| /* crypto/bn/bn_exp.c */ |
| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| |
| |
| #include "cryptlib.h" |
| #include "bn_lcl.h" |
| |
| #define TABLE_SIZE 32 |
| |
| /* this one works - simple but works */ |
| int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
| { |
| int i,bits,ret=0; |
| BIGNUM *v,*rr; |
| |
| BN_CTX_start(ctx); |
| if ((r == a) || (r == p)) |
| rr = BN_CTX_get(ctx); |
| else |
| rr = r; |
| if ((v = BN_CTX_get(ctx)) == NULL) goto err; |
| |
| if (BN_copy(v,a) == NULL) goto err; |
| bits=BN_num_bits(p); |
| |
| if (BN_is_odd(p)) |
| { if (BN_copy(rr,a) == NULL) goto err; } |
| else { if (!BN_one(rr)) goto err; } |
| |
| for (i=1; i<bits; i++) |
| { |
| if (!BN_sqr(v,v,ctx)) goto err; |
| if (BN_is_bit_set(p,i)) |
| { |
| if (!BN_mul(rr,rr,v,ctx)) goto err; |
| } |
| } |
| ret=1; |
| err: |
| if (r != rr) BN_copy(r,rr); |
| BN_CTX_end(ctx); |
| bn_check_top(r); |
| return(ret); |
| } |
| |
| |
| int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
| BN_CTX *ctx) |
| { |
| int ret; |
| |
| bn_check_top(a); |
| bn_check_top(p); |
| bn_check_top(m); |
| |
| /* For even modulus m = 2^k*m_odd, it might make sense to compute |
| * a^p mod m_odd and a^p mod 2^k separately (with Montgomery |
| * exponentiation for the odd part), using appropriate exponent |
| * reductions, and combine the results using the CRT. |
| * |
| * For now, we use Montgomery only if the modulus is odd; otherwise, |
| * exponentiation using the reciprocal-based quick remaindering |
| * algorithm is used. |
| * |
| * (Timing obtained with expspeed.c [computations a^p mod m |
| * where a, p, m are of the same length: 256, 512, 1024, 2048, |
| * 4096, 8192 bits], compared to the running time of the |
| * standard algorithm: |
| * |
| * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] |
| * 55 .. 77 % [UltraSparc processor, but |
| * debug-solaris-sparcv8-gcc conf.] |
| * |
| * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] |
| * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] |
| * |
| * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont |
| * at 2048 and more bits, but at 512 and 1024 bits, it was |
| * slower even than the standard algorithm! |
| * |
| * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] |
| * should be obtained when the new Montgomery reduction code |
| * has been integrated into OpenSSL.) |
| */ |
| |
| #define MONT_MUL_MOD |
| #define MONT_EXP_WORD |
| #define RECP_MUL_MOD |
| |
| #ifdef MONT_MUL_MOD |
| /* I have finally been able to take out this pre-condition of |
| * the top bit being set. It was caused by an error in BN_div |
| * with negatives. There was also another problem when for a^b%m |
| * a >= m. eay 07-May-97 */ |
| /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */ |
| |
| if (BN_is_odd(m)) |
| { |
| # ifdef MONT_EXP_WORD |
| if (a->top == 1 && !a->neg) |
| { |
| BN_ULONG A = a->d[0]; |
| ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL); |
| } |
| else |
| # endif |
| ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL); |
| } |
| else |
| #endif |
| #ifdef RECP_MUL_MOD |
| { ret=BN_mod_exp_recp(r,a,p,m,ctx); } |
| #else |
| { ret=BN_mod_exp_simple(r,a,p,m,ctx); } |
| #endif |
| |
| bn_check_top(r); |
| return(ret); |
| } |
| |
| |
| int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx) |
| { |
| int i,j,bits,ret=0,wstart,wend,window,wvalue; |
| int start=1; |
| BIGNUM *aa; |
| /* Table of variables obtained from 'ctx' */ |
| BIGNUM *val[TABLE_SIZE]; |
| BN_RECP_CTX recp; |
| |
| bits=BN_num_bits(p); |
| |
| if (bits == 0) |
| { |
| ret = BN_one(r); |
| return ret; |
| } |
| |
| BN_CTX_start(ctx); |
| aa = BN_CTX_get(ctx); |
| val[0] = BN_CTX_get(ctx); |
