| /* |
| * Copyright 2018-2021 The OpenSSL Project Authors. All Rights Reserved. |
| * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <openssl/err.h> |
| #include <openssl/bn.h> |
| #include "crypto/bn.h" |
| #include "rsa_local.h" |
| |
| /* |
| * Part of the RSA keypair test. |
| * Check the Chinese Remainder Theorem components are valid. |
| * |
| * See SP800-5bBr1 |
| * 6.4.1.2.3: rsakpv1-crt Step 7 |
| * 6.4.1.3.3: rsakpv2-crt Step 7 |
| */ |
| int ossl_rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx) |
| { |
| int ret = 0; |
| BIGNUM *r = NULL, *p1 = NULL, *q1 = NULL; |
| |
| /* check if only some of the crt components are set */ |
| if (rsa->dmp1 == NULL || rsa->dmq1 == NULL || rsa->iqmp == NULL) { |
| if (rsa->dmp1 != NULL || rsa->dmq1 != NULL || rsa->iqmp != NULL) |
| return 0; |
| return 1; /* return ok if all components are NULL */ |
| } |
| |
| BN_CTX_start(ctx); |
| r = BN_CTX_get(ctx); |
| p1 = BN_CTX_get(ctx); |
| q1 = BN_CTX_get(ctx); |
| if (q1 != NULL) { |
| BN_set_flags(r, BN_FLG_CONSTTIME); |
| BN_set_flags(p1, BN_FLG_CONSTTIME); |
| BN_set_flags(q1, BN_FLG_CONSTTIME); |
| ret = 1; |
| } else { |
| ret = 0; |
| } |
| ret = ret |
| /* p1 = p -1 */ |
| && (BN_copy(p1, rsa->p) != NULL) |
| && BN_sub_word(p1, 1) |
| /* q1 = q - 1 */ |
| && (BN_copy(q1, rsa->q) != NULL) |
| && BN_sub_word(q1, 1) |
| /* (a) 1 < dP < (p – 1). */ |
| && (BN_cmp(rsa->dmp1, BN_value_one()) > 0) |
| && (BN_cmp(rsa->dmp1, p1) < 0) |
| /* (b) 1 < dQ < (q - 1). */ |
| && (BN_cmp(rsa->dmq1, BN_value_one()) > 0) |
| && (BN_cmp(rsa->dmq1, q1) < 0) |
| /* (c) 1 < qInv < p */ |
| && (BN_cmp(rsa->iqmp, BN_value_one()) > 0) |
| && (BN_cmp(rsa->iqmp, rsa->p) < 0) |
| /* (d) 1 = (dP . e) mod (p - 1)*/ |
| && BN_mod_mul(r, rsa->dmp1, rsa->e, p1, ctx) |
| && BN_is_one(r) |
| /* (e) 1 = (dQ . e) mod (q - 1) */ |
| && BN_mod_mul(r, rsa->dmq1, rsa->e, q1, ctx) |
| && BN_is_one(r) |
| /* (f) 1 = (qInv . q) mod p */ |
| && BN_mod_mul(r, rsa->iqmp, rsa->q, rsa->p, ctx) |
| && BN_is_one(r); |
| BN_clear(r); |
| BN_clear(p1); |
| BN_clear(q1); |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* |
| * Part of the RSA keypair test. |
| * Check that (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2) - 1 |
| * |
| * See SP800-5bBr1 6.4.1.2.1 Part 5 (c) & (g) - used for both p and q. |
| * |
| * (√2)(2^(nbits/2 - 1) = (√2/2)(2^(nbits/2)) |
| */ |
| int ossl_rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx) |
| { |
| int ret = 0; |
| BIGNUM *low; |
| int shift; |
| |
| nbits >>= 1; |
| shift = nbits - BN_num_bits(&ossl_bn_inv_sqrt_2); |
| |
| /* Upper bound check */ |
| if (BN_num_bits(p) != nbits) |
| return 0; |
| |
| BN_CTX_start(ctx); |
| low = BN_CTX_get(ctx); |
| if (low == NULL) |
| goto err; |
| |
| /* set low = (√2)(2^(nbits/2 - 1) */ |
| if (!BN_copy(low, &ossl_bn_inv_sqrt_2)) |
| goto err; |
| |
| if (shift >= 0) { |
| /* |
| * We don't have all the bits. ossl_bn_inv_sqrt_2 contains a rounded up |
| * value, so there is a very low probability that we'll reject a valid |
