|  | /* crypto/ec/ecp_smpl.c */ | 
|  | /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | 
|  | * for the OpenSSL project. | 
|  | * Includes code written by Bodo Moeller for the OpenSSL project. | 
|  | */ | 
|  | /* ==================================================================== | 
|  | * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    openssl-core@openssl.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== | 
|  | * | 
|  | * This product includes cryptographic software written by Eric Young | 
|  | * (eay@cryptsoft.com).  This product includes software written by Tim | 
|  | * Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | */ | 
|  | /* ==================================================================== | 
|  | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | 
|  | * Portions of this software developed by SUN MICROSYSTEMS, INC., | 
|  | * and contributed to the OpenSSL project. | 
|  | */ | 
|  |  | 
|  | #define OPENSSL_FIPSAPI | 
|  |  | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/symhacks.h> | 
|  |  | 
|  | #include "ec_lcl.h" | 
|  |  | 
|  | const EC_METHOD *EC_GFp_simple_method(void) | 
|  | { | 
|  | static const EC_METHOD ret = { | 
|  | EC_FLAGS_DEFAULT_OCT, | 
|  | NID_X9_62_prime_field, | 
|  | ec_GFp_simple_group_init, | 
|  | ec_GFp_simple_group_finish, | 
|  | ec_GFp_simple_group_clear_finish, | 
|  | ec_GFp_simple_group_copy, | 
|  | ec_GFp_simple_group_set_curve, | 
|  | ec_GFp_simple_group_get_curve, | 
|  | ec_GFp_simple_group_get_degree, | 
|  | ec_GFp_simple_group_check_discriminant, | 
|  | ec_GFp_simple_point_init, | 
|  | ec_GFp_simple_point_finish, | 
|  | ec_GFp_simple_point_clear_finish, | 
|  | ec_GFp_simple_point_copy, | 
|  | ec_GFp_simple_point_set_to_infinity, | 
|  | ec_GFp_simple_set_Jprojective_coordinates_GFp, | 
|  | ec_GFp_simple_get_Jprojective_coordinates_GFp, | 
|  | ec_GFp_simple_point_set_affine_coordinates, | 
|  | ec_GFp_simple_point_get_affine_coordinates, | 
|  | 0,0,0, | 
|  | ec_GFp_simple_add, | 
|  | ec_GFp_simple_dbl, | 
|  | ec_GFp_simple_invert, | 
|  | ec_GFp_simple_is_at_infinity, | 
|  | ec_GFp_simple_is_on_curve, | 
|  | ec_GFp_simple_cmp, | 
|  | ec_GFp_simple_make_affine, | 
|  | ec_GFp_simple_points_make_affine, | 
|  | 0 /* mul */, | 
|  | 0 /* precompute_mult */, | 
|  | 0 /* have_precompute_mult */, | 
|  | ec_GFp_simple_field_mul, | 
|  | ec_GFp_simple_field_sqr, | 
|  | 0 /* field_div */, | 
|  | 0 /* field_encode */, | 
|  | 0 /* field_decode */, | 
|  | 0 /* field_set_to_one */ }; | 
|  |  | 
|  | return &ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Most method functions in this file are designed to work with | 
|  | * non-trivial representations of field elements if necessary | 
|  | * (see ecp_mont.c): while standard modular addition and subtraction | 
|  | * are used, the field_mul and field_sqr methods will be used for | 
|  | * multiplication, and field_encode and field_decode (if defined) | 
|  | * will be used for converting between representations. | 
|  |  | 
|  | * Functions ec_GFp_simple_points_make_affine() and | 
|  | * ec_GFp_simple_point_get_affine_coordinates() specifically assume | 
|  | * that if a non-trivial representation is used, it is a Montgomery | 
|  | * representation (i.e. 'encoding' means multiplying by some factor R). | 
|  | */ | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_group_init(EC_GROUP *group) | 
|  | { | 
|  | BN_init(&group->field); | 
|  | BN_init(&group->a); | 
|  | BN_init(&group->b); | 
|  | group->a_is_minus3 = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | void ec_GFp_simple_group_finish(EC_GROUP *group) | 
|  | { | 
|  | BN_free(&group->field); | 
|  | BN_free(&group->a); | 
|  | BN_free(&group->b); | 
|  | } | 
|  |  | 
|  |  | 
|  | void ec_GFp_simple_group_clear_finish(EC_GROUP *group) | 
|  | { | 
|  | BN_clear_free(&group->field); | 
|  | BN_clear_free(&group->a); | 
|  | BN_clear_free(&group->b); | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) | 
|  | { | 
|  | if (!BN_copy(&dest->field, &src->field)) return 0; | 
|  | if (!BN_copy(&dest->a, &src->a)) return 0; | 
|  | if (!BN_copy(&dest->b, &src->b)) return 0; | 
|  |  | 
|  | dest->a_is_minus3 = src->a_is_minus3; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_group_set_curve(EC_GROUP *group, | 