| if(!aa || !val[0]) goto err; |
| |
| BN_RECP_CTX_init(&recp); |
| if (m->neg) |
| { |
| /* ignore sign of 'm' */ |
| if (!BN_copy(aa, m)) goto err; |
| aa->neg = 0; |
| if (BN_RECP_CTX_set(&recp,aa,ctx) <= 0) goto err; |
| } |
| else |
| { |
| if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err; |
| } |
| |
| if (!BN_nnmod(val[0],a,m,ctx)) goto err; /* 1 */ |
| if (BN_is_zero(val[0])) |
| { |
| BN_zero(r); |
| ret = 1; |
| goto err; |
| } |
| |
| window = BN_window_bits_for_exponent_size(bits); |
| if (window > 1) |
| { |
| if (!BN_mod_mul_reciprocal(aa,val[0],val[0],&recp,ctx)) |
| goto err; /* 2 */ |
| j=1<<(window-1); |
| for (i=1; i<j; i++) |
| { |
| if(((val[i] = BN_CTX_get(ctx)) == NULL) || |
| !BN_mod_mul_reciprocal(val[i],val[i-1], |
| aa,&recp,ctx)) |
| goto err; |
| } |
| } |
| |
| start=1; /* This is used to avoid multiplication etc |
| * when there is only the value '1' in the |
| * buffer. */ |
| wvalue=0; /* The 'value' of the window */ |
| wstart=bits-1; /* The top bit of the window */ |
| wend=0; /* The bottom bit of the window */ |
| |
| if (!BN_one(r)) goto err; |
| |
| for (;;) |
| { |
| if (BN_is_bit_set(p,wstart) == 0) |
| { |
| if (!start) |
| if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) |
| goto err; |
| if (wstart == 0) break; |
| wstart--; |
| continue; |
| } |
| /* We now have wstart on a 'set' bit, we now need to work out |
| * how bit a window to do. To do this we need to scan |
| * forward until the last set bit before the end of the |
| * window */ |
| j=wstart; |
| wvalue=1; |
| wend=0; |
| for (i=1; i<window; i++) |
| { |
| if (wstart-i < 0) break; |
| if (BN_is_bit_set(p,wstart-i)) |
| { |
| wvalue<<=(i-wend); |
| wvalue|=1; |
| wend=i; |
| } |
| } |
| |
| /* wend is the size of the current window */ |
| j=wend+1; |
| /* add the 'bytes above' */ |
| if (!start) |
| for (i=0; i<j; i++) |
| { |
| if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) |
| goto err; |
| } |
| |
| /* wvalue will be an odd number < 2^window */ |
| if (!BN_mod_mul_reciprocal(r,r,val[wvalue>>1],&recp,ctx)) |
| goto err; |
| |
| /* move the 'window' down further */ |
| wstart-=wend+1; |
| wvalue=0; |
| start=0; |
| if (wstart < 0) break; |
| } |
| ret=1; |
| err: |
| BN_CTX_end(ctx); |
| BN_RECP_CTX_free(&recp); |
| bn_check_top(r); |
| return(ret); |
| } |
| |
| |
| int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) |
| { |
| int i,j,bits,ret=0,wstart,wend,window,wvalue; |
| int start=1; |
| BIGNUM *d,*r; |
| const BIGNUM *aa; |
| /* Table of variables obtained from 'ctx' */ |
| BIGNUM *val[TABLE_SIZE]; |
| BN_MONT_CTX *mont=NULL; |
| |
| bn_check_top(a); |
| bn_check_top(p); |
| bn_check_top(m); |
| |
| if (!BN_is_odd(m)) |
| { |
| BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS); |
| return(0); |
| } |
| bits=BN_num_bits(p); |
| if (bits == 0) |
| { |
| ret = BN_one(rr); |
| return ret; |
| } |
| |
| BN_CTX_start(ctx); |
| d = BN_CTX_get(ctx); |
| r = BN_CTX_get(ctx); |
| val[0] = BN_CTX_get(ctx); |
| if (!d || !r || !val[0]) goto err; |
| |
| /* If this is not done, things will break in the montgomery |
| * part */ |
| |
| if (in_mont != NULL) |
| mont=in_mont; |
| else |
| { |
| if ((mont=BN_MONT_CTX_new()) == NULL) goto err; |
| if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; |
| } |
| |
| if (a->neg || BN_ucmp(a,m) >= 0) |
| { |
| if (!BN_nnmod(val[0],a,m,ctx)) |
| goto err; |
| aa= val[0]; |
| } |
| else |
| aa=a; |
| if (BN_is_zero(aa)) |
| { |
| BN_zero(rr); |
| ret = 1; |
| goto err; |
| } |
| if (!BN_to_montgomery(val[0],aa,mont,ctx)) goto err; /* 1 */ |
| |
| window = BN_window_bits_for_exponent_size(bits); |
| if (window > 1) |
| { |
| if (!BN_mod_mul_montgomery(d,val[0],val[0],mont,ctx)) goto err; /* 2 */ |
| j=1<<(window-1); |
| for (i=1; i<j; i++) |
| { |
| if(((val[i] = BN_CTX_get(ctx)) == NULL) || |
| !BN_mod_mul_montgomery(val[i],val[i-1], |
| d,mont,ctx)) |
| goto err; |
| } |
| } |
| |
| start=1; /* This is used to avoid multiplication etc |
| * when there is only the value '1' in the |
| * buffer. */ |
| wvalue=0; /* The 'value' of the window */ |
| wstart=bits-1; /* The top bit of the window */ |
| wend=0; /* The bottom bit of the window */ |
| |
| if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; |
| for (;;) |
| { |
| if (BN_is_bit_set(p,wstart) == 0) |
| { |
| if (!start) |
| { |
| if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) |
| goto err; |
| } |
| if (wstart == 0) break; |
| wstart--; |
| continue; |
| } |
| /* We now have wstart on a 'set' bit, we now need to work out |
| * how bit a window to do. To do this we need to scan |
| * forward until the last set bit before the end of the |
| * window */ |
| j=wstart; |
| wvalue=1; |
| wend=0; |
| for (i=1; i<window; i++) |
| { |
| if (wstart-i < 0) break; |
| if (BN_is_bit_set(p,wstart-i)) |
| { |
| wvalue<<=(i-wend); |
| wvalue|=1; |
| wend=i; |
| } |
| } |
| |
| /* wend is the size of the current window */ |
| j=wend+1; |
| /* add the 'bytes above' */ |
| if (!start) |
| for (i=0; i<j; i++) |
| { |
| if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) |
| goto err; |
| } |
| |
| /* wvalue will be an odd number < 2^window */ |
| if (!BN_mod_mul_montgomery(r,r,val[wvalue>>1],mont,ctx)) |
| goto err; |
| |
| /* move the 'window' down further */ |
| wstart-=wend+1; |
| wvalue=0; |
| start=0; |
| if (wstart < 0) break; |
| } |
| if (!BN_from_montgomery(rr,r,mont,ctx)) goto err; |
| ret=1; |
| err: |
| if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); |
| BN_CTX_end(ctx); |
| bn_check_top(rr); |
| return(ret); |
| } |
| |
| int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) |
| { |
| BN_MONT_CTX *mont = NULL; |
| int b, bits, ret=0; |
| int r_is_one; |
| BN_ULONG w, next_w; |
| BIGNUM *d, *r, *t; |
| BIGNUM *swap_tmp; |
| #define BN_MOD_MUL_WORD(r, w, m) \ |
| (BN_mul_word(r, (w)) && \ |
| (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ |
| (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) |
| /* BN_MOD_MUL_WORD is only used with 'w' large, |
| * so the BN_ucmp test is probably more overhead |
| * than always using BN_mod (which uses BN_copy if |
| * a similar test returns true). */ |
| /* We can use BN_mod and do not need BN_nnmod because our |
| * accumulator is never negative (the result of BN_mod does |
| * not depend on the sign of the modulus). |
| */ |
| #define BN_TO_MONTGOMERY_WORD(r, w, mont) \ |
| (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) |
| |
| bn_check_top(p); |
| bn_check_top(m); |
| |
| if (!BN_is_odd(m)) |
| { |
| BNerr(BN_F_BN_MOD_EXP_MONT_WORD,BN_R_CALLED_WITH_EVEN_MODULUS); |
| return(0); |
| } |
| if (m->top == 1) |
| a %= m->d[0]; /* make sure that 'a' is reduced */ |
| |
| bits = BN_num_bits(p); |
| if (bits == 0) |
| { |
| ret = BN_one(rr); |
| return ret; |
| } |
| if (a == 0) |
| { |
| BN_zero(rr); |
| ret = 1; |
| return ret; |
| } |
| |
| BN_CTX_start(ctx); |
| d = BN_CTX_get(ctx); |
| r = BN_CTX_get(ctx); |
| t = BN_CTX_get(ctx); |
| if (d == NULL || r == NULL || t == NULL) goto err; |
| |
| if (in_mont != NULL) |
| mont=in_mont; |
| else |
| { |
| if ((mont = BN_MONT_CTX_new()) == NULL) goto err; |
| if (!BN_MONT_CTX_set(mont, m, ctx)) goto err; |
| } |
| |
| r_is_one = 1; /* except for Montgomery factor */ |
| |
| /* bits-1 >= 0 */ |
| |
| /* The result is accumulated in the product r*w. */ |
| w = a; /* bit 'bits-1' of 'p' is always set */ |
| for (b = bits-2; b >= 0; b--) |
| { |
| /* First, square r*w. */ |
| next_w = w*w; |
| if ((next_w/w) != w) /* overflow */ |
| { |
| if (r_is_one) |
| { |
| if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; |
| r_is_one = 0; |
| } |
| else |
| { |
| if (!BN_MOD_MUL_WORD(r, w, m)) goto err; |
| } |
| next_w = 1; |
| } |
| w = next_w; |
| if (!r_is_one) |
| { |
| if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err; |
| } |
| |
| /* Second, multiply r*w by 'a' if exponent bit is set. */ |
| if (BN_is_bit_set(p, b)) |
| { |
| next_w = w*a; |
| if ((next_w/a) != w) /* overflow */ |
| { |
| if (r_is_one) |
| { |
| if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; |
| r_is_one = 0; |
| } |
| else |
| { |
| if (!BN_MOD_MUL_WORD(r, w, m)) goto err; |
| } |
| next_w = a; |
| } |
| w = next_w; |
| } |
| } |
| |
| /* Finally, set r:=r*w. */ |
| if (w != 1) |
| { |
| if (r_is_one) |
| { |
| if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; |
| r_is_one = 0; |
| } |
| else |
| { |
| if (!BN_MOD_MUL_WORD(r, w, m)) goto err; |
| } |
| } |
| |
| if (r_is_one) /* can happen only if a == 1*/ |
| { |
| if (!BN_one(rr)) goto err; |
| } |
| else |
| { |
| if (!BN_from_montgomery(rr, r, mont, ctx)) goto err; |
| } |
| ret = 1; |
| err: |
| if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); |
| BN_CTX_end(ctx); |
| bn_check_top(rr); |
| return(ret); |
| } |
| |
| |
| /* The old fallback, simple version :-) */ |
| int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx) |
| { |
| int i,j,bits,ret=0,wstart,wend,window,wvalue; |
| int start=1; |
| BIGNUM *d; |
| /* Table of variables obtained from 'ctx' */ |
| BIGNUM *val[TABLE_SIZE]; |
| |
| bits=BN_num_bits(p); |
| |
| if (bits == 0) |
| { |
| ret = BN_one(r); |
| return ret; |
| } |
| |
| BN_CTX_start(ctx); |
| d = BN_CTX_get(ctx); |
| val[0] = BN_CTX_get(ctx); |
| if(!d || !val[0]) goto err; |
| |
| if (!BN_nnmod(val[0],a,m,ctx)) goto err; /* 1 */ |
| if (BN_is_zero(val[0])) |
| { |
| BN_zero(r); |
| ret = 1; |
| goto err; |
| } |
| |
| window = BN_window_bits_for_exponent_size(bits); |
| if (window > 1) |
| { |
| if (!BN_mod_mul(d,val[0],val[0],m,ctx)) |
| goto err; /* 2 */ |
| j=1<<(window-1); |
| for (i=1; i<j; i++) |
| { |
| if(((val[i] = BN_CTX_get(ctx)) == NULL) || |
| !BN_mod_mul(val[i],val[i-1],d,m,ctx)) |
| goto err; |
| } |
| } |
| |
| start=1; /* This is used to avoid multiplication etc |
| * when there is only the value '1' in the |
| * buffer. */ |
| wvalue=0; /* The 'value' of the window */ |
| wstart=bits-1; /* The top bit of the window */ |
| wend=0; /* The bottom bit of the window */ |
| |
| if (!BN_one(r)) goto err; |
| |
| for (;;) |
| { |
| if (BN_is_bit_set(p,wstart) == 0) |
| { |
| if (!start) |
| if (!BN_mod_mul(r,r,r,m,ctx)) |
| goto err; |
| if (wstart == 0) break; |
| wstart--; |
| continue; |
| } |
| /* We now have wstart on a 'set' bit, we now need to work out |
| * how bit a window to do. To do this we need to scan |
| * forward until the last set bit before the end of the |
| * window */ |
| j=wstart; |
| wvalue=1; |
| wend=0; |
| for (i=1; i<window; i++) |
| { |
| if (wstart-i < 0) break; |
| if (BN_is_bit_set(p,wstart-i)) |
| { |
| wvalue<<=(i-wend); |
| wvalue|=1; |
| wend=i; |
| } |
| } |
| |
| /* wend is the size of the current window */ |
| j=wend+1; |
| /* add the 'bytes above' */ |
| if (!start) |
| for (i=0; i<j; i++) |
| { |
| if (!BN_mod_mul(r,r,r,m,ctx)) |
| goto err; |
| } |
| |
| /* wvalue will be an odd number < 2^window */ |
| if (!BN_mod_mul(r,r,val[wvalue>>1],m,ctx)) |
| goto err; |
| |
| /* move the 'window' down further */ |
| wstart-=wend+1; |
| wvalue=0; |
| start=0; |
| if (wstart < 0) break; |
| } |
| ret=1; |
| err: |
| BN_CTX_end(ctx); |
| bn_check_top(r); |
| return(ret); |
| } |
| |