| * value. |
| */ |
| if (!BN_lshift(low, low, shift)) |
| goto err; |
| } else if (!BN_rshift(low, low, -shift)) { |
| goto err; |
| } |
| if (BN_cmp(p, low) <= 0) |
| goto err; |
| ret = 1; |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* |
| * Part of the RSA keypair test. |
| * Check the prime factor (for either p or q) |
| * i.e: p is prime AND GCD(p - 1, e) = 1 |
| * |
| * See SP800-56Br1 6.4.1.2.3 Step 5 (a to d) & (e to h). |
| */ |
| int ossl_rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx) |
| { |
| int ret = 0; |
| BIGNUM *p1 = NULL, *gcd = NULL; |
| |
| /* (Steps 5 a-b) prime test */ |
| if (BN_check_prime(p, ctx, NULL) != 1 |
| /* (Step 5c) (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2 - 1) */ |
| || ossl_rsa_check_prime_factor_range(p, nbits, ctx) != 1) |
| return 0; |
| |
| BN_CTX_start(ctx); |
| p1 = BN_CTX_get(ctx); |
| gcd = BN_CTX_get(ctx); |
| if (gcd != NULL) { |
| BN_set_flags(p1, BN_FLG_CONSTTIME); |
| BN_set_flags(gcd, BN_FLG_CONSTTIME); |
| ret = 1; |
| } else { |
| ret = 0; |
| } |
| ret = ret |
| /* (Step 5d) GCD(p-1, e) = 1 */ |
| && (BN_copy(p1, p) != NULL) |
| && BN_sub_word(p1, 1) |
| && BN_gcd(gcd, p1, e, ctx) |
| && BN_is_one(gcd); |
| |
| BN_clear(p1); |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* |
| * See SP800-56Br1 6.4.1.2.3 Part 6(a-b) Check the private exponent d |
| * satisfies: |
| * (Step 6a) 2^(nBit/2) < d < LCM(p–1, q–1). |
| * (Step 6b) 1 = (d*e) mod LCM(p–1, q–1) |
| */ |
| int ossl_rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx) |
| { |
| int ret; |
| BIGNUM *r, *p1, *q1, *lcm, *p1q1, *gcd; |
| |
| /* (Step 6a) 2^(nbits/2) < d */ |
| if (BN_num_bits(rsa->d) <= (nbits >> 1)) |
| return 0; |
| |
| BN_CTX_start(ctx); |
| r = BN_CTX_get(ctx); |
| p1 = BN_CTX_get(ctx); |
| q1 = BN_CTX_get(ctx); |
| lcm = BN_CTX_get(ctx); |
| p1q1 = BN_CTX_get(ctx); |
| gcd = BN_CTX_get(ctx); |
| if (gcd != NULL) { |
| BN_set_flags(r, BN_FLG_CONSTTIME); |
| BN_set_flags(p1, BN_FLG_CONSTTIME); |
| BN_set_flags(q1, BN_FLG_CONSTTIME); |
| BN_set_flags(lcm, BN_FLG_CONSTTIME); |
| BN_set_flags(p1q1, BN_FLG_CONSTTIME); |
| BN_set_flags(gcd, BN_FLG_CONSTTIME); |
| ret = 1; |
| } else { |
| ret = 0; |
| } |
| ret = (ret |
| /* LCM(p - 1, q - 1) */ |
| && (ossl_rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1, |
| p1q1) == 1) |
| /* (Step 6a) d < LCM(p - 1, q - 1) */ |
| && (BN_cmp(rsa->d, lcm) < 0) |
| /* (Step 6b) 1 = (e . d) mod LCM(p - 1, q - 1) */ |
| && BN_mod_mul(r, rsa->e, rsa->d, lcm, ctx) |
| && BN_is_one(r)); |
| |
| BN_clear(r); |
| BN_clear(p1); |
| BN_clear(q1); |
| BN_clear(lcm); |
| BN_clear(gcd); |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* |
| * Check exponent is odd. |
| * For FIPS also check the bit length is in the range [17..256] |
| */ |
| int ossl_rsa_check_public_exponent(const BIGNUM *e) |
| { |
| #ifdef FIPS_MODULE |
| int bitlen; |
| |
| bitlen = BN_num_bits(e); |
| return (BN_is_odd(e) && bitlen > 16 && bitlen < 257); |