|  | const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | 
|  | { | 
|  | int ret = 0; | 
|  | BN_CTX *new_ctx = NULL; | 
|  | BIGNUM *tmp_a; | 
|  |  | 
|  | /* p must be a prime > 3 */ | 
|  | if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) | 
|  | { | 
|  | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ctx == NULL) | 
|  | { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | tmp_a = BN_CTX_get(ctx); | 
|  | if (tmp_a == NULL) goto err; | 
|  |  | 
|  | /* group->field */ | 
|  | if (!BN_copy(&group->field, p)) goto err; | 
|  | BN_set_negative(&group->field, 0); | 
|  |  | 
|  | /* group->a */ | 
|  | if (!BN_nnmod(tmp_a, a, p, ctx)) goto err; | 
|  | if (group->meth->field_encode) | 
|  | { if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) goto err; } | 
|  | else | 
|  | if (!BN_copy(&group->a, tmp_a)) goto err; | 
|  |  | 
|  | /* group->b */ | 
|  | if (!BN_nnmod(&group->b, b, p, ctx)) goto err; | 
|  | if (group->meth->field_encode) | 
|  | if (!group->meth->field_encode(group, &group->b, &group->b, ctx)) goto err; | 
|  |  | 
|  | /* group->a_is_minus3 */ | 
|  | if (!BN_add_word(tmp_a, 3)) goto err; | 
|  | group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field)); | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | if (new_ctx != NULL) | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) | 
|  | { | 
|  | int ret = 0; | 
|  | BN_CTX *new_ctx = NULL; | 
|  |  | 
|  | if (p != NULL) | 
|  | { | 
|  | if (!BN_copy(p, &group->field)) return 0; | 
|  | } | 
|  |  | 
|  | if (a != NULL || b != NULL) | 
|  | { | 
|  | if (group->meth->field_decode) | 
|  | { | 
|  | if (ctx == NULL) | 
|  | { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  | if (a != NULL) | 
|  | { | 
|  | if (!group->meth->field_decode(group, a, &group->a, ctx)) goto err; | 
|  | } | 
|  | if (b != NULL) | 
|  | { | 
|  | if (!group->meth->field_decode(group, b, &group->b, ctx)) goto err; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (a != NULL) | 
|  | { | 
|  | if (!BN_copy(a, &group->a)) goto err; | 
|  | } | 
|  | if (b != NULL) | 
|  | { | 
|  | if (!BN_copy(b, &group->b)) goto err; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | if (new_ctx) | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_group_get_degree(const EC_GROUP *group) | 
|  | { | 
|  | return BN_num_bits(&group->field); | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) | 
|  | { | 
|  | int ret = 0; | 
|  | BIGNUM *a,*b,*order,*tmp_1,*tmp_2; | 
|  | const BIGNUM *p = &group->field; | 
|  | BN_CTX *new_ctx = NULL; | 
|  |  | 
|  | if (ctx == NULL) | 
|  | { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | { | 
|  | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE); | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | BN_CTX_start(ctx); | 
|  | a = BN_CTX_get(ctx); | 
|  | b = BN_CTX_get(ctx); | 
|  | tmp_1 = BN_CTX_get(ctx); | 
|  | tmp_2 = BN_CTX_get(ctx); | 
|  | order = BN_CTX_get(ctx); | 
|  | if (order == NULL) goto err; | 
|  |  | 
|  | if (group->meth->field_decode) | 
|  | { | 
|  | if (!group->meth->field_decode(group, a, &group->a, ctx)) goto err; | 
|  | if (!group->meth->field_decode(group, b, &group->b, ctx)) goto err; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!BN_copy(a, &group->a)) goto err; | 
|  | if (!BN_copy(b, &group->b)) goto err; | 
|  | } | 
|  |  | 
|  | /* check the discriminant: | 
|  | * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p) | 
|  | * 0 =< a, b < p */ | 
|  | if (BN_is_zero(a)) | 
|  | { | 
|  | if (BN_is_zero(b)) goto err; | 
|  | } | 
|  | else if (!BN_is_zero(b)) | 
|  | { | 
|  | if (!BN_mod_sqr(tmp_1, a, p, ctx)) goto err; | 
|  | if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx)) goto err; | 
|  | if (!BN_lshift(tmp_1, tmp_2, 2)) goto err; | 
|  | /* tmp_1 = 4*a^3 */ | 
|  |  | 
|  | if (!BN_mod_sqr(tmp_2, b, p, ctx)) goto err; | 
|  | if (!BN_mul_word(tmp_2, 27)) goto err; | 
|  | /* tmp_2 = 27*b^2 */ | 
|  |  | 
|  | if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx)) goto err; | 
|  | if (BN_is_zero(a)) goto err; | 
|  | } | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | if (ctx != NULL) | 
|  | BN_CTX_end(ctx); | 
|  | if (new_ctx != NULL) | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_point_init(EC_POINT *point) | 
|  | { | 
|  | BN_init(&point->X); | 
