| /* |
| * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <stdlib.h> |
| #include <string.h> |
| #include <openssl/hmac.h> |
| #include <openssl/kdf.h> |
| #include <openssl/evp.h> |
| #include "internal/cryptlib.h" |
| #include "internal/evp_int.h" |
| |
| #ifndef OPENSSL_NO_SCRYPT |
| |
| static int atou64(const char *nptr, uint64_t *result); |
| |
| typedef struct { |
| unsigned char *pass; |
| size_t pass_len; |
| unsigned char *salt; |
| size_t salt_len; |
| uint64_t N, r, p; |
| uint64_t maxmem_bytes; |
| } SCRYPT_PKEY_CTX; |
| |
| /* Custom uint64_t parser since we do not have strtoull */ |
| static int atou64(const char *nptr, uint64_t *result) |
| { |
| uint64_t value = 0; |
| |
| while (*nptr) { |
| unsigned int digit; |
| uint64_t new_value; |
| |
| if ((*nptr < '0') || (*nptr > '9')) { |
| return 0; |
| } |
| digit = (unsigned int)(*nptr - '0'); |
| new_value = (value * 10) + digit; |
| if ((new_value < digit) || ((new_value - digit) / 10 != value)) { |
| /* Overflow */ |
| return 0; |
| } |
| value = new_value; |
| nptr++; |
| } |
| *result = value; |
| return 1; |
| } |
| |
| static int pkey_scrypt_init(EVP_PKEY_CTX *ctx) |
| { |
| SCRYPT_PKEY_CTX *kctx; |
| |
| kctx = OPENSSL_zalloc(sizeof(*kctx)); |
| if (kctx == NULL) { |
| KDFerr(KDF_F_PKEY_SCRYPT_INIT, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| /* Default values are the most conservative recommendation given in the |
| * original paper of C. Percival. Derivation uses roughly 1 GiB of memory |
| * for this parameter choice (approx. 128 * r * (N + p) bytes). |
| */ |
| kctx->N = 1 << 20; |
| kctx->r = 8; |
| kctx->p = 1; |
| kctx->maxmem_bytes = 1025 * 1024 * 1024; |
| |
| ctx->data = kctx; |
| |
| return 1; |
| } |
| |
| static void pkey_scrypt_cleanup(EVP_PKEY_CTX *ctx) |
| { |
| SCRYPT_PKEY_CTX *kctx = ctx->data; |
| |
| OPENSSL_clear_free(kctx->salt, kctx->salt_len); |
| OPENSSL_clear_free(kctx->pass, kctx->pass_len); |
| OPENSSL_free(kctx); |
| } |
| |
| static int pkey_scrypt_set_membuf(unsigned char **buffer, size_t *buflen, |
| const unsigned char *new_buffer, |
| const int new_buflen) |
| { |
| if (new_buffer == NULL) |
| return 1; |
| |
| if (new_buflen < 0) |
| return 0; |
| |
| if (*buffer != NULL) |
| OPENSSL_clear_free(*buffer, *buflen); |
| |
| if (new_buflen > 0) { |
| *buffer = OPENSSL_memdup(new_buffer, new_buflen); |
| } else { |
| *buffer = OPENSSL_malloc(1); |
| } |
| if (*buffer == NULL) { |
| KDFerr(KDF_F_PKEY_SCRYPT_SET_MEMBUF, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| *buflen = new_buflen; |
| return 1; |
| } |
| |
| static int is_power_of_two(uint64_t value) |
| { |
| return (value != 0) && ((value & (value - 1)) == 0); |
| } |
| |
| static int pkey_scrypt_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) |
| { |
| SCRYPT_PKEY_CTX *kctx = ctx->data; |
| uint64_t u64_value; |
| |
| switch (type) { |
| case EVP_PKEY_CTRL_PASS: |
| return pkey_scrypt_set_membuf(&kctx->pass, &kctx->pass_len, p2, p1); |
| |
| case EVP_PKEY_CTRL_SCRYPT_SALT: |
| return pkey_scrypt_set_membuf(&kctx->salt, &kctx->salt_len, p2, p1); |
| |
| case EVP_PKEY_CTRL_SCRYPT_N: |
| u64_value = *((uint64_t *)p2); |
