|  | =pod | 
|  |  | 
|  | =head1 NAME | 
|  |  | 
|  | PEM, PEM_read_bio_PrivateKey, PEM_read_PrivateKey, PEM_write_bio_PrivateKey, PEM_write_PrivateKey, PEM_write_bio_PKCS8PrivateKey, PEM_write_PKCS8PrivateKey, PEM_write_bio_PKCS8PrivateKey_nid, PEM_write_PKCS8PrivateKey_nid, PEM_read_bio_PUBKEY, PEM_read_PUBKEY, PEM_write_bio_PUBKEY, PEM_write_PUBKEY, PEM_read_bio_RSAPrivateKey, PEM_read_RSAPrivateKey, PEM_write_bio_RSAPrivateKey, PEM_write_RSAPrivateKey, PEM_read_bio_RSAPublicKey, PEM_read_RSAPublicKey, PEM_write_bio_RSAPublicKey, PEM_write_RSAPublicKey, PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY, PEM_write_bio_RSA_PUBKEY, PEM_write_RSA_PUBKEY, PEM_read_bio_DSAPrivateKey, PEM_read_DSAPrivateKey, PEM_write_bio_DSAPrivateKey, PEM_write_DSAPrivateKey, PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY, PEM_write_bio_DSA_PUBKEY, PEM_write_DSA_PUBKEY, PEM_read_bio_DSAparams, PEM_read_DSAparams, PEM_write_bio_DSAparams, PEM_write_DSAparams, PEM_read_bio_DHparams, PEM_read_DHparams, PEM_write_bio_DHparams, PEM_write_DHparams, PEM_read_bio_X509, PEM_read_X509, PEM_write_bio_X509, PEM_write_X509, PEM_read_bio_X509_AUX, PEM_read_X509_AUX, PEM_write_bio_X509_AUX, PEM_write_X509_AUX, PEM_read_bio_X509_REQ, PEM_read_X509_REQ, PEM_write_bio_X509_REQ, PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW, PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL, PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7, PEM_write_bio_PKCS7, PEM_write_PKCS7, PEM_read_bio_NETSCAPE_CERT_SEQUENCE, PEM_read_NETSCAPE_CERT_SEQUENCE, PEM_write_bio_NETSCAPE_CERT_SEQUENCE, PEM_write_NETSCAPE_CERT_SEQUENCE - PEM routines | 
|  |  | 
|  | =head1 SYNOPSIS | 
|  |  | 
|  | #include <openssl/pem.h> | 
|  |  | 
|  | EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, | 
|  | unsigned char *kstr, int klen, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, | 
|  | unsigned char *kstr, int klen, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, | 
|  | char *kstr, int klen, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, | 
|  | char *kstr, int klen, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid, | 
|  | char *kstr, int klen, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid, | 
|  | char *kstr, int klen, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x); | 
|  | int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x); | 
|  |  | 
|  | RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc, | 
|  | unsigned char *kstr, int klen, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc, | 
|  | unsigned char *kstr, int klen, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x); | 
|  |  | 
|  | int PEM_write_RSAPublicKey(FILE *fp, RSA *x); | 
|  |  | 
|  | RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x); | 
|  |  | 
|  | int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x); | 
|  |  | 
|  | DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc, | 
|  | unsigned char *kstr, int klen, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc, | 
|  | unsigned char *kstr, int klen, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x); | 
|  |  | 
|  | int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x); | 
|  |  | 
|  | DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u); | 
|  |  | 
|  | DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_bio_DSAparams(BIO *bp, DSA *x); | 
|  |  | 
|  | int PEM_write_DSAparams(FILE *fp, DSA *x); | 
|  |  | 
|  | DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u); | 
|  |  | 
|  | DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_bio_DHparams(BIO *bp, DH *x); | 