|  | BN_init(&point->Y); | 
|  | BN_init(&point->Z); | 
|  | point->Z_is_one = 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | void ec_GFp_simple_point_finish(EC_POINT *point) | 
|  | { | 
|  | BN_free(&point->X); | 
|  | BN_free(&point->Y); | 
|  | BN_free(&point->Z); | 
|  | } | 
|  |  | 
|  |  | 
|  | void ec_GFp_simple_point_clear_finish(EC_POINT *point) | 
|  | { | 
|  | BN_clear_free(&point->X); | 
|  | BN_clear_free(&point->Y); | 
|  | BN_clear_free(&point->Z); | 
|  | point->Z_is_one = 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) | 
|  | { | 
|  | if (!BN_copy(&dest->X, &src->X)) return 0; | 
|  | if (!BN_copy(&dest->Y, &src->Y)) return 0; | 
|  | if (!BN_copy(&dest->Z, &src->Z)) return 0; | 
|  | dest->Z_is_one = src->Z_is_one; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) | 
|  | { | 
|  | point->Z_is_one = 0; | 
|  | BN_zero(&point->Z); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, | 
|  | const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx) | 
|  | { | 
|  | BN_CTX *new_ctx = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | if (ctx == NULL) | 
|  | { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (x != NULL) | 
|  | { | 
|  | if (!BN_nnmod(&point->X, x, &group->field, ctx)) goto err; | 
|  | if (group->meth->field_encode) | 
|  | { | 
|  | if (!group->meth->field_encode(group, &point->X, &point->X, ctx)) goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (y != NULL) | 
|  | { | 
|  | if (!BN_nnmod(&point->Y, y, &group->field, ctx)) goto err; | 
|  | if (group->meth->field_encode) | 
|  | { | 
|  | if (!group->meth->field_encode(group, &point->Y, &point->Y, ctx)) goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (z != NULL) | 
|  | { | 
|  | int Z_is_one; | 
|  |  | 
|  | if (!BN_nnmod(&point->Z, z, &group->field, ctx)) goto err; | 
|  | Z_is_one = BN_is_one(&point->Z); | 
|  | if (group->meth->field_encode) | 
|  | { | 
|  | if (Z_is_one && (group->meth->field_set_to_one != 0)) | 
|  | { | 
|  | if (!group->meth->field_set_to_one(group, &point->Z, ctx)) goto err; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!group->meth->field_encode(group, &point->Z, &point->Z, ctx)) goto err; | 
|  | } | 
|  | } | 
|  | point->Z_is_one = Z_is_one; | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | if (new_ctx != NULL) | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, | 
|  | BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx) | 
|  | { | 
|  | BN_CTX *new_ctx = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | if (group->meth->field_decode != 0) | 
|  | { | 
|  | if (ctx == NULL) | 
|  | { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (x != NULL) | 
|  | { | 
|  | if (!group->meth->field_decode(group, x, &point->X, ctx)) goto err; | 
|  | } | 
|  | if (y != NULL) | 
|  | { | 
|  | if (!group->meth->field_decode(group, y, &point->Y, ctx)) goto err; | 
|  | } | 
|  | if (z != NULL) | 
|  | { | 
|  | if (!group->meth->field_decode(group, z, &point->Z, ctx)) goto err; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (x != NULL) | 
|  | { | 
|  | if (!BN_copy(x, &point->X)) goto err; | 
|  | } | 
|  | if (y != NULL) | 
|  | { | 
|  | if (!BN_copy(y, &point->Y)) goto err; | 
|  | } | 
|  | if (z != NULL) | 
|  | { | 
|  | if (!BN_copy(z, &point->Z)) goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | if (new_ctx != NULL) | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, | 
|  | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) | 
|  | { | 
|  | if (x == NULL || y == NULL) | 
|  | { | 
|  | /* unlike for projective coordinates, we do not tolerate this */ | 
|  | ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, BN_value_one(), ctx); | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, | 
|  | BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | 
|  | { | 
|  | BN_CTX *new_ctx = NULL; | 
|  | BIGNUM *Z, *Z_1, *Z_2, *Z_3; | 
|  | const BIGNUM *Z_; | 
|  | int ret = 0; | 
|  |  | 
|  | if (EC_POINT_is_at_infinity(group, point)) | 
|  | { | 
|  | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ctx == NULL) | 
|  | { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | Z = BN_CTX_get(ctx); | 
|  | Z_1 = BN_CTX_get(ctx); | 
|  | Z_2 = BN_CTX_get(ctx); | 
|  | Z_3 = BN_CTX_get(ctx); | 
|  | if (Z_3 == NULL) goto err; | 
|  |  | 
