| /* crypto/ec/ec_mult.c */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| |
| #include <openssl/err.h> |
| |
| #include "ec_lcl.h" |
| |
| |
| /* TODO: width-m NAFs */ |
| |
| /* TODO: optional precomputation of multiples of the generator */ |
| |
| |
| #define EC_window_bits_for_scalar_size(b) \ |
| ((b) >= 2000 ? 6 : \ |
| (b) >= 800 ? 5 : \ |
| (b) >= 300 ? 4 : \ |
| (b) >= 70 ? 3 : \ |
| (b) >= 20 ? 2 : \ |
| 1) |
| /* For window size 'w' (w >= 2), we compute the odd multiples |
| * 1*P .. (2^w-1)*P. |
| * This accounts for 2^(w-1) point additions (neglecting constants), |
| * each of which requires 16 field multiplications (4 squarings |
| * and 12 general multiplications) in the case of curves defined |
| * over GF(p), which are the only curves we have so far. |
| * |
| * Converting these precomputed points into affine form takes |
| * three field multiplications for inverting Z and one squaring |
| * and three multiplications for adjusting X and Y, i.e. |
| * 7 multiplications in total (1 squaring and 6 general multiplications), |
| * again except for constants. |
| * |
| * The average number of windows for a 'b' bit scalar is roughly |
| * b/(w+1). |
| * Each of these windows (except possibly for the first one, but |
| * we are ignoring constants anyway) requires one point addition. |
| * As the precomputed table stores points in affine form, these |
| * additions take only 11 field multiplications each (3 squarings |
| * and 8 general multiplications). |
| * |
| * So the total workload, except for constants, is |
| * |
| * 2^(w-1)*[5 squarings + 18 multiplications] |
| * + (b/(w+1))*[3 squarings + 8 multiplications] |
| * |
| * If we assume that 10 squarings are as costly as 9 multiplications, |
| * our task is to find the 'w' that, given 'b', minimizes |
| * |
| * 2^(w-1)*(5*9 + 18*10) + (b/(w+1))*(3*9 + 8*10) |
| * = 2^(w-1)*225 + (b/(w+1))*107. |
| * |
| * Thus optimal window sizes should be roughly as follows: |
| * |
| * w >= 6 if b >= 1414 |
| * w = 5 if 1413 >= b >= 505 |
| * w = 4 if 504 >= b >= 169 |
| * w = 3 if 168 >= b >= 51 |
| * w = 2 if 50 >= b >= 13 |
| * w = 1 if 12 >= b |
| * |
| * If we assume instead that squarings are exactly as costly as |
| * multiplications, we have to minimize |
| * 2^(w-1)*23 + (b/(w+1))*11. |
| * |
| * This gives us the following (nearly unchanged) table of optimal |
| * windows sizes: |
| * |
| * w >= 6 if b >= 1406 |
| * w = 5 if 1405 >= b >= 502 |
| * w = 4 if 501 >= b >= 168 |
| * w = 3 if 167 >= b >= 51 |
| * w = 2 if 50 >= b >= 13 |
| * w = 1 if 12 >= b |
| * |
| * Note that neither table tries to take into account memory usage |
| * (allocation overhead, code locality etc.). Actual timings with |
| * NIST curves P-192, P-224, and P-256 with scalars of 192, 224, |
| * and 256 bits, respectively, show that w = 3 (instead of 4) is |
| * preferrable; timings with NIST curve P-384 and 384-bit scalars |
| * confirm that w = 4 is optimal for this case; and timings with |
| * NIST curve P-521 and 521-bit scalars show that w = 4 (instead |
| * of 5) is preferrable. So we generously round up all the |
| * boundaries and use the following table: |
| * |
| * w >= 6 if b >= 2000 |
| * w = 5 if 1999 >= b >= 800 |
| * w = 4 if 799 >= b >= 300 |
| * w = 3 if 299 >= b >= 70 |
| * w = 2 if 69 >= b >= 20 |
