| /* | 
 |  * Copyright 2019-2020 The OpenSSL Project Authors. All Rights Reserved. | 
 |  * Copyright (c) 2019, Oracle and/or its affiliates.  All rights reserved. | 
 |  * | 
 |  * Licensed under the Apache License 2.0 (the "License").  You may not use | 
 |  * this file except in compliance with the License.  You can obtain a copy | 
 |  * in the file LICENSE in the source distribution or at | 
 |  * https://www.openssl.org/source/license.html | 
 |  */ | 
 |  | 
 | #include <openssl/crypto.h> | 
 | #include <openssl/bn.h> | 
 | #include "crypto/sparse_array.h" | 
 |  | 
 | /* | 
 |  * How many bits are used to index each level in the tree structure? | 
 |  * This setting determines the number of pointers stored in each node of the | 
 |  * tree used to represent the sparse array.  Having more pointers reduces the | 
 |  * depth of the tree but potentially wastes more memory.  That is, this is a | 
 |  * direct space versus time tradeoff. | 
 |  * | 
 |  * The large memory model uses twelve bits which means that the are 4096 | 
 |  * pointers in each tree node.  This is more than sufficient to hold the | 
 |  * largest defined NID (as of Feb 2019).  This means that using a NID to | 
 |  * index a sparse array becomes a constant time single array look up. | 
 |  * | 
 |  * The small memory model uses four bits which means the tree nodes contain | 
 |  * sixteen pointers.  This reduces the amount of unused space significantly | 
 |  * at a cost in time. | 
 |  * | 
 |  * The library builder is also permitted to define other sizes in the closed | 
 |  * interval [2, sizeof(ossl_uintmax_t) * 8]. | 
 |  */ | 
 | #ifndef OPENSSL_SA_BLOCK_BITS | 
 | # ifdef OPENSSL_SMALL_FOOTPRINT | 
 | #  define OPENSSL_SA_BLOCK_BITS           4 | 
 | # else | 
 | #  define OPENSSL_SA_BLOCK_BITS           12 | 
 | # endif | 
 | #elif OPENSSL_SA_BLOCK_BITS < 2 || OPENSSL_SA_BLOCK_BITS > (BN_BITS2 - 1) | 
 | # error OPENSSL_SA_BLOCK_BITS is out of range | 
 | #endif | 
 |  | 
 | /* | 
 |  * From the number of bits, work out: | 
 |  *    the number of pointers in a tree node; | 
 |  *    a bit mask to quickly extract an index and | 
 |  *    the maximum depth of the tree structure. | 
 |   */ | 
 | #define SA_BLOCK_MAX            (1 << OPENSSL_SA_BLOCK_BITS) | 
 | #define SA_BLOCK_MASK           (SA_BLOCK_MAX - 1) | 
 | #define SA_BLOCK_MAX_LEVELS     (((int)sizeof(ossl_uintmax_t) * 8 \ | 
 |                                   + OPENSSL_SA_BLOCK_BITS - 1) \ | 
 |                                  / OPENSSL_SA_BLOCK_BITS) | 
 |  | 
 | struct sparse_array_st { | 
 |     int levels; | 
 |     ossl_uintmax_t top; | 
 |     size_t nelem; | 
 |     void **nodes; | 
 | }; | 
 |  | 
 | OPENSSL_SA *OPENSSL_SA_new(void) | 
 | { | 
 |     OPENSSL_SA *res = OPENSSL_zalloc(sizeof(*res)); | 
 |  | 
 |     return res; | 
 | } | 
 |  | 
 | static void sa_doall(const OPENSSL_SA *sa, void (*node)(void **), | 
 |                      void (*leaf)(ossl_uintmax_t, void *, void *), void *arg) | 
 | { | 
 |     int i[SA_BLOCK_MAX_LEVELS]; | 
 |     void *nodes[SA_BLOCK_MAX_LEVELS]; | 
 |     ossl_uintmax_t idx = 0; | 
 |     int l = 0; | 
 |  | 
 |     i[0] = 0; | 
 |     nodes[0] = sa->nodes; | 
 |     while (l >= 0) { | 
 |         const int n = i[l]; | 
 |         void ** const p = nodes[l]; | 
 |  | 
 |         if (n >= SA_BLOCK_MAX) { | 
 |             if (p != NULL && node != NULL) | 
 |                 (*node)(p); | 
 |             l--; | 
 |             idx >>= OPENSSL_SA_BLOCK_BITS; | 
 |         } else { | 
 |             i[l] = n + 1; | 
 |             if (p != NULL && p[n] != NULL) { | 
 |                 idx = (idx & ~SA_BLOCK_MASK) | n; | 
 |                 if (l < sa->levels - 1) { | 