|  |  | 
|  | int PEM_write_DHparams(FILE *fp, DH *x); | 
|  |  | 
|  | X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u); | 
|  |  | 
|  | X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_bio_X509(BIO *bp, X509 *x); | 
|  |  | 
|  | int PEM_write_X509(FILE *fp, X509 *x); | 
|  |  | 
|  | X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u); | 
|  |  | 
|  | X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_bio_X509_AUX(BIO *bp, X509 *x); | 
|  |  | 
|  | int PEM_write_X509_AUX(FILE *fp, X509 *x); | 
|  |  | 
|  | X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x); | 
|  |  | 
|  | int PEM_write_X509_REQ(FILE *fp, X509_REQ *x); | 
|  |  | 
|  | int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x); | 
|  |  | 
|  | int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x); | 
|  |  | 
|  | X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x, | 
|  | pem_password_cb *cb, void *u); | 
|  | X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x, | 
|  | pem_password_cb *cb, void *u); | 
|  | int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x); | 
|  | int PEM_write_X509_CRL(FILE *fp, X509_CRL *x); | 
|  |  | 
|  | PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u); | 
|  |  | 
|  | PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x); | 
|  |  | 
|  | int PEM_write_PKCS7(FILE *fp, PKCS7 *x); | 
|  |  | 
|  | NETSCAPE_CERT_SEQUENCE *PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, | 
|  | NETSCAPE_CERT_SEQUENCE **x, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | NETSCAPE_CERT_SEQUENCE *PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp, | 
|  | NETSCAPE_CERT_SEQUENCE **x, | 
|  | pem_password_cb *cb, void *u); | 
|  |  | 
|  | int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE *x); | 
|  |  | 
|  | int PEM_write_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE *x); | 
|  |  | 
|  | =head1 DESCRIPTION | 
|  |  | 
|  | The PEM functions read or write structures in PEM format. In | 
|  | this sense PEM format is simply base64 encoded data surrounded | 
|  | by header lines. | 
|  |  | 
|  | For more details about the meaning of arguments see the | 
|  | B<PEM FUNCTION ARGUMENTS> section. | 
|  |  | 
|  | Each operation has four functions associated with it. For | 
|  | clarity the term "B<foobar> functions" will be used to collectively | 
|  | refer to the PEM_read_bio_foobar(), PEM_read_foobar(), | 
|  | PEM_write_bio_foobar() and PEM_write_foobar() functions. | 
|  |  | 
|  | The B<PrivateKey> functions read or write a private key in | 
|  | PEM format using an EVP_PKEY structure. The write routines use | 
|  | "traditional" private key format and can handle both RSA and DSA | 
|  | private keys. The read functions can additionally transparently | 
|  | handle PKCS#8 format encrypted and unencrypted keys too. | 
|  |  | 
|  | PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() | 
|  | write a private key in an EVP_PKEY structure in PKCS#8 | 
|  | EncryptedPrivateKeyInfo format using PKCS#5 v2.0 password based encryption | 
|  | algorithms. The B<cipher> argument specifies the encryption algorithm to | 
|  | use: unlike all other PEM routines the encryption is applied at the | 
|  | PKCS#8 level and not in the PEM headers. If B<cipher> is NULL then no | 
|  | encryption is used and a PKCS#8 PrivateKeyInfo structure is used instead. | 
|  |  | 
|  | PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid() | 
|  | also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however | 
|  | it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm | 
|  | to use is specified in the B<nid> parameter and should be the NID of the | 
|  | corresponding OBJECT IDENTIFIER (see NOTES section). | 
|  |  | 
|  | The B<PUBKEY> functions process a public key using an EVP_PKEY | 
|  | structure. The public key is encoded as a SubjectPublicKeyInfo | 
|  | structure. | 
|  |  | 
|  | The B<RSAPrivateKey> functions process an RSA private key using an | 
|  | RSA structure. It handles the same formats as the B<PrivateKey> | 
|  | functions but an error occurs if the private key is not RSA. | 
|  |  | 
|  | The B<RSAPublicKey> functions process an RSA public key using an | 
|  | RSA structure. The public key is encoded using a PKCS#1 RSAPublicKey | 
|  | structure. | 
|  |  | 
|  | The B<RSA_PUBKEY> functions also process an RSA public key using | 
|  | an RSA structure. However the public key is encoded using a | 
|  | SubjectPublicKeyInfo structure and an error occurs if the public | 
|  | key is not RSA. | 
|  |  | 
|  | The B<DSAPrivateKey> functions process a DSA private key using a | 
|  | DSA structure. It handles the same formats as the B<PrivateKey> | 
|  | functions but an error occurs if the private key is not DSA. | 
|  |  | 
|  | The B<DSA_PUBKEY> functions process a DSA public key using | 
|  | a DSA structure. The public key is encoded using a | 
|  | SubjectPublicKeyInfo structure and an error occurs if the public | 
|  | key is not DSA. | 
|  |  | 
|  | The B<DSAparams> functions process DSA parameters using a DSA | 
|  | structure. The parameters are encoded using a foobar structure. | 
|  |  | 
|  | The B<DHparams> functions process DH parameters using a DH | 
|  | structure. The parameters are encoded using a PKCS#3 DHparameter | 
|  | structure. | 
|  |  | 
|  | The B<X509> functions process an X509 certificate using an X509 | 
|  | structure. They will also process a trusted X509 certificate but | 
|  | any trust settings are discarded. | 
|  |  | 
|  | The B<X509_AUX> functions process a trusted X509 certificate using | 
|  | an X509 structure. | 
|  |  | 
|  | The B<X509_REQ> and B<X509_REQ_NEW> functions process a PKCS#10 | 
|  | certificate request using an X509_REQ structure. The B<X509_REQ> | 
|  | write functions use B<CERTIFICATE REQUEST> in the header whereas | 
|  | the B<X509_REQ_NEW> functions use B<NEW CERTIFICATE REQUEST> | 
|  | (as required by some CAs). The B<X509_REQ> read functions will | 
|  | handle either form so there are no B<X509_REQ_NEW> read functions. | 
|  |  | 
|  | The B<X509_CRL> functions process an X509 CRL using an X509_CRL | 
|  | structure. | 
|  |  | 
|  | The B<PKCS7> functions process a PKCS#7 ContentInfo using a PKCS7 | 
|  | structure. | 
|  |  | 
|  | The B<NETSCAPE_CERT_SEQUENCE> functions process a Netscape Certificate | 
|  | Sequence using a NETSCAPE_CERT_SEQUENCE structure. | 
|  |  | 
|  | =head1 PEM FUNCTION ARGUMENTS | 
|  |  | 
|  | The PEM functions have many common arguments. | 
|  |  | 
|  | The B<bp> BIO parameter (if present) specifies the BIO to read from | 
|  | or write to. | 
|  |  | 
|  | The B<fp> FILE parameter (if present) specifies the FILE pointer to | 
|  | read from or write to. | 
|  |  | 
|  | The PEM read functions all take an argument B<TYPE **x> and return | 
|  | a B<TYPE *> pointer. Where B<TYPE> is whatever structure the function | 
|  | uses. If B<x> is NULL then the parameter is ignored. If B<x> is not | 
|  | NULL but B<*x> is NULL then the structure returned will be written | 
|  | to B<*x>. If neither B<x> nor B<*x> is NULL then an attempt is made | 
|  | to reuse the structure at B<*x> (but see BUGS and EXAMPLES sections). | 
|  | Irrespective of the value of B<x> a pointer to the structure is always | 
|  | returned (or NULL if an error occurred). | 
|  |  | 
|  | The PEM functions which write private keys take an B<enc> parameter | 
|  | which specifies the encryption algorithm to use, encryption is done | 
|  | at the PEM level. If this parameter is set to NULL then the private | 
|  | key is written in unencrypted form. | 
|  |  | 
|  | The B<cb> argument is the callback to use when querying for the pass | 
|  | phrase used for encrypted PEM structures (normally only private keys). | 
|  |  | 
|  | For the PEM write routines if the B<kstr> parameter is not NULL then | 
|  | B<klen> bytes at B<kstr> are used as the passphrase and B<cb> is | 
|  | ignored. | 
|  |  | 
|  | If the B<cb> parameters is set to NULL and the B<u> parameter is not | 
|  | NULL then the B<u> parameter is interpreted as a null terminated string | 
|  | to use as the passphrase. If both B<cb> and B<u> are NULL then the | 
|  | default callback routine is used which will typically prompt for the | 
|  | passphrase on the current terminal with echoing turned off. | 
|  |  | 
|  | The default passphrase callback is sometimes inappropriate (for example | 
|  | in a GUI application) so an alternative can be supplied. The callback | 
|  | routine has the following form: | 
|  |  | 
|  | int cb(char *buf, int size, int rwflag, void *u); | 
|  |  | 
|  | B<buf> is the buffer to write the passphrase to. B<size> is the maximum | 
|  | length of the passphrase (i.e. the size of buf). B<rwflag> is a flag | 
|  | which is set to 0 when reading and 1 when writing. A typical routine | 
|  | will ask the user to verify the passphrase (for example by prompting | 
|  | for it twice) if B<rwflag> is 1. The B<u> parameter has the same | 
|  | value as the B<u> parameter passed to the PEM routine. It allows | 
|  | arbitrary data to be passed to the callback by the application | 
|  | (for example a window handle in a GUI application). The callback | 
|  | B<must> return the number of characters in the passphrase or 0 if | 
|  | an error occurred. | 
|  |  | 
|  | =head1 EXAMPLES | 
|  |  | 
|  | Although the PEM routines take several arguments in almost all applications | 
|  | most of them are set to 0 or NULL. | 
|  |  | 
|  | Read a certificate in PEM format from a BIO: | 
|  |  | 
|  | X509 *x; | 
|  | x = PEM_read_bio_X509(bp, NULL, 0, NULL); | 
|  | if (x == NULL) | 
|  | { | 
|  | /* Error */ | 
|  | } | 
|  |  | 
|  | Alternative method: | 
|  |  | 
|  | X509 *x = NULL; | 
|  | if (!PEM_read_bio_X509(bp, &x, 0, NULL)) | 
|  | { | 
|  | /* Error */ | 
|  | } | 
|  |  | 
|  | Write a certificate to a BIO: | 
|  |  | 
|  | if (!PEM_write_bio_X509(bp, x)) | 
|  | { | 
|  | /* Error */ | 
|  | } | 
|  |  | 
|  | Write an unencrypted private key to a FILE pointer: | 
|  |  | 
|  | if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL)) | 
|  | { | 
|  | /* Error */ | 
|  | } | 
|  |  | 
|  | Write a private key (using traditional format) to a BIO using | 
|  | triple DES encryption, the pass phrase is prompted for: | 
|  |  | 
|  | if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL)) | 
|  | { | 
|  | /* Error */ | 
|  | } | 
|  |  | 
|  | Write a private key (using PKCS#8 format) to a BIO using triple | 
|  | DES encryption, using the pass phrase "hello": | 
|  |  | 
|  | if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello")) | 
|  | { | 
|  | /* Error */ | 
|  | } | 
|  |  | 
|  | Read a private key from a BIO using the pass phrase "hello": | 
|  |  | 
|  | key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello"); | 
|  | if (key == NULL) | 
|  | { | 
|  | /* Error */ | 
|  | } | 
|  |  | 
|  | Read a private key from a BIO using a pass phrase callback: | 
|  |  | 
|  | key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key"); | 
|  | if (key == NULL) | 
|  | { | 
|  | /* Error */ | 
|  | } | 
|  |  | 
|  | Skeleton pass phrase callback: | 
|  |  | 
|  | int pass_cb(char *buf, int size, int rwflag, void *u); | 
|  | { | 
|  | int len; | 
|  | char *tmp; | 
|  | /* We'd probably do something else if 'rwflag' is 1 */ | 
|  | printf("Enter pass phrase for \"%s\"\n", u); | 
|  |  | 
|  | /* get pass phrase, length 'len' into 'tmp' */ | 
|  | tmp = "hello"; | 
|  | len = strlen(tmp); | 
|  |  | 
|  | if (len <= 0) return 0; | 
|  | /* if too long, truncate */ | 
|  | if (len > size) len = size; | 
|  | memcpy(buf, tmp, len); | 
|  | return len; | 
|  | } | 
|  |  | 
|  | =head1 NOTES | 
|  |  | 
|  | The old B<PrivateKey> write routines are retained for compatibility. | 
|  | New applications should write private keys using the | 
|  | PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines | 
|  | because they are more secure (they use an iteration count of 2048 whereas | 
|  | the traditional routines use a count of 1) unless compatibility with older | 
|  | versions of OpenSSL is important. | 
|  |  | 
|  | The B<PrivateKey> read routines can be used in all applications because | 
|  | they handle all formats transparently. | 
|  |  | 
|  | A frequent cause of problems is attempting to use the PEM routines like | 
|  | this: | 
|  |  | 
|  | X509 *x; | 
|  | PEM_read_bio_X509(bp, &x, 0, NULL); | 
|  |  | 
|  | this is a bug because an attempt will be made to reuse the data at B<x> | 
|  | which is an uninitialised pointer. | 
|  |  | 
|  | =head1 PEM ENCRYPTION FORMAT | 
|  |  | 
|  | This old B<PrivateKey> routines use a non standard technique for encryption. | 
|  |  | 
|  | The private key (or other data) takes the following form: | 
|  |  | 
|  | -----BEGIN RSA PRIVATE KEY----- | 
|  | Proc-Type: 4,ENCRYPTED | 
|  | DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89 | 
|  |  | 
|  | ...base64 encoded data... | 
|  | -----END RSA PRIVATE KEY----- | 
|  |  | 
|  | The line beginning DEK-Info contains two comma separated pieces of information: | 
|  | the encryption algorithm name as used by EVP_get_cipherbyname() and an 8 | 
|  | byte B<salt> encoded as a set of hexadecimal digits. | 
|  |  | 
|  | After this is the base64 encoded encrypted data. | 
|  |  | 
|  | The encryption key is determined using EVP_BytesToKey(), using B<salt> and an | 
|  | iteration count of 1. The IV used is the value of B<salt> and *not* the IV | 
|  | returned by EVP_BytesToKey(). | 
|  |  | 
|  | =head1 BUGS | 
|  |  | 
|  | The PEM read routines in some versions of OpenSSL will not correctly reuse | 
|  | an existing structure. Therefore the following: | 
|  |  | 
|  | PEM_read_bio_X509(bp, &x, 0, NULL); | 
|  |  | 
|  | where B<x> already contains a valid certificate, may not work, whereas: | 
|  |  | 
|  | X509_free(x); | 
|  | x = PEM_read_bio_X509(bp, NULL, 0, NULL); | 
|  |  | 
|  | is guaranteed to work. | 
|  |  | 
|  | =head1 RETURN CODES | 
|  |  | 
|  | The read routines return either a pointer to the structure read or NULL | 
|  | if an error occurred. | 
|  |  | 
|  | The write routines return 1 for success or 0 for failure. | 
|  |  | 
|  | =head1 SEE ALSO | 
|  |  | 
|  | L<EVP_get_cipherbyname(3)|EVP_get_cipherbyname>, L<EVP_BytesToKey(3)|EVP_BytesToKey(3)> |