |
| * we've been called incorrectly. We can fail immediately. |
| */ |
| if (flen < RSA_PKCS1_PADDING_SIZE + SSL_MAX_MASTER_KEY_LENGTH |
| || tlen < SSL_MAX_MASTER_KEY_LENGTH) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR); |
| return -1; |
| } |
| |
| /* |
| * Generate a random premaster secret to use in the event that we fail |
| * to decrypt. |
| */ |
| if (RAND_priv_bytes_ex(libctx, rand_premaster_secret, |
| sizeof(rand_premaster_secret), 0) <= 0) { |
| ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| |
| good = constant_time_is_zero(from[0]); |
| good &= constant_time_eq(from[1], 2); |
| |
| /* Check we have the expected padding data */ |
| for (i = 2; i < flen - SSL_MAX_MASTER_KEY_LENGTH - 1; i++) |
| good &= ~constant_time_is_zero_8(from[i]); |
| good &= constant_time_is_zero_8(from[flen - SSL_MAX_MASTER_KEY_LENGTH - 1]); |
| |
| |
| /* |
| * If the version in the decrypted pre-master secret is correct then |
| * version_good will be 0xff, otherwise it'll be zero. The |
| * Klima-Pokorny-Rosa extension of Bleichenbacher's attack |
| * (http://eprint.iacr.org/2003/052/) exploits the version number |
| * check as a "bad version oracle". Thus version checks are done in |
| * constant time and are treated like any other decryption error. |
| */ |
| version_good = |
| constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH], |
| (client_version >> 8) & 0xff); |
| version_good &= |
| constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1], |
| client_version & 0xff); |
| |
| /* |
| * The premaster secret must contain the same version number as the |
| * ClientHello to detect version rollback attacks (strangely, the |
| * protocol does not offer such protection for DH ciphersuites). |
| * However, buggy clients exist that send the negotiated protocol |
| * version instead if the server does not support the requested |
| * protocol version. If SSL_OP_TLS_ROLLBACK_BUG is set then we tolerate |
| * such clients. In that case alt_version will be non-zero and set to |
| * the negotiated version. |
| */ |
| if (alt_version > 0) { |
| unsigned int workaround_good; |
| |
| workaround_good = |
| constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH], |
| (alt_version >> 8) & 0xff); |
| workaround_good &= |
| constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1], |
| alt_version & 0xff); |
| version_good |= workaround_good; |
| } |
| |
| good &= version_good; |
| |
| |
| /* |
| * Now copy the result over to the to buffer if good, or random data if |
| * not good. |
| */ |
| for (i = 0; i < SSL_MAX_MASTER_KEY_LENGTH; i++) { |
| to[i] = |
| constant_time_select_8(good, |
| from[flen - SSL_MAX_MASTER_KEY_LENGTH + i], |
| rand_premaster_secret[i]); |
| } |
| |
| /* |
| * We must not leak whether a decryption failure occurs because of |
| * Bleichenbacher's attack on PKCS #1 v1.5 RSA padding (see RFC 2246, |
| * section 7.4.7.1). The code follows that advice of the TLS RFC and |
| * generates a random premaster secret for the case that the decrypt |
| * fails. See https://tools.ietf.org/html/rfc5246#section-7.4.7.1 |
| * So, whether we actually succeeded or not, return success. |
| */ |
| |
| return SSL_MAX_MASTER_KEY_LENGTH; |
| } |