 |                     i[++l] = 0; | 
 |                     nodes[l] = p[n]; | 
 |                     idx <<= OPENSSL_SA_BLOCK_BITS; | 
 |                 } else if (leaf != NULL) { | 
 |                     (*leaf)(idx, p[n], arg); | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void sa_free_node(void **p) | 
 | { | 
 |     OPENSSL_free(p); | 
 | } | 
 |  | 
 | static void sa_free_leaf(ossl_uintmax_t n, void *p, void *arg) | 
 | { | 
 |     OPENSSL_free(p); | 
 | } | 
 |  | 
 | void OPENSSL_SA_free(OPENSSL_SA *sa) | 
 | { | 
 |     sa_doall(sa, &sa_free_node, NULL, NULL); | 
 |     OPENSSL_free(sa); | 
 | } | 
 |  | 
 | void OPENSSL_SA_free_leaves(OPENSSL_SA *sa) | 
 | { | 
 |     sa_doall(sa, &sa_free_node, &sa_free_leaf, NULL); | 
 |     OPENSSL_free(sa); | 
 | } | 
 |  | 
 | /* Wrap this in a structure to avoid compiler warnings */ | 
 | struct trampoline_st { | 
 |     void (*func)(ossl_uintmax_t, void *); | 
 | }; | 
 |  | 
 | static void trampoline(ossl_uintmax_t n, void *l, void *arg) | 
 | { | 
 |     ((const struct trampoline_st *)arg)->func(n, l); | 
 | } | 
 |  | 
 | void OPENSSL_SA_doall(const OPENSSL_SA *sa, void (*leaf)(ossl_uintmax_t, | 
 |                                                          void *)) | 
 | { | 
 |     struct trampoline_st tramp; | 
 |  | 
 |     tramp.func = leaf; | 
 |     if (sa != NULL) | 
 |         sa_doall(sa, NULL, &trampoline, &tramp); | 
 | } | 
 |  | 
 | void OPENSSL_SA_doall_arg(const OPENSSL_SA *sa, | 
 |                           void (*leaf)(ossl_uintmax_t, void *, void *), | 
 |                           void *arg) | 
 | { | 
 |     if (sa != NULL) | 
 |         sa_doall(sa, NULL, leaf, arg); | 
 | } | 
 |  | 
 | size_t OPENSSL_SA_num(const OPENSSL_SA *sa) | 
 | { | 
 |     return sa == NULL ? 0 : sa->nelem; | 
 | } | 
 |  | 
 | void *OPENSSL_SA_get(const OPENSSL_SA *sa, ossl_uintmax_t n) | 
 | { | 
 |     int level; | 
 |     void **p, *r = NULL; | 
 |  | 
 |     if (sa == NULL || sa->nelem == 0) | 
 |         return NULL; | 
 |  | 
 |     if (n <= sa->top) { | 
 |         p = sa->nodes; | 
 |         for (level = sa->levels - 1; p != NULL && level > 0; level--) | 
 |             p = (void **)p[(n >> (OPENSSL_SA_BLOCK_BITS * level)) | 
 |                            & SA_BLOCK_MASK]; | 
 |         r = p == NULL ? NULL : p[n & SA_BLOCK_MASK]; | 
 |     } | 
 |     return r; | 
 | } | 
 |  | 
 | static ossl_inline void **alloc_node(void) | 
 | { | 
 |     return OPENSSL_zalloc(SA_BLOCK_MAX * sizeof(void *)); | 
 | } | 
 |  | 
 | int OPENSSL_SA_set(OPENSSL_SA *sa, ossl_uintmax_t posn, void *val) | 
 | { | 
 |     int i, level = 1; | 
 |     ossl_uintmax_t n = posn; | 
 |     void **p; | 
 |  | 
 |     if (sa == NULL) | 
 |         return 0; | 
 |  | 
 |     for (level = 1; level < SA_BLOCK_MAX_LEVELS; level++) | 
 |         if ((n >>= OPENSSL_SA_BLOCK_BITS) == 0) | 
 |             break; | 
 |  | 
 |     for (;sa->levels < level; sa->levels++) { | 
 |         p = alloc_node(); | 
 |         if (p == NULL) | 
 |             return 0; | 
 |         p[0] = sa->nodes; | 
 |         sa->nodes = p; | 
 |     } | 
 |     if (sa->top < posn) | 
 |         sa->top = posn; | 
 |  | 
 |     p = sa->nodes; | 
 |     for (level = sa->levels - 1; level > 0; level--) { | 
 |         i = (posn >> (OPENSSL_SA_BLOCK_BITS * level)) & SA_BLOCK_MASK; | 
 |         if (p[i] == NULL && (p[i] = alloc_node()) == NULL) | 
 |             return 0; | 
 |         p = p[i]; | 
 |     } | 
 |     p += posn & SA_BLOCK_MASK; | 
 |     if (val == NULL && *p != NULL) | 
 |         sa->nelem--; | 
 |     else if (val != NULL && *p == NULL) | 
 |         sa->nelem++; | 
 |     *p = val; | 
 |     return 1; | 
 | } |