|  | /* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */ | 
|  |  | 
|  | if (group->meth->field_decode) | 
|  | { | 
|  | if (!group->meth->field_decode(group, Z, &point->Z, ctx)) goto err; | 
|  | Z_ = Z; | 
|  | } | 
|  | else | 
|  | { | 
|  | Z_ = &point->Z; | 
|  | } | 
|  |  | 
|  | if (BN_is_one(Z_)) | 
|  | { | 
|  | if (group->meth->field_decode) | 
|  | { | 
|  | if (x != NULL) | 
|  | { | 
|  | if (!group->meth->field_decode(group, x, &point->X, ctx)) goto err; | 
|  | } | 
|  | if (y != NULL) | 
|  | { | 
|  | if (!group->meth->field_decode(group, y, &point->Y, ctx)) goto err; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (x != NULL) | 
|  | { | 
|  | if (!BN_copy(x, &point->X)) goto err; | 
|  | } | 
|  | if (y != NULL) | 
|  | { | 
|  | if (!BN_copy(y, &point->Y)) goto err; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx)) | 
|  | { | 
|  | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (group->meth->field_encode == 0) | 
|  | { | 
|  | /* field_sqr works on standard representation */ | 
|  | if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) goto err; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) goto err; | 
|  | } | 
|  |  | 
|  | if (x != NULL) | 
|  | { | 
|  | /* in the Montgomery case, field_mul will cancel out Montgomery factor in X: */ | 
|  | if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx)) goto err; | 
|  | } | 
|  |  | 
|  | if (y != NULL) | 
|  | { | 
|  | if (group->meth->field_encode == 0) | 
|  | { | 
|  | /* field_mul works on standard representation */ | 
|  | if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) goto err; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) goto err; | 
|  | } | 
|  |  | 
|  | /* in the Montgomery case, field_mul will cancel out Montgomery factor in Y: */ | 
|  | if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | if (new_ctx != NULL) | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) | 
|  | { | 
|  | int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | 
|  | int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | 
|  | const BIGNUM *p; | 
|  | BN_CTX *new_ctx = NULL; | 
|  | BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; | 
|  | int ret = 0; | 
|  |  | 
|  | if (a == b) | 
|  | return EC_POINT_dbl(group, r, a, ctx); | 
|  | if (EC_POINT_is_at_infinity(group, a)) | 
|  | return EC_POINT_copy(r, b); | 
|  | if (EC_POINT_is_at_infinity(group, b)) | 
|  | return EC_POINT_copy(r, a); | 
|  |  | 
|  | field_mul = group->meth->field_mul; | 
|  | field_sqr = group->meth->field_sqr; | 
|  | p = &group->field; | 
|  |  | 
|  | if (ctx == NULL) | 
|  | { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | n0 = BN_CTX_get(ctx); | 
|  | n1 = BN_CTX_get(ctx); | 
|  | n2 = BN_CTX_get(ctx); | 
|  | n3 = BN_CTX_get(ctx); | 
|  | n4 = BN_CTX_get(ctx); | 
|  | n5 = BN_CTX_get(ctx); | 
|  | n6 = BN_CTX_get(ctx); | 
|  | if (n6 == NULL) goto end; | 
|  |  | 
|  | /* Note that in this function we must not read components of 'a' or 'b' | 
|  | * once we have written the corresponding components of 'r'. | 
|  | * ('r' might be one of 'a' or 'b'.) | 
|  | */ | 
|  |  | 
|  | /* n1, n2 */ | 
|  | if (b->Z_is_one) | 
|  | { | 
|  | if (!BN_copy(n1, &a->X)) goto end; | 
|  | if (!BN_copy(n2, &a->Y)) goto end; | 
|  | /* n1 = X_a */ | 
|  | /* n2 = Y_a */ | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!field_sqr(group, n0, &b->Z, ctx)) goto end; | 
|  | if (!field_mul(group, n1, &a->X, n0, ctx)) goto end; | 
|  | /* n1 = X_a * Z_b^2 */ | 
|  |  | 
|  | if (!field_mul(group, n0, n0, &b->Z, ctx)) goto end; | 
|  | if (!field_mul(group, n2, &a->Y, n0, ctx)) goto end; | 
|  | /* n2 = Y_a * Z_b^3 */ | 
|  | } | 
|  |  | 
|  | /* n3, n4 */ | 
|  | if (a->Z_is_one) | 
|  | { | 
|  | if (!BN_copy(n3, &b->X)) goto end; | 
|  | if (!BN_copy(n4, &b->Y)) goto end; | 
|  | /* n3 = X_b */ | 
|  | /* n4 = Y_b */ | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!field_sqr(group, n0, &a->Z, ctx)) goto end; | 
|  | if (!field_mul(group, n3, &b->X, n0, ctx)) goto end; | 
|  | /* n3 = X_b * Z_a^2 */ | 
|  |  | 
|  | if (!field_mul(group, n0, n0, &a->Z, ctx)) goto end; | 
|  | if (!field_mul(group, n4, &b->Y, n0, ctx)) goto end; | 
|  | /* n4 = Y_b * Z_a^3 */ | 
|  | } | 
|  |  | 
|  | /* n5, n6 */ | 
|  | if (!BN_mod_sub_quick(n5, n1, n3, p)) goto end; | 