| #else |
| /* Allow small exponents larger than 1 for legacy purposes */ |
| return BN_is_odd(e) && BN_cmp(e, BN_value_one()) > 0; |
| #endif /* FIPS_MODULE */ |
| } |
| |
| /* |
| * SP800-56Br1 6.4.1.2.1 (Step 5i): |p - q| > 2^(nbits/2 - 100) |
| * i.e- numbits(p-q-1) > (nbits/2 -100) |
| */ |
| int ossl_rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q, |
| int nbits) |
| { |
| int bitlen = (nbits >> 1) - 100; |
| |
| if (!BN_sub(diff, p, q)) |
| return -1; |
| BN_set_negative(diff, 0); |
| |
| if (BN_is_zero(diff)) |
| return 0; |
| |
| if (!BN_sub_word(diff, 1)) |
| return -1; |
| return (BN_num_bits(diff) > bitlen); |
| } |
| |
| /* |
| * return LCM(p-1, q-1) |
| * |
| * Caller should ensure that lcm, gcd, p1, q1, p1q1 are flagged with |
| * BN_FLG_CONSTTIME. |
| */ |
| int ossl_rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q, |
| BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1, |
| BIGNUM *p1q1) |
| { |
| return BN_sub(p1, p, BN_value_one()) /* p-1 */ |
| && BN_sub(q1, q, BN_value_one()) /* q-1 */ |
| && BN_mul(p1q1, p1, q1, ctx) /* (p-1)(q-1) */ |
| && BN_gcd(gcd, p1, q1, ctx) |
| && BN_div(lcm, NULL, p1q1, gcd, ctx); /* LCM((p-1, q-1)) */ |
| } |
| |
| /* |
| * SP800-56Br1 6.4.2.2 Partial Public Key Validation for RSA refers to |
| * SP800-89 5.3.3 (Explicit) Partial Public Key Validation for RSA |
| * caveat is that the modulus must be as specified in SP800-56Br1 |
| */ |
| int ossl_rsa_sp800_56b_check_public(const RSA *rsa) |
| { |
| int ret = 0, status; |
| int nbits; |
| BN_CTX *ctx = NULL; |
| BIGNUM *gcd = NULL; |
| |
| if (rsa->n == NULL || rsa->e == NULL) |
| return 0; |
| |
| nbits = BN_num_bits(rsa->n); |
| #ifdef FIPS_MODULE |
| /* |
| * (Step a): modulus must be 2048 or 3072 (caveat from SP800-56Br1) |
| * NOTE: changed to allow keys >= 2048 |
| */ |
| if (!ossl_rsa_sp800_56b_validate_strength(nbits, -1)) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_KEY_LENGTH); |
| return 0; |
| } |
| #endif |
| if (!BN_is_odd(rsa->n)) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_MODULUS); |
| return 0; |
| } |
| /* (Steps b-c): 2^16 < e < 2^256, n and e must be odd */ |
| if (!ossl_rsa_check_public_exponent(rsa->e)) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_PUB_EXPONENT_OUT_OF_RANGE); |
| return 0; |
| } |
| |
| ctx = BN_CTX_new_ex(rsa->libctx); |
| gcd = BN_new(); |
| if (ctx == NULL || gcd == NULL) |
| goto err; |
| |
| /* (Steps d-f): |
| * The modulus is composite, but not a power of a prime. |
| * The modulus has no factors smaller than 752. |
| */ |
| if (!BN_gcd(gcd, rsa->n, ossl_bn_get0_small_factors(), ctx) |
| || !BN_is_one(gcd)) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_MODULUS); |
| goto err; |
| } |
| |
| ret = ossl_bn_miller_rabin_is_prime(rsa->n, 0, ctx, NULL, 1, &status); |
| #ifdef FIPS_MODULE |
| if (ret != 1 || status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME) { |
| #else |
| if (ret != 1 || (status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME |
| && (nbits >= RSA_MIN_MODULUS_BITS |
| || status != BN_PRIMETEST_COMPOSITE_WITH_FACTOR))) { |
| #endif |
| ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_MODULUS); |
| ret = 0; |
| goto err; |
| } |
| |
| ret = 1; |
| err: |
| BN_free(gcd); |
| BN_CTX_free(ctx); |
| return ret; |
| } |
| |
| /* |
| * Perform validation of the RSA private key to check that 0 < D < N. |
| */ |
| int ossl_rsa_sp800_56b_check_private(const RSA *rsa) |
| { |
| if (rsa->d == NULL || rsa->n == NULL) |
| return 0; |
| return BN_cmp(rsa->d, BN_value_one()) >= 0 && BN_cmp(rsa->d, rsa->n) < 0; |
| } |
| |
| /* |
| * RSA key pair validation. |
| * |
| * SP800-56Br1. |
| * 6.4.1.2 "RSAKPV1 Family: RSA Key - Pair Validation with a Fixed Exponent" |
| * 6.4.1.3 "RSAKPV2 Family: RSA Key - Pair Validation with a Random Exponent" |
| * |
| * It uses: |
| * 6.4.1.2.3 "rsakpv1 - crt" |
| * 6.4.1.3.3 "rsakpv2 - crt" |
| */ |
| int ossl_rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed, |
| int strength, int nbits) |
| { |
| int ret = 0; |
| BN_CTX *ctx = NULL; |
| BIGNUM *r = NULL; |
| |
| if (rsa->p == NULL |
| || rsa->q == NULL |
| || rsa->e == NULL |
| || rsa->d == NULL |
| || rsa->n == NULL) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_REQUEST); |
| return 0; |
| } |
| /* (Step 1): Check Ranges */ |
| if (!ossl_rsa_sp800_56b_validate_strength(nbits, strength)) |
| return 0; |
| |
| /* If the exponent is known */ |
| if (efixed != NULL) { |
| /* (2): Check fixed exponent matches public exponent. */ |
| if (BN_cmp(efixed, rsa->e) != 0) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_REQUEST); |
| return 0; |
| } |
| } |
| /* (Step 1.c): e is odd integer 65537 <= e < 2^256 */ |
| if (!ossl_rsa_check_public_exponent(rsa->e)) { |
| /* exponent out of range */ |
| ERR_raise(ERR_LIB_RSA, RSA_R_PUB_EXPONENT_OUT_OF_RANGE); |
| return 0; |
| } |
| /* (Step 3.b): check the modulus */ |
| if (nbits != BN_num_bits(rsa->n)) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_KEYPAIR); |
| return 0; |
| } |
| |
| ctx = BN_CTX_new_ex(rsa->libctx); |
| if (ctx == NULL) |
| return 0; |
| |
| BN_CTX_start(ctx); |
| r = BN_CTX_get(ctx); |
| if (r == NULL || !BN_mul(r, rsa->p, rsa->q, ctx)) |
| goto err; |
| /* (Step 4.c): Check n = pq */ |
| if (BN_cmp(rsa->n, r) != 0) { |
| ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_REQUEST); |
| goto err; |
| } |
| |
| /* (Step 5): check prime factors p & q */ |
| ret = ossl_rsa_check_prime_factor(rsa->p, rsa->e, nbits, ctx) |
| && ossl_rsa_check_prime_factor(rsa->q, rsa->e, nbits, ctx) |
| && (ossl_rsa_check_pminusq_diff(r, rsa->p, rsa->q, nbits) > 0) |
| /* (Step 6): Check the private exponent d */ |
| && ossl_rsa_check_private_exponent(rsa, nbits, ctx) |
| /* 6.4.1.2.3 (Step 7): Check the CRT components */ |
| && ossl_rsa_check_crt_components(rsa, ctx); |
| if (ret != 1) |
| ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_KEYPAIR); |
| |
| err: |
| BN_clear(r); |
| BN_CTX_end(ctx); |
| BN_CTX_free(ctx); |
| return ret; |
| } |