| * w = 1 if 19 >= b |
| */ |
| |
| |
| |
| /* Compute |
| * \sum scalars[i]*points[i], |
| * also including |
| * scalar*generator |
| * in the addition if scalar != NULL |
| */ |
| int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, |
| size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) |
| { |
| BN_CTX *new_ctx = NULL; |
| EC_POINT *generator = NULL; |
| EC_POINT *tmp = NULL; |
| size_t totalnum; |
| size_t i, j; |
| int k, t; |
| int r_is_at_infinity = 1; |
| size_t max_bits = 0; |
| size_t *wsize = NULL; /* individual window sizes */ |
| unsigned long *wbits = NULL; /* individual window contents */ |
| int *wpos = NULL; /* position of bottom bit of current individual windows |
| * (wpos[i] is valid if wbits[i] != 0) */ |
| size_t num_val; |
| EC_POINT **val = NULL; /* precomputation */ |
| EC_POINT **v; |
| EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */ |
| int ret = 0; |
| |
| if (scalar != NULL) |
| { |
| generator = EC_GROUP_get0_generator(group); |
| if (generator == NULL) |
| { |
| ECerr(EC_F_EC_POINTS_MUL, EC_R_UNDEFINED_GENERATOR); |
| return 0; |
| } |
| } |
| |
| for (i = 0; i < num; i++) |
| { |
| if (group->meth != points[i]->meth) |
| { |
| ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS); |
| return 0; |
| } |
| } |
| |
| totalnum = num + (scalar != NULL); |
| |
| wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]); |
| wbits = OPENSSL_malloc(totalnum * sizeof wbits[0]); |
| wpos = OPENSSL_malloc(totalnum * sizeof wpos[0]); |
| if (wsize == NULL || wbits == NULL || wpos == NULL) goto err; |
| |
| /* num_val := total number of points to precompute */ |
| num_val = 0; |
| for (i = 0; i < totalnum; i++) |
| { |
| size_t bits; |
| |
| bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar); |
| wsize[i] = EC_window_bits_for_scalar_size(bits); |
| num_val += 1u << (wsize[i] - 1); |
| if (bits > max_bits) |
| max_bits = bits; |
| wbits[i] = 0; |
| wpos[i] = 0; |
| } |
| |
| /* all precomputed points go into a single array 'val', |
| * 'val_sub[i]' is a pointer to the subarray for the i-th point */ |
| val = OPENSSL_malloc((num_val + 1) * sizeof val[0]); |
| if (val == NULL) goto err; |
| val[num_val] = NULL; /* pivot element */ |
| |
| val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]); |
| if (val_sub == NULL) goto err; |
| |
| /* allocate points for precomputation */ |
| v = val; |
| for (i = 0; i < totalnum; i++) |
| { |
| val_sub[i] = v; |
| for (j = 0; j < (1u << (wsize[i] - 1)); j++) |
| { |
| *v = EC_POINT_new(group); |
| if (*v == NULL) goto err; |
| v++; |
| } |
| } |
| if (!(v == val + num_val)) |
| { |
| ECerr(EC_F_EC_POINTS_MUL, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| if (ctx == NULL) |
| { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) |
| goto err; |
| } |
| |
| tmp = EC_POINT_new(group); |
| if (tmp == NULL) goto err; |
| |
| /* prepare precomputed values: |
| * val_sub[i][0] := points[i] |
| * val_sub[i][1] := 3 * points[i] |
| * val_sub[i][2] := 5 * points[i] |
| * ... |
| */ |
| for (i = 0; i < totalnum; i++) |
| { |
| if (i < num) |
| { |
| if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err; |
| if (scalars[i]->neg) |
| { |
| if (!EC_POINT_invert(group, val_sub[i][0], ctx)) goto err; |
| } |
| } |
| else |
| { |
| if (!EC_POINT_copy(val_sub[i][0], generator)) goto err; |
| if (scalar->neg) |
| { |
| if (!EC_POINT_invert(group, val_sub[i][0], ctx)) goto err; |
| } |
| } |
| |
| if (wsize[i] > 1) |
| { |
| if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err; |
| for (j = 1; j < (1u << (wsize[i] - 1)); j++) |
| { |
| if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err; |
| } |
| } |
| } |
| |
| #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */ |
| if (!EC_POINTs_make_affine(group, num_val, val, ctx)) goto err; |
| #endif |
| |
| r_is_at_infinity = 1; |
| |
| for (k = max_bits - 1; k >= 0; k--) |
| { |
| if (!r_is_at_infinity) |
| { |
| if (!EC_POINT_dbl(group, r, r, ctx)) goto err; |
| } |
| |
| for (i = 0; i < totalnum; i++) |
| { |
| if (wbits[i] == 0) |
| { |
| const BIGNUM *s; |
| |
| s = i < num ? scalars[i] : scalar; |
| |
| if (BN_is_bit_set(s, k)) |
| { |
| /* look at bits k - wsize[i] + 1 .. k for this window */ |
| t = k - wsize[i] + 1; |
| while (!BN_is_bit_set(s, t)) /* BN_is_bit_set is false for t < 0 */ |
| t++; |
| wpos[i] = t; |
| wbits[i] = 1; |
| for (t = k - 1; t >= wpos[i]; t--) |
| { |
| wbits[i] <<= 1; |
| if (BN_is_bit_set(s, t)) |
| wbits[i]++; |
| } |
| /* now wbits[i] is the odd bit pattern at bits wpos[i] .. k */ |
| } |
| } |
| |
| if ((wbits[i] != 0) && (wpos[i] == k)) |
| { |
| if (r_is_at_infinity) |
| { |
| if (!EC_POINT_copy(r, val_sub[i][wbits[i] >> 1])) goto err; |
| r_is_at_infinity = 0; |
| } |
| else |
| { |
| if (!EC_POINT_add(group, r, r, val_sub[i][wbits[i] >> 1], ctx)) goto err; |
| } |
| wbits[i] = 0; |
| } |
| } |
| } |
| |
| if (r_is_at_infinity) |
| if (!EC_POINT_set_to_infinity(group, r)) goto err; |
| |
| ret = 1; |
| |
| err: |
| if (new_ctx != NULL) |
| BN_CTX_free(new_ctx); |
| if (tmp != NULL) |
| EC_POINT_free(tmp); |
| if (wsize != NULL) |
| OPENSSL_free(wsize); |
| if (wbits != NULL) |
| OPENSSL_free(wbits); |
| if (wpos != NULL) |
| OPENSSL_free(wpos); |
| if (val != NULL) |
| { |
| for (v = val; *v != NULL; v++) |
| EC_POINT_clear_free(*v); |
| |
| OPENSSL_free(val); |
| } |
| if (val_sub != NULL) |
| { |
| OPENSSL_free(val_sub); |
| } |
| return ret; |
| } |
| |
| |
| int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx) |
| { |
| const EC_POINT *points[1]; |
| const BIGNUM *scalars[1]; |
| |
| points[0] = point; |
| scalars[0] = p_scalar; |
| |
| return EC_POINTs_mul(group, r, g_scalar, (point != NULL && p_scalar != NULL), points, scalars, ctx); |
| } |
| |
| |
| int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx) |
| { |
| const EC_POINT *generator; |
| BN_CTX *new_ctx = NULL; |
| BIGNUM *order; |
| int ret = 0; |
| |
| generator = EC_GROUP_get0_generator(group); |
| if (generator == NULL) |
| { |
| ECerr(EC_F_EC_GROUP_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR); |
| return 0; |
| } |
| |
| if (ctx == NULL) |
| { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) |
| return 0; |
| } |
| |
| BN_CTX_start(ctx); |
| order = BN_CTX_get(ctx); |
| if (order == NULL) goto err; |
| |
| if (!EC_GROUP_get_order(group, order, ctx)) return 0; |
| if (BN_is_zero(order)) |
| { |
| ECerr(EC_F_EC_GROUP_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER); |
| goto err; |
| } |
| |
| /* TODO */ |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| if (new_ctx != NULL) |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |