|  | /* | 
|  | * Copyright 2017-2021 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * | 
|  | * Licensed under the Apache License 2.0 (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | #include <stdlib.h> | 
|  | #include <stdarg.h> | 
|  | #include <string.h> | 
|  | #include <openssl/evp.h> | 
|  | #include <openssl/kdf.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/core_names.h> | 
|  | #include <openssl/proverr.h> | 
|  | #include "crypto/evp.h" | 
|  | #include "internal/numbers.h" | 
|  | #include "prov/implementations.h" | 
|  | #include "prov/provider_ctx.h" | 
|  | #include "prov/providercommon.h" | 
|  | #include "prov/implementations.h" | 
|  | #include "prov/provider_util.h" | 
|  |  | 
|  | #ifndef OPENSSL_NO_SCRYPT | 
|  |  | 
|  | static OSSL_FUNC_kdf_newctx_fn kdf_scrypt_new; | 
|  | static OSSL_FUNC_kdf_dupctx_fn kdf_scrypt_dup; | 
|  | static OSSL_FUNC_kdf_freectx_fn kdf_scrypt_free; | 
|  | static OSSL_FUNC_kdf_reset_fn kdf_scrypt_reset; | 
|  | static OSSL_FUNC_kdf_derive_fn kdf_scrypt_derive; | 
|  | static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params; | 
|  | static OSSL_FUNC_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params; | 
|  | static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_scrypt_gettable_ctx_params; | 
|  | static OSSL_FUNC_kdf_get_ctx_params_fn kdf_scrypt_get_ctx_params; | 
|  |  | 
|  | static int scrypt_alg(const char *pass, size_t passlen, | 
|  | const unsigned char *salt, size_t saltlen, | 
|  | uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, | 
|  | unsigned char *key, size_t keylen, EVP_MD *sha256, | 
|  | OSSL_LIB_CTX *libctx, const char *propq); | 
|  |  | 
|  | typedef struct { | 
|  | OSSL_LIB_CTX *libctx; | 
|  | char *propq; | 
|  | unsigned char *pass; | 
|  | size_t pass_len; | 
|  | unsigned char *salt; | 
|  | size_t salt_len; | 
|  | uint64_t N; | 
|  | uint64_t r, p; | 
|  | uint64_t maxmem_bytes; | 
|  | EVP_MD *sha256; | 
|  | } KDF_SCRYPT; | 
|  |  | 
|  | static void kdf_scrypt_init(KDF_SCRYPT *ctx); | 
|  |  | 
|  | static void *kdf_scrypt_new_inner(OSSL_LIB_CTX *libctx) | 
|  | { | 
|  | KDF_SCRYPT *ctx; | 
|  |  | 
|  | if (!ossl_prov_is_running()) | 
|  | return NULL; | 
|  |  | 
|  | ctx = OPENSSL_zalloc(sizeof(*ctx)); | 
|  | if (ctx == NULL) { | 
|  | ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); | 
|  | return NULL; | 
|  | } | 
|  | ctx->libctx = libctx; | 
|  | kdf_scrypt_init(ctx); | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | static void *kdf_scrypt_new(void *provctx) | 
|  | { | 
|  | return kdf_scrypt_new_inner(PROV_LIBCTX_OF(provctx)); | 
|  | } | 
|  |  | 
|  | static void kdf_scrypt_free(void *vctx) | 
|  | { | 
|  | KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx; | 
|  |  | 
|  | if (ctx != NULL) { | 
|  | OPENSSL_free(ctx->propq); | 
|  | EVP_MD_free(ctx->sha256); | 
|  | kdf_scrypt_reset(ctx); | 
|  | OPENSSL_free(ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kdf_scrypt_reset(void *vctx) | 
|  | { | 
|  | KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx; | 
|  |  | 
|  | OPENSSL_free(ctx->salt); | 
|  | OPENSSL_clear_free(ctx->pass, ctx->pass_len); | 
|  | kdf_scrypt_init(ctx); | 
|  | } | 
|  |  | 
|  | static void *kdf_scrypt_dup(void *vctx) | 
|  | { | 
|  | const KDF_SCRYPT *src = (const KDF_SCRYPT *)vctx; | 
|  | KDF_SCRYPT *dest; | 
|  |  | 
|  | dest = kdf_scrypt_new_inner(src->libctx); | 
|  | if (dest != NULL) { | 
|  | if (src->sha256 != NULL && !EVP_MD_up_ref(src->sha256)) | 
|  | goto err; | 
|  | if (src->propq != NULL) { | 
|  | dest->propq = OPENSSL_strdup(src->propq); | 
|  | if (dest->propq == NULL) | 
|  | goto err; | 
|  | } | 
|  | if (!ossl_prov_memdup(src->salt, src->salt_len, | 
|  | &dest->salt, &dest->salt_len) | 
|  | || !ossl_prov_memdup(src->pass, src->pass_len, | 
|  | &dest->pass , &dest->pass_len)) | 
|  | goto err; | 
|  | dest->N = src->N; | 
|  | dest->r = src->r; | 
|  | dest->p = src->p; | 
|  | dest->maxmem_bytes = src->maxmem_bytes; | 
|  | dest->sha256 = src->sha256; | 
|  | } | 
|  | return dest; | 
|  |  | 
|  | err: | 
|  | kdf_scrypt_free(dest); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void kdf_scrypt_init(KDF_SCRYPT *ctx) | 
|  | { | 
|  | /* Default values are the most conservative recommendation given in the | 
|  | * original paper of C. Percival. Derivation uses roughly 1 GiB of memory | 
|  | * for this parameter choice (approx. 128 * r * N * p bytes). | 
|  | */ | 
|  | ctx->N = 1 << 20; | 
|  | ctx->r = 8; | 
|  | ctx->p = 1; | 
|  | ctx->maxmem_bytes = 1025 * 1024 * 1024; | 
|  | } | 
|  |  | 
|  | static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen, | 
|  | const OSSL_PARAM *p) | 
|  | { | 
|  | OPENSSL_clear_free(*buffer, *buflen); | 
|  | *buffer = NULL; | 
|  | *buflen = 0; | 
|  |  | 
|  | if (p->data_size == 0) { | 
|  | if ((*buffer = OPENSSL_malloc(1)) == NULL) { | 
|  | ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); | 
|  | return 0; | 
|  | } | 
|  | } else if (p->data != NULL) { | 
|  | if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen)) | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int set_digest(KDF_SCRYPT *ctx) | 
|  | { | 
|  | EVP_MD_free(ctx->sha256); | 
|  | ctx->sha256 = EVP_MD_fetch(ctx->libctx, "sha256", ctx->propq); | 
|  | if (ctx->sha256 == NULL) { | 
|  | OPENSSL_free(ctx); | 
|  | ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int set_property_query(KDF_SCRYPT *ctx, const char *propq) | 
|  | { | 
|  | OPENSSL_free(ctx->propq); | 
|  | ctx->propq = NULL; | 
|  | if (propq != NULL) { | 
|  | ctx->propq = OPENSSL_strdup(propq); | 
|  | if (ctx->propq == NULL) { | 
|  | ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int kdf_scrypt_derive(void *vctx, unsigned char *key, size_t keylen, | 
|  | const OSSL_PARAM params[]) | 
|  | { | 
|  | KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx; | 
|  |  | 
|  | if (!ossl_prov_is_running() || !kdf_scrypt_set_ctx_params(ctx, params)) | 
|  | return 0; | 
|  |  | 
|  | if (ctx->pass == NULL) { | 
|  | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ctx->salt == NULL) { | 
|  | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ctx->sha256 == NULL && !set_digest(ctx)) | 
|  | return 0; | 
|  |  | 
|  | return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt, | 
|  | ctx->salt_len, ctx->N, ctx->r, ctx->p, | 
|  | ctx->maxmem_bytes, key, keylen, ctx->sha256, | 
|  | ctx->libctx, ctx->propq); | 
|  | } | 
|  |  | 
|  | static int is_power_of_two(uint64_t value) | 
|  | { | 
|  | return (value != 0) && ((value & (value - 1)) == 0); | 
|  | } | 
|  |  | 
|  | static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[]) | 
|  | { | 
|  | const OSSL_PARAM *p; | 
|  | KDF_SCRYPT *ctx = vctx; | 
|  | uint64_t u64_value; | 
|  |  | 
|  | if (params == NULL) | 
|  | return 1; | 
|  |  | 
|  | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL) | 
|  | if (!scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p)) | 
|  | return 0; | 
|  |  | 
|  | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL) | 
|  | if (!scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p)) | 
|  | return 0; | 
|  |  | 
|  | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N)) | 
|  | != NULL) { | 
|  | if (!OSSL_PARAM_get_uint64(p, &u64_value) | 
|  | || u64_value <= 1 | 
|  | || !is_power_of_two(u64_value)) | 
|  | return 0; | 
|  | ctx->N = u64_value; | 
|  | } | 
|  |  | 
|  | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_R)) | 
|  | != NULL) { | 
|  | if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1) | 
|  | return 0; | 
|  | ctx->r = u64_value; | 
|  | } | 
|  |  | 
|  | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_P)) | 
|  | != NULL) { | 
|  | if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1) | 
|  | return 0; | 
|  | ctx->p = u64_value; | 
|  | } | 
|  |  | 
|  | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_MAXMEM)) | 
|  | != NULL) { | 
|  | if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1) | 
|  | return 0; | 
|  | ctx->maxmem_bytes = u64_value; | 
|  | } | 
|  |  | 
|  | p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PROPERTIES); | 
|  | if (p != NULL) { | 
|  | if (p->data_type != OSSL_PARAM_UTF8_STRING | 
|  | || !set_property_query(ctx, p->data) | 
|  | || !set_digest(ctx)) | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(ossl_unused void *ctx, | 
|  | ossl_unused void *p_ctx) | 
|  | { | 
|  | static const OSSL_PARAM known_settable_ctx_params[] = { | 
|  | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0), | 
|  | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0), | 
|  | OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL), | 
|  | OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL), | 
|  | OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL), | 
|  | OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL), | 
|  | OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0), | 
|  | OSSL_PARAM_END | 
|  | }; | 
|  | return known_settable_ctx_params; | 
|  | } | 
|  |  | 
|  | static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[]) | 
|  | { | 
|  | OSSL_PARAM *p; | 
|  |  | 
|  | if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) | 
|  | return OSSL_PARAM_set_size_t(p, SIZE_MAX); | 
|  | return -2; | 
|  | } | 
|  |  | 
|  | static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(ossl_unused void *ctx, | 
|  | ossl_unused void *p_ctx) | 
|  | { | 
|  | static const OSSL_PARAM known_gettable_ctx_params[] = { | 
|  | OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL), | 
|  | OSSL_PARAM_END | 
|  | }; | 
|  | return known_gettable_ctx_params; | 
|  | } | 
|  |  | 
|  | const OSSL_DISPATCH ossl_kdf_scrypt_functions[] = { | 
|  | { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new }, | 
|  | { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_scrypt_dup }, | 
|  | { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free }, | 
|  | { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset }, | 
|  | { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive }, | 
|  | { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, | 
|  | (void(*)(void))kdf_scrypt_settable_ctx_params }, | 
|  | { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params }, | 
|  | { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, | 
|  | (void(*)(void))kdf_scrypt_gettable_ctx_params }, | 
|  | { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params }, | 
|  | { 0, NULL } | 
|  | }; | 
|  |  | 
|  | #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) | 
|  | static void salsa208_word_specification(uint32_t inout[16]) | 
|  | { | 
|  | int i; | 
|  | uint32_t x[16]; | 
|  |  | 
|  | memcpy(x, inout, sizeof(x)); | 
|  | for (i = 8; i > 0; i -= 2) { | 
|  | x[4] ^= R(x[0] + x[12], 7); | 
|  | x[8] ^= R(x[4] + x[0], 9); | 
|  | x[12] ^= R(x[8] + x[4], 13); | 
|  | x[0] ^= R(x[12] + x[8], 18); | 
|  | x[9] ^= R(x[5] + x[1], 7); | 
|  | x[13] ^= R(x[9] + x[5], 9); | 
|  | x[1] ^= R(x[13] + x[9], 13); | 
|  | x[5] ^= R(x[1] + x[13], 18); | 
|  | x[14] ^= R(x[10] + x[6], 7); | 
|  | x[2] ^= R(x[14] + x[10], 9); | 
|  | x[6] ^= R(x[2] + x[14], 13); | 
|  | x[10] ^= R(x[6] + x[2], 18); | 
|  | x[3] ^= R(x[15] + x[11], 7); | 
|  | x[7] ^= R(x[3] + x[15], 9); | 
|  | x[11] ^= R(x[7] + x[3], 13); | 
|  | x[15] ^= R(x[11] + x[7], 18); | 
|  | x[1] ^= R(x[0] + x[3], 7); | 
|  | x[2] ^= R(x[1] + x[0], 9); | 
|  | x[3] ^= R(x[2] + x[1], 13); | 
|  | x[0] ^= R(x[3] + x[2], 18); | 
|  | x[6] ^= R(x[5] + x[4], 7); | 
|  | x[7] ^= R(x[6] + x[5], 9); | 
|  | x[4] ^= R(x[7] + x[6], 13); | 
|  | x[5] ^= R(x[4] + x[7], 18); | 
|  | x[11] ^= R(x[10] + x[9], 7); | 
|  | x[8] ^= R(x[11] + x[10], 9); | 
|  | x[9] ^= R(x[8] + x[11], 13); | 
|  | x[10] ^= R(x[9] + x[8], 18); | 
|  | x[12] ^= R(x[15] + x[14], 7); | 
|  | x[13] ^= R(x[12] + x[15], 9); | 
|  | x[14] ^= R(x[13] + x[12], 13); | 
|  | x[15] ^= R(x[14] + x[13], 18); | 
|  | } | 
|  | for (i = 0; i < 16; ++i) | 
|  | inout[i] += x[i]; | 
|  | OPENSSL_cleanse(x, sizeof(x)); | 
|  | } | 
|  |  | 
|  | static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r) | 
|  | { | 
|  | uint64_t i, j; | 
|  | uint32_t X[16], *pB; | 
|  |  | 
|  | memcpy(X, B + (r * 2 - 1) * 16, sizeof(X)); | 
|  | pB = B; | 
|  | for (i = 0; i < r * 2; i++) { | 
|  | for (j = 0; j < 16; j++) | 
|  | X[j] ^= *pB++; | 
|  | salsa208_word_specification(X); | 
|  | memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X)); | 
|  | } | 
|  | OPENSSL_cleanse(X, sizeof(X)); | 
|  | } | 
|  |  | 
|  | static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N, | 
|  | uint32_t *X, uint32_t *T, uint32_t *V) | 
|  | { | 
|  | unsigned char *pB; | 
|  | uint32_t *pV; | 
|  | uint64_t i, k; | 
|  |  | 
|  | /* Convert from little endian input */ | 
|  | for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) { | 
|  | *pV = *pB++; | 
|  | *pV |= *pB++ << 8; | 
|  | *pV |= *pB++ << 16; | 
|  | *pV |= (uint32_t)*pB++ << 24; | 
|  | } | 
|  |  | 
|  | for (i = 1; i < N; i++, pV += 32 * r) | 
|  | scryptBlockMix(pV, pV - 32 * r, r); | 
|  |  | 
|  | scryptBlockMix(X, V + (N - 1) * 32 * r, r); | 
|  |  | 
|  | for (i = 0; i < N; i++) { | 
|  | uint32_t j; | 
|  | j = X[16 * (2 * r - 1)] % N; | 
|  | pV = V + 32 * r * j; | 
|  | for (k = 0; k < 32 * r; k++) | 
|  | T[k] = X[k] ^ *pV++; | 
|  | scryptBlockMix(X, T, r); | 
|  | } | 
|  | /* Convert output to little endian */ | 
|  | for (i = 0, pB = B; i < 32 * r; i++) { | 
|  | uint32_t xtmp = X[i]; | 
|  | *pB++ = xtmp & 0xff; | 
|  | *pB++ = (xtmp >> 8) & 0xff; | 
|  | *pB++ = (xtmp >> 16) & 0xff; | 
|  | *pB++ = (xtmp >> 24) & 0xff; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef SIZE_MAX | 
|  | # define SIZE_MAX    ((size_t)-1) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Maximum power of two that will fit in uint64_t: this should work on | 
|  | * most (all?) platforms. | 
|  | */ | 
|  |  | 
|  | #define LOG2_UINT64_MAX         (sizeof(uint64_t) * 8 - 1) | 
|  |  | 
|  | /* | 
|  | * Maximum value of p * r: | 
|  | * p <= ((2^32-1) * hLen) / MFLen => | 
|  | * p <= ((2^32-1) * 32) / (128 * r) => | 
|  | * p * r <= (2^30-1) | 
|  | */ | 
|  |  | 
|  | #define SCRYPT_PR_MAX   ((1 << 30) - 1) | 
|  |  | 
|  | static int scrypt_alg(const char *pass, size_t passlen, | 
|  | const unsigned char *salt, size_t saltlen, | 
|  | uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, | 
|  | unsigned char *key, size_t keylen, EVP_MD *sha256, | 
|  | OSSL_LIB_CTX *libctx, const char *propq) | 
|  | { | 
|  | int rv = 0; | 
|  | unsigned char *B; | 
|  | uint32_t *X, *V, *T; | 
|  | uint64_t i, Blen, Vlen; | 
|  |  | 
|  | /* Sanity check parameters */ | 
|  | /* initial check, r,p must be non zero, N >= 2 and a power of 2 */ | 
|  | if (r == 0 || p == 0 || N < 2 || (N & (N - 1))) | 
|  | return 0; | 
|  | /* Check p * r < SCRYPT_PR_MAX avoiding overflow */ | 
|  | if (p > SCRYPT_PR_MAX / r) { | 
|  | ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Need to check N: if 2^(128 * r / 8) overflows limit this is | 
|  | * automatically satisfied since N <= UINT64_MAX. | 
|  | */ | 
|  |  | 
|  | if (16 * r <= LOG2_UINT64_MAX) { | 
|  | if (N >= (((uint64_t)1) << (16 * r))) { | 
|  | ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Memory checks: check total allocated buffer size fits in uint64_t */ | 
|  |  | 
|  | /* | 
|  | * B size in section 5 step 1.S | 
|  | * Note: we know p * 128 * r < UINT64_MAX because we already checked | 
|  | * p * r < SCRYPT_PR_MAX | 
|  | */ | 
|  | Blen = p * 128 * r; | 
|  | /* | 
|  | * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would | 
|  | * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.] | 
|  | */ | 
|  | if (Blen > INT_MAX) { | 
|  | ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t | 
|  | * This is combined size V, X and T (section 4) | 
|  | */ | 
|  | i = UINT64_MAX / (32 * sizeof(uint32_t)); | 
|  | if (N + 2 > i / r) { | 
|  | ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); | 
|  | return 0; | 
|  | } | 
|  | Vlen = 32 * r * (N + 2) * sizeof(uint32_t); | 
|  |  | 
|  | /* check total allocated size fits in uint64_t */ | 
|  | if (Blen > UINT64_MAX - Vlen) { | 
|  | ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check that the maximum memory doesn't exceed a size_t limits */ | 
|  | if (maxmem > SIZE_MAX) | 
|  | maxmem = SIZE_MAX; | 
|  |  | 
|  | if (Blen + Vlen > maxmem) { | 
|  | ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* If no key return to indicate parameters are OK */ | 
|  | if (key == NULL) | 
|  | return 1; | 
|  |  | 
|  | B = OPENSSL_malloc((size_t)(Blen + Vlen)); | 
|  | if (B == NULL) { | 
|  | ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE); | 
|  | return 0; | 
|  | } | 
|  | X = (uint32_t *)(B + Blen); | 
|  | T = X + 32 * r; | 
|  | V = T + 32 * r; | 
|  | if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, salt, saltlen, 1, sha256, | 
|  | (int)Blen, B, libctx, propq) == 0) | 
|  | goto err; | 
|  |  | 
|  | for (i = 0; i < p; i++) | 
|  | scryptROMix(B + 128 * r * i, r, N, X, T, V); | 
|  |  | 
|  | if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, B, (int)Blen, 1, sha256, | 
|  | keylen, key, libctx, propq) == 0) | 
|  | goto err; | 
|  | rv = 1; | 
|  | err: | 
|  | if (rv == 0) | 
|  | ERR_raise(ERR_LIB_EVP, EVP_R_PBKDF2_ERROR); | 
|  |  | 
|  | OPENSSL_clear_free(B, (size_t)(Blen + Vlen)); | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | #endif |