| /* |
| * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. |
| * Copyright 2005 Nokia. All rights reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <stdio.h> |
| #include "ssl_local.h" |
| #include "record/record_local.h" |
| #include "internal/ktls.h" |
| #include "internal/cryptlib.h" |
| #include <openssl/comp.h> |
| #include <openssl/evp.h> |
| #include <openssl/kdf.h> |
| #include <openssl/rand.h> |
| #include <openssl/obj_mac.h> |
| #include <openssl/core_names.h> |
| #include <openssl/trace.h> |
| |
| /* seed1 through seed5 are concatenated */ |
| static int tls1_PRF(SSL *s, |
| const void *seed1, size_t seed1_len, |
| const void *seed2, size_t seed2_len, |
| const void *seed3, size_t seed3_len, |
| const void *seed4, size_t seed4_len, |
| const void *seed5, size_t seed5_len, |
| const unsigned char *sec, size_t slen, |
| unsigned char *out, size_t olen, int fatal) |
| { |
| const EVP_MD *md = ssl_prf_md(s); |
| EVP_KDF *kdf; |
| EVP_KDF_CTX *kctx = NULL; |
| OSSL_PARAM params[8], *p = params; |
| const char *mdname; |
| |
| if (md == NULL) { |
| /* Should never happen */ |
| if (fatal) |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
| else |
| ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| kdf = EVP_KDF_fetch(s->ctx->libctx, OSSL_KDF_NAME_TLS1_PRF, s->ctx->propq); |
| if (kdf == NULL) |
| goto err; |
| kctx = EVP_KDF_CTX_new(kdf); |
| EVP_KDF_free(kdf); |
| if (kctx == NULL) |
| goto err; |
| mdname = EVP_MD_get0_name(md); |
| *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST, |
| (char *)mdname, 0); |
| *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SECRET, |
| (unsigned char *)sec, |
| (size_t)slen); |
| *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED, |
| (void *)seed1, (size_t)seed1_len); |
| *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED, |
| (void *)seed2, (size_t)seed2_len); |
| *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED, |
| (void *)seed3, (size_t)seed3_len); |
| *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED, |
| (void *)seed4, (size_t)seed4_len); |
| *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED, |
| (void *)seed5, (size_t)seed5_len); |
| *p = OSSL_PARAM_construct_end(); |
| if (EVP_KDF_derive(kctx, out, olen, params)) { |
| EVP_KDF_CTX_free(kctx); |
| return 1; |
| } |
| |
| err: |
| if (fatal) |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
| else |
| ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); |
| EVP_KDF_CTX_free(kctx); |
| return 0; |
| } |
| |
| static int tls1_generate_key_block(SSL *s, unsigned char *km, size_t num) |
| { |
| int ret; |
| |
| /* Calls SSLfatal() as required */ |
| ret = tls1_PRF(s, |
| TLS_MD_KEY_EXPANSION_CONST, |
| TLS_MD_KEY_EXPANSION_CONST_SIZE, s->s3.server_random, |
| SSL3_RANDOM_SIZE, s->s3.client_random, SSL3_RANDOM_SIZE, |
| NULL, 0, NULL, 0, s->session->master_key, |
| s->session->master_key_length, km, num, 1); |
| |
| return ret; |
| } |
| |
| #ifndef OPENSSL_NO_KTLS |
| /* |
| * Count the number of records that were not processed yet from record boundary. |
| * |
| * This function assumes that there are only fully formed records read in the |
| * record layer. If read_ahead is enabled, then this might be false and this |
| * function will fail. |
| */ |
| # ifndef OPENSSL_NO_KTLS_RX |
| static int count_unprocessed_records(SSL *s) |
| { |
| SSL3_BUFFER *rbuf = RECORD_LAYER_get_rbuf(&s->rlayer); |
| PACKET pkt, subpkt; |
| int count = 0; |
| |
| if (!PACKET_buf_init(&pkt, rbuf->buf + rbuf->offset, rbuf->left)) |
| return -1; |
| |
| while (PACKET_remaining(&pkt) > 0) { |
| /* Skip record type and version */ |
| if (!PACKET_forward(&pkt, 3)) |
| return -1; |
| |
| /* Read until next record */ |
| if (!PACKET_get_length_prefixed_2(&pkt, &subpkt)) |
| return -1; |
| |
| count += 1; |
| } |
| |
| return count; |
| } |
| # endif |
| #endif |
| |
| |
| int tls_provider_set_tls_params(SSL *s, EVP_CIPHER_CTX *ctx, |
| const EVP_CIPHER *ciph, |
| const EVP_MD *md) |
| { |
| /* |
| * Provided cipher, the TLS padding/MAC removal is performed provider |
| * side so we need to tell the ctx about our TLS version and mac size |
| */ |
| OSSL_PARAM params[3], *pprm = params; |
| size_t macsize = 0; |
| int imacsize = -1; |
| |
| if ((EVP_CIPHER_get_flags(ciph) & EVP_CIPH_FLAG_AEAD_CIPHER) == 0 |
| /* |
| * We look at s->ext.use_etm instead of SSL_READ_ETM() or |
| * SSL_WRITE_ETM() because this test applies to both reading |
| * and writing. |
| */ |
| && !s->ext.use_etm) |
| imacsize = EVP_MD_get_size(md); |
| if (imacsize >= 0) |
| macsize = (size_t)imacsize; |
| |
| *pprm++ = OSSL_PARAM_construct_int(OSSL_CIPHER_PARAM_TLS_VERSION, |
| &s->version); |
| *pprm++ = OSSL_PARAM_construct_size_t(OSSL_CIPHER_PARAM_TLS_MAC_SIZE, |
| &macsize); |
| *pprm = OSSL_PARAM_construct_end(); |
| |
| if (!EVP_CIPHER_CTX_set_params(ctx, params)) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| |
| static int tls_iv_length_within_key_block(const EVP_CIPHER *c) |
| { |
| /* If GCM/CCM mode only part of IV comes from PRF */ |
| if (EVP_CIPHER_get_mode(c) == EVP_CIPH_GCM_MODE) |
| return EVP_GCM_TLS_FIXED_IV_LEN; |
| else if (EVP_CIPHER_get_mode(c) == EVP_CIPH_CCM_MODE) |
| return EVP_CCM_TLS_FIXED_IV_LEN; |
| else |
| return EVP_CIPHER_get_iv_length(c); |
| } |
| |
| int tls1_change_cipher_state(SSL *s, int which) |
| { |
| unsigned char *p, *mac_secret; |
| unsigned char *ms, *key, *iv; |
| EVP_CIPHER_CTX *dd; |
| const EVP_CIPHER *c; |
| #ifndef OPENSSL_NO_COMP |
| const SSL_COMP *comp; |
| #endif |
| const EVP_MD *m; |
| int mac_type; |
| size_t *mac_secret_size; |
| EVP_MD_CTX *mac_ctx; |
| EVP_PKEY *mac_key; |
| size_t n, i, j, k, cl; |
| int reuse_dd = 0; |
| #ifndef OPENSSL_NO_KTLS |
| ktls_crypto_info_t crypto_info; |
| unsigned char *rec_seq; |
| void *rl_sequence; |
| # ifndef OPENSSL_NO_KTLS_RX |
| int count_unprocessed; |
| int bit; |
| # endif |
| BIO *bio; |
| #endif |
| |
| c = s->s3.tmp.new_sym_enc; |
| m = s->s3.tmp.new_hash; |
| mac_type = s->s3.tmp.new_mac_pkey_type; |
| #ifndef OPENSSL_NO_COMP |
| comp = s->s3.tmp.new_compression; |
| #endif |
| |
| if (which & SSL3_CC_READ) { |
| if (s->ext.use_etm) |
| s->s3.flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC_READ; |
| else |
| s->s3.flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC_READ; |
| |
| if (s->s3.tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC) |
| s->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM; |
| else |
| s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM; |
| |
| if (s->s3.tmp.new_cipher->algorithm2 & TLS1_TLSTREE) |
| s->mac_flags |= SSL_MAC_FLAG_READ_MAC_TLSTREE; |
| else |
| s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_TLSTREE; |
| |
| if (s->enc_read_ctx != NULL) { |
| reuse_dd = 1; |
| } else if ((s->enc_read_ctx = EVP_CIPHER_CTX_new()) == NULL) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } else { |
| /* |