|  | if (!BN_mod_sub_quick(n6, n2, n4, p)) goto end; | 
|  | /* n5 = n1 - n3 */ | 
|  | /* n6 = n2 - n4 */ | 
|  |  | 
|  | if (BN_is_zero(n5)) | 
|  | { | 
|  | if (BN_is_zero(n6)) | 
|  | { | 
|  | /* a is the same point as b */ | 
|  | BN_CTX_end(ctx); | 
|  | ret = EC_POINT_dbl(group, r, a, ctx); | 
|  | ctx = NULL; | 
|  | goto end; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* a is the inverse of b */ | 
|  | BN_zero(&r->Z); | 
|  | r->Z_is_one = 0; | 
|  | ret = 1; | 
|  | goto end; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* 'n7', 'n8' */ | 
|  | if (!BN_mod_add_quick(n1, n1, n3, p)) goto end; | 
|  | if (!BN_mod_add_quick(n2, n2, n4, p)) goto end; | 
|  | /* 'n7' = n1 + n3 */ | 
|  | /* 'n8' = n2 + n4 */ | 
|  |  | 
|  | /* Z_r */ | 
|  | if (a->Z_is_one && b->Z_is_one) | 
|  | { | 
|  | if (!BN_copy(&r->Z, n5)) goto end; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (a->Z_is_one) | 
|  | { if (!BN_copy(n0, &b->Z)) goto end; } | 
|  | else if (b->Z_is_one) | 
|  | { if (!BN_copy(n0, &a->Z)) goto end; } | 
|  | else | 
|  | { if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) goto end; } | 
|  | if (!field_mul(group, &r->Z, n0, n5, ctx)) goto end; | 
|  | } | 
|  | r->Z_is_one = 0; | 
|  | /* Z_r = Z_a * Z_b * n5 */ | 
|  |  | 
|  | /* X_r */ | 
|  | if (!field_sqr(group, n0, n6, ctx)) goto end; | 
|  | if (!field_sqr(group, n4, n5, ctx)) goto end; | 
|  | if (!field_mul(group, n3, n1, n4, ctx)) goto end; | 
|  | if (!BN_mod_sub_quick(&r->X, n0, n3, p)) goto end; | 
|  | /* X_r = n6^2 - n5^2 * 'n7' */ | 
|  |  | 
|  | /* 'n9' */ | 
|  | if (!BN_mod_lshift1_quick(n0, &r->X, p)) goto end; | 
|  | if (!BN_mod_sub_quick(n0, n3, n0, p)) goto end; | 
|  | /* n9 = n5^2 * 'n7' - 2 * X_r */ | 
|  |  | 
|  | /* Y_r */ | 
|  | if (!field_mul(group, n0, n0, n6, ctx)) goto end; | 
|  | if (!field_mul(group, n5, n4, n5, ctx)) goto end; /* now n5 is n5^3 */ | 
|  | if (!field_mul(group, n1, n2, n5, ctx)) goto end; | 
|  | if (!BN_mod_sub_quick(n0, n0, n1, p)) goto end; | 
|  | if (BN_is_odd(n0)) | 
|  | if (!BN_add(n0, n0, p)) goto end; | 
|  | /* now  0 <= n0 < 2*p,  and n0 is even */ | 
|  | if (!BN_rshift1(&r->Y, n0)) goto end; | 
|  | /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | end: | 
|  | if (ctx) /* otherwise we already called BN_CTX_end */ | 
|  | BN_CTX_end(ctx); | 
|  | if (new_ctx != NULL) | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) | 
|  | { | 
|  | int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | 
|  | int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | 
|  | const BIGNUM *p; | 
|  | BN_CTX *new_ctx = NULL; | 
|  | BIGNUM *n0, *n1, *n2, *n3; | 
|  | int ret = 0; | 
|  |  | 
|  | if (EC_POINT_is_at_infinity(group, a)) | 
|  | { | 
|  | BN_zero(&r->Z); | 
|  | r->Z_is_one = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | field_mul = group->meth->field_mul; | 
|  | field_sqr = group->meth->field_sqr; | 
|  | p = &group->field; | 
|  |  | 
|  | if (ctx == NULL) | 
|  | { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | n0 = BN_CTX_get(ctx); | 
|  | n1 = BN_CTX_get(ctx); | 
|  | n2 = BN_CTX_get(ctx); | 
|  | n3 = BN_CTX_get(ctx); | 
|  | if (n3 == NULL) goto err; | 
|  |  | 
|  | /* Note that in this function we must not read components of 'a' | 
|  | * once we have written the corresponding components of 'r'. | 
|  | * ('r' might the same as 'a'.) | 
|  | */ | 
|  |  | 
|  | /* n1 */ | 
|  | if (a->Z_is_one) | 
|  | { | 
|  | if (!field_sqr(group, n0, &a->X, ctx)) goto err; | 
|  | if (!BN_mod_lshift1_quick(n1, n0, p)) goto err; | 
|  | if (!BN_mod_add_quick(n0, n0, n1, p)) goto err; | 
|  | if (!BN_mod_add_quick(n1, n0, &group->a, p)) goto err; | 
|  | /* n1 = 3 * X_a^2 + a_curve */ | 
|  | } | 
|  | else if (group->a_is_minus3) | 
|  | { | 
|  | if (!field_sqr(group, n1, &a->Z, ctx)) goto err; | 
|  | if (!BN_mod_add_quick(n0, &a->X, n1, p)) goto err; | 
|  | if (!BN_mod_sub_quick(n2, &a->X, n1, p)) goto err; | 
|  | if (!field_mul(group, n1, n0, n2, ctx)) goto err; | 
|  | if (!BN_mod_lshift1_quick(n0, n1, p)) goto err; | 
|  | if (!BN_mod_add_quick(n1, n0, n1, p)) goto err; | 
|  | /* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) | 
|  | *    = 3 * X_a^2 - 3 * Z_a^4 */ | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!field_sqr(group, n0, &a->X, ctx)) goto err; | 