| if ((u64_value <= 1) || !is_power_of_two(u64_value)) |
| return 0; |
| kctx->N = u64_value; |
| return 1; |
| |
| case EVP_PKEY_CTRL_SCRYPT_R: |
| u64_value = *((uint64_t *)p2); |
| if (u64_value < 1) |
| return 0; |
| kctx->r = u64_value; |
| return 1; |
| |
| case EVP_PKEY_CTRL_SCRYPT_P: |
| u64_value = *((uint64_t *)p2); |
| if (u64_value < 1) |
| return 0; |
| kctx->p = u64_value; |
| return 1; |
| |
| case EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES: |
| u64_value = *((uint64_t *)p2); |
| if (u64_value < 1) |
| return 0; |
| kctx->maxmem_bytes = u64_value; |
| return 1; |
| |
| default: |
| return -2; |
| |
| } |
| } |
| |
| static int pkey_scrypt_ctrl_uint64(EVP_PKEY_CTX *ctx, int type, |
| const char *value) |
| { |
| uint64_t int_value; |
| |
| if (!atou64(value, &int_value)) { |
| KDFerr(KDF_F_PKEY_SCRYPT_CTRL_UINT64, KDF_R_VALUE_ERROR); |
| return 0; |
| } |
| return pkey_scrypt_ctrl(ctx, type, 0, &int_value); |
| } |
| |
| static int pkey_scrypt_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, |
| const char *value) |
| { |
| if (value == NULL) { |
| KDFerr(KDF_F_PKEY_SCRYPT_CTRL_STR, KDF_R_VALUE_MISSING); |
| return 0; |
| } |
| |
| if (strcmp(type, "pass") == 0) |
| return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_PASS, value); |
| |
| if (strcmp(type, "hexpass") == 0) |
| return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_PASS, value); |
| |
| if (strcmp(type, "salt") == 0) |
| return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_SCRYPT_SALT, value); |
| |
| if (strcmp(type, "hexsalt") == 0) |
| return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_SCRYPT_SALT, value); |
| |
| if (strcmp(type, "N") == 0) |
| return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_N, value); |
| |
| if (strcmp(type, "r") == 0) |
| return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_R, value); |
| |
| if (strcmp(type, "p") == 0) |
| return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_P, value); |
| |
| if (strcmp(type, "maxmem_bytes") == 0) |
| return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES, |
| value); |
| |
| KDFerr(KDF_F_PKEY_SCRYPT_CTRL_STR, KDF_R_UNKNOWN_PARAMETER_TYPE); |
| return -2; |
| } |
| |
| static int pkey_scrypt_derive(EVP_PKEY_CTX *ctx, unsigned char *key, |
| size_t *keylen) |
| { |
| SCRYPT_PKEY_CTX *kctx = ctx->data; |
| |
| if (kctx->pass == NULL) { |
| KDFerr(KDF_F_PKEY_SCRYPT_DERIVE, KDF_R_MISSING_PASS); |
| return 0; |
| } |
| |
| if (kctx->salt == NULL) { |
| KDFerr(KDF_F_PKEY_SCRYPT_DERIVE, KDF_R_MISSING_SALT); |
| return 0; |
| } |
| |
| return EVP_PBE_scrypt((char *)kctx->pass, kctx->pass_len, kctx->salt, |
| kctx->salt_len, kctx->N, kctx->r, kctx->p, |
| kctx->maxmem_bytes, key, *keylen); |
| } |
| |
| const EVP_PKEY_METHOD scrypt_pkey_meth = { |
| EVP_PKEY_SCRYPT, |
| 0, |
| pkey_scrypt_init, |
| 0, |
| pkey_scrypt_cleanup, |
| |
| 0, 0, |
| 0, 0, |
| |
| 0, |
| 0, |
| |
| 0, |
| 0, |
| |
| 0, 0, |
| |
| 0, 0, 0, 0, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| 0, |
| pkey_scrypt_derive, |
| pkey_scrypt_ctrl, |
| pkey_scrypt_ctrl_str |
| }; |
| |
| #endif |