| * make sure it's initialised in case we exit later with an error |
| */ |
| EVP_CIPHER_CTX_reset(s->enc_read_ctx); |
| } |
| dd = s->enc_read_ctx; |
| mac_ctx = ssl_replace_hash(&s->read_hash, NULL); |
| if (mac_ctx == NULL) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| #ifndef OPENSSL_NO_COMP |
| COMP_CTX_free(s->expand); |
| s->expand = NULL; |
| if (comp != NULL) { |
| s->expand = COMP_CTX_new(comp->method); |
| if (s->expand == NULL) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, |
| SSL_R_COMPRESSION_LIBRARY_ERROR); |
| goto err; |
| } |
| } |
| #endif |
| /* |
| * this is done by dtls1_reset_seq_numbers for DTLS |
| */ |
| if (!SSL_IS_DTLS(s)) |
| RECORD_LAYER_reset_read_sequence(&s->rlayer); |
| mac_secret = &(s->s3.read_mac_secret[0]); |
| mac_secret_size = &(s->s3.read_mac_secret_size); |
| } else { |
| s->statem.enc_write_state = ENC_WRITE_STATE_INVALID; |
| if (s->ext.use_etm) |
| s->s3.flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC_WRITE; |
| else |
| s->s3.flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC_WRITE; |
| |
| if (s->s3.tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC) |
| s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM; |
| else |
| s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM; |
| |
| if (s->s3.tmp.new_cipher->algorithm2 & TLS1_TLSTREE) |
| s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_TLSTREE; |
| else |
| s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_TLSTREE; |
| if (s->enc_write_ctx != NULL && !SSL_IS_DTLS(s)) { |
| reuse_dd = 1; |
| } else if ((s->enc_write_ctx = EVP_CIPHER_CTX_new()) == NULL) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| dd = s->enc_write_ctx; |
| if (SSL_IS_DTLS(s)) { |
| mac_ctx = EVP_MD_CTX_new(); |
| if (mac_ctx == NULL) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| s->write_hash = mac_ctx; |
| } else { |
| mac_ctx = ssl_replace_hash(&s->write_hash, NULL); |
| if (mac_ctx == NULL) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| } |
| #ifndef OPENSSL_NO_COMP |
| COMP_CTX_free(s->compress); |
| s->compress = NULL; |
| if (comp != NULL) { |
| s->compress = COMP_CTX_new(comp->method); |
| if (s->compress == NULL) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, |
| SSL_R_COMPRESSION_LIBRARY_ERROR); |
| goto err; |
| } |
| } |
| #endif |
| /* |
| * this is done by dtls1_reset_seq_numbers for DTLS |
| */ |
| if (!SSL_IS_DTLS(s)) |
| RECORD_LAYER_reset_write_sequence(&s->rlayer); |
| mac_secret = &(s->s3.write_mac_secret[0]); |
| mac_secret_size = &(s->s3.write_mac_secret_size); |
| } |
| |
| if (reuse_dd) |
| EVP_CIPHER_CTX_reset(dd); |
| |
| p = s->s3.tmp.key_block; |
| i = *mac_secret_size = s->s3.tmp.new_mac_secret_size; |
| |
| cl = EVP_CIPHER_get_key_length(c); |
| j = cl; |
| k = tls_iv_length_within_key_block(c); |
| if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) || |
| (which == SSL3_CHANGE_CIPHER_SERVER_READ)) { |
| ms = &(p[0]); |
| n = i + i; |
| key = &(p[n]); |
| n += j + j; |
| iv = &(p[n]); |
| n += k + k; |
| } else { |
| n = i; |
| ms = &(p[n]); |
| n += i + j; |
| key = &(p[n]); |
| n += j + k; |
| iv = &(p[n]); |
| n += k; |
| } |
| |
| if (n > s->s3.tmp.key_block_length) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| memcpy(mac_secret, ms, i); |
| |
| if (!(EVP_CIPHER_get_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER)) { |
| if (mac_type == EVP_PKEY_HMAC) { |
| mac_key = EVP_PKEY_new_raw_private_key_