|  | if (!BN_mod_lshift1_quick(n1, n0, p)) goto err; | 
|  | if (!BN_mod_add_quick(n0, n0, n1, p)) goto err; | 
|  | if (!field_sqr(group, n1, &a->Z, ctx)) goto err; | 
|  | if (!field_sqr(group, n1, n1, ctx)) goto err; | 
|  | if (!field_mul(group, n1, n1, &group->a, ctx)) goto err; | 
|  | if (!BN_mod_add_quick(n1, n1, n0, p)) goto err; | 
|  | /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ | 
|  | } | 
|  |  | 
|  | /* Z_r */ | 
|  | if (a->Z_is_one) | 
|  | { | 
|  | if (!BN_copy(n0, &a->Y)) goto err; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) goto err; | 
|  | } | 
|  | if (!BN_mod_lshift1_quick(&r->Z, n0, p)) goto err; | 
|  | r->Z_is_one = 0; | 
|  | /* Z_r = 2 * Y_a * Z_a */ | 
|  |  | 
|  | /* n2 */ | 
|  | if (!field_sqr(group, n3, &a->Y, ctx)) goto err; | 
|  | if (!field_mul(group, n2, &a->X, n3, ctx)) goto err; | 
|  | if (!BN_mod_lshift_quick(n2, n2, 2, p)) goto err; | 
|  | /* n2 = 4 * X_a * Y_a^2 */ | 
|  |  | 
|  | /* X_r */ | 
|  | if (!BN_mod_lshift1_quick(n0, n2, p)) goto err; | 
|  | if (!field_sqr(group, &r->X, n1, ctx)) goto err; | 
|  | if (!BN_mod_sub_quick(&r->X, &r->X, n0, p)) goto err; | 
|  | /* X_r = n1^2 - 2 * n2 */ | 
|  |  | 
|  | /* n3 */ | 
|  | if (!field_sqr(group, n0, n3, ctx)) goto err; | 
|  | if (!BN_mod_lshift_quick(n3, n0, 3, p)) goto err; | 
|  | /* n3 = 8 * Y_a^4 */ | 
|  |  | 
|  | /* Y_r */ | 
|  | if (!BN_mod_sub_quick(n0, n2, &r->X, p)) goto err; | 
|  | if (!field_mul(group, n0, n1, n0, ctx)) goto err; | 
|  | if (!BN_mod_sub_quick(&r->Y, n0, n3, p)) goto err; | 
|  | /* Y_r = n1 * (n2 - X_r) - n3 */ | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | if (new_ctx != NULL) | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | 
|  | { | 
|  | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) | 
|  | /* point is its own inverse */ | 
|  | return 1; | 
|  |  | 
|  | return BN_usub(&point->Y, &group->field, &point->Y); | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) | 
|  | { | 
|  | return BN_is_zero(&point->Z); | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) | 
|  | { | 
|  | int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | 
|  | int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | 
|  | const BIGNUM *p; | 
|  | BN_CTX *new_ctx = NULL; | 
|  | BIGNUM *rh, *tmp, *Z4, *Z6; | 
|  | int ret = -1; | 
|  |  | 
|  | if (EC_POINT_is_at_infinity(group, point)) | 
|  | return 1; | 
|  |  | 
|  | field_mul = group->meth->field_mul; | 
|  | field_sqr = group->meth->field_sqr; | 
|  | p = &group->field; | 
|  |  | 
|  | if (ctx == NULL) | 
|  | { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | rh = BN_CTX_get(ctx); | 
|  | tmp = BN_CTX_get(ctx); | 
|  | Z4 = BN_CTX_get(ctx); | 
|  | Z6 = BN_CTX_get(ctx); | 
|  | if (Z6 == NULL) goto err; | 
|  |  | 
|  | /* We have a curve defined by a Weierstrass equation | 
|  | *      y^2 = x^3 + a*x + b. | 
|  | * The point to consider is given in Jacobian projective coordinates | 
|  | * where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3). | 
|  | * Substituting this and multiplying by  Z^6  transforms the above equation into | 
|  | *      Y^2 = X^3 + a*X*Z^4 + b*Z^6. | 
|  | * To test this, we add up the right-hand side in 'rh'. | 
|  | */ | 
|  |  | 
|  | /* rh := X^2 */ | 
|  | if (!field_sqr(group, rh, &point->X, ctx)) goto err; | 
|  |  | 
|  | if (!point->Z_is_one) | 
|  | { | 
|  | if (!field_sqr(group, tmp, &point->Z, ctx)) goto err; | 
|  | if (!field_sqr(group, Z4, tmp, ctx)) goto err; | 
|  | if (!field_mul(group, Z6, Z4, tmp, ctx)) goto err; | 
|  |  | 
|  | /* rh := (rh + a*Z^4)*X */ | 
|  | if (group->a_is_minus3) | 
|  | { | 
|  | if (!BN_mod_lshift1_quick(tmp, Z4, p)) goto err; | 
|  | if (!BN_mod_add_quick(tmp, tmp, Z4, p)) goto err; | 
|  | if (!BN_mod_sub_quick(rh, rh, tmp, p)) goto err; | 
|  | if (!field_mul(group, rh, rh, &point->X, ctx)) goto err; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!field_mul(group, tmp, Z4, &group->a, ctx)) goto err; | 
|  | if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err; | 
|  | if (!field_mul(group, rh, rh, &point->X, ctx)) goto err; | 
|  | } | 
|  |  | 
|  | /* rh := rh + b*Z^6 */ | 
|  | if (!field_mul(group, tmp, &group->b, Z6, ctx)) goto err; | 
|  | if (!BN_mod_add_quick(rh, rh, tmp, p)) goto err; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* point->Z_is_one */ | 
|  |  | 
|  | /* rh := (rh + a)*X */ | 
|  | if (!BN_mod_add_quick(rh, rh, &group->a, p)) goto err; | 
|  | if (!field_mul(group, rh, rh, &point->X, ctx)) goto err; | 
|  | /* rh := rh + b */ | 
|  | if (!BN_mod_add_quick(rh, rh, &group->b, p)) goto err; | 
|  | } | 
|  |  | 
|  | /* 'lh' := Y^2 */ | 
|  | if (!field_sqr(group, tmp, &point->Y, ctx)) goto err; | 
|  |  | 
|  | ret = (0 == BN_ucmp(tmp, rh)); | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | if (new_ctx != NULL) | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) | 
|  | { | 
|  | /* return values: | 
|  | *  -1   error | 
|  | *   0   equal (in affine coordinates) | 
|  | *   1   not equal | 
|  | */ | 
|  |  | 
|  | int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | 
|  | int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | 
|  | BN_CTX *new_ctx = NULL; | 
|  | BIGNUM *tmp1, *tmp2, *Za23, *Zb23; | 
|  | const BIGNUM *tmp1_, *tmp2_; | 
|  | int ret = -1; | 
|  |  | 
|  | if (EC_POINT_is_at_infinity(group, a)) | 
|  | { | 
|  | return EC_POINT_is_at_infinity(group, b) ? 0 : 1; | 
|  | } | 
|  |  | 
|  | if (EC_POINT_is_at_infinity(group, b)) | 
|  | return 1; | 
|  |  | 
|  | if (a->Z_is_one && b->Z_is_one) | 
|  | { | 
|  | return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; | 
|  | } | 
|  |  | 
|  | field_mul = group->meth->field_mul; | 
|  | field_sqr = group->meth->field_sqr; | 
|  |  | 
|  | if (ctx == NULL) | 
|  | { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | tmp1 = BN_CTX_get(ctx); | 
|  | tmp2 = BN_CTX_get(ctx); | 
|  | Za23 = BN_CTX_get(ctx); | 
|  | Zb23 = BN_CTX_get(ctx); | 
|  | if (Zb23 == NULL) goto end; | 
|  |  | 
|  | /* We have to decide whether | 
|  | *     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), | 
|  | * or equivalently, whether | 
|  | *     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). | 
|  | */ | 
|  |  | 
|  | if (!b->Z_is_one) | 
|  | { | 
|  | if (!field_sqr(group, Zb23, &b->Z, ctx)) goto end; | 
|  | if (!field_mul(group, tmp1, &a->X, Zb23, ctx)) goto end; | 
|  | tmp1_ = tmp1; | 
|  | } | 
|  | else | 
|  | tmp1_ = &a->X; | 
|  | if (!a->Z_is_one) | 
|  | { | 
|  | if (!field_sqr(group, Za23, &a->Z, ctx)) goto end; | 
|  | if (!field_mul(group, tmp2, &b->X, Za23, ctx)) goto end; | 
|  | tmp2_ = tmp2; | 
|  | } | 
|  | else | 
|  | tmp2_ = &b->X; | 
|  |  | 
|  | /* compare  X_a*Z_b^2  with  X_b*Z_a^2 */ | 
|  | if (BN_cmp(tmp1_, tmp2_) != 0) | 
|  | { | 
|  | ret = 1; /* points differ */ | 
|  | goto end; | 
|  | } | 
|  |  | 
|  |  | 
|  | if (!b->Z_is_one) | 
|  | { | 
|  | if (!field_mul(group, Zb23, Zb23, &b->Z, ctx)) goto end; | 
|  | if (!field_mul(group, tmp1, &a->Y, Zb23, ctx)) goto end; | 
|  | /* tmp1_ = tmp1 */ | 
|  | } | 
|  | else | 
|  | tmp1_ = &a->Y; | 
|  | if (!a->Z_is_one) | 
|  | { | 
|  | if (!field_mul(group, Za23, Za23, &a->Z, ctx)) goto end; | 
|  | if (!field_mul(group, tmp2, &b->Y, Za23, ctx)) goto end; | 
|  | /* tmp2_ = tmp2 */ | 
|  | } | 
|  | else | 
|  | tmp2_ = &b->Y; | 
|  |  | 
|  | /* compare  Y_a*Z_b^3  with  Y_b*Z_a^3 */ | 
|  | if (BN_cmp(tmp1_, tmp2_) != 0) | 
|  | { | 
|  | ret = 1; /* points differ */ | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* points are equal */ | 
|  | ret = 0; | 
|  |  | 
|  | end: | 
|  | BN_CTX_end(ctx); | 
|  | if (new_ctx != NULL) | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | 
|  | { | 
|  | BN_CTX *new_ctx = NULL; | 
|  | BIGNUM *x, *y; | 
|  | int ret = 0; | 
|  |  | 
|  | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) | 
|  | return 1; | 
|  |  | 
|  | if (ctx == NULL) | 
|  | { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | x = BN_CTX_get(ctx); | 
|  | y = BN_CTX_get(ctx); | 
|  | if (y == NULL) goto err; | 
|  |  | 
|  | if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; | 
|  | if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; | 
|  | if (!point->Z_is_one) | 
|  | { | 
|  | ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | if (new_ctx != NULL) | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) | 
|  | { | 
|  | BN_CTX *new_ctx = NULL; | 
|  | BIGNUM *tmp, *tmp_Z; | 
|  | BIGNUM **prod_Z = NULL; | 
|  | size_t i; | 
|  | int ret = 0; | 
|  |  | 
|  | if (num == 0) | 
|  | return 1; | 
|  |  | 
|  | if (ctx == NULL) | 
|  | { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | tmp = BN_CTX_get(ctx); | 
|  | tmp_Z = BN_CTX_get(ctx); | 
|  | if (tmp == NULL || tmp_Z == NULL) goto err; | 
|  |  | 
|  | prod_Z = OPENSSL_malloc(num * sizeof prod_Z[0]); | 
|  | if (prod_Z == NULL) goto err; | 
|  | for (i = 0; i < num; i++) | 
|  | { | 
|  | prod_Z[i] = BN_new(); | 
|  | if (prod_Z[i] == NULL) goto err; | 
|  | } | 
|  |  | 
|  | /* Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z, | 
|  | * skipping any zero-valued inputs (pretend that they're 1). */ | 
|  |  | 
|  | if (!BN_is_zero(&points[0]->Z)) | 
|  | { | 
|  | if (!BN_copy(prod_Z[0], &points[0]->Z)) goto err; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (group->meth->field_set_to_one != 0) | 
|  | { | 
|  | if (!group->meth->field_set_to_one(group, prod_Z[0], ctx)) goto err; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!BN_one(prod_Z[0])) goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 1; i < num; i++) | 
|  | { | 
|  | if (!BN_is_zero(&points[i]->Z)) | 
|  | { | 
|  | if (!group->meth->field_mul(group, prod_Z[i], prod_Z[i - 1], &points[i]->Z, ctx)) goto err; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!BN_copy(prod_Z[i], prod_Z[i - 1])) goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now use a single explicit inversion to replace every | 
|  | * non-zero points[i]->Z by its inverse. */ | 
|  |  | 
|  | if (!BN_mod_inverse(tmp, prod_Z[num - 1], &group->field, ctx)) | 
|  | { | 
|  | ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB); | 
|  | goto err; | 
|  | } | 
|  | if (group->meth->field_encode != 0) | 
|  | { | 
|  | /* In the Montgomery case, we just turned  R*H  (representing H) | 
|  | * into  1/(R*H),  but we need  R*(1/H)  (representing 1/H); | 
|  | * i.e. we need to multiply by the Montgomery factor twice. */ | 
|  | if (!group->meth->field_encode(group, tmp, tmp, ctx)) goto err; | 
|  | if (!group->meth->field_encode(group, tmp, tmp, ctx)) goto err; | 
|  | } | 
|  |  | 
|  | for (i = num - 1; i > 0; --i) | 
|  | { | 
|  | /* Loop invariant: tmp is the product of the inverses of | 
|  | * points[0]->Z .. points[i]->Z (zero-valued inputs skipped). */ | 
|  | if (!BN_is_zero(&points[i]->Z)) | 
|  | { | 
|  | /* Set tmp_Z to the inverse of points[i]->Z (as product | 
|  | * of Z inverses 0 .. i, Z values 0 .. i - 1). */ | 
|  | if (!group->meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx)) goto err; | 
|  | /* Update tmp to satisfy the loop invariant for i - 1. */ | 
|  | if (!group->meth->field_mul(group, tmp, tmp, &points[i]->Z, ctx)) goto err; | 
|  | /* Replace points[i]->Z by its inverse. */ | 
|  | if (!BN_copy(&points[i]->Z, tmp_Z)) goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!BN_is_zero(&points[0]->Z)) | 
|  | { | 
|  | /* Replace points[0]->Z by its inverse. */ | 
|  | if (!BN_copy(&points[0]->Z, tmp)) goto err; | 
|  | } | 
|  |  | 
|  | /* Finally, fix up the X and Y coordinates for all points. */ | 
|  |  | 
|  | for (i = 0; i < num; i++) | 
|  | { | 
|  | EC_POINT *p = points[i]; | 
|  |  | 
|  | if (!BN_is_zero(&p->Z)) | 
|  | { | 
|  | /* turn  (X, Y, 1/Z)  into  (X/Z^2, Y/Z^3, 1) */ | 
|  |  | 
|  | if (!group->meth->field_sqr(group, tmp, &p->Z, ctx)) goto err; | 
|  | if (!group->meth->field_mul(group, &p->X, &p->X, tmp, ctx)) goto err; | 
|  |  | 
|  | if (!group->meth->field_mul(group, tmp, tmp, &p->Z, ctx)) goto err; | 
|  | if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp, ctx)) goto err; | 
|  |  | 
|  | if (group->meth->field_set_to_one != 0) | 
|  | { | 
|  | if (!group->meth->field_set_to_one(group, &p->Z, ctx)) goto err; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!BN_one(&p->Z)) goto err; | 
|  | } | 
|  | p->Z_is_one = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | if (new_ctx != NULL) | 
|  | BN_CTX_free(new_ctx); | 
|  | if (prod_Z != NULL) | 
|  | { | 
|  | for (i = 0; i < num; i++) | 
|  | { | 
|  | if (prod_Z[i] == NULL) break; | 
|  | BN_clear_free(prod_Z[i]); | 
|  | } | 
|  | OPENSSL_free(prod_Z); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | 
|  | { | 
|  | return BN_mod_mul(r, a, b, &group->field, ctx); | 
|  | } | 
|  |  | 
|  |  | 
|  | int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) | 
|  | { | 
|  | return BN_mod_sqr(r, a, &group->field, ctx); | 
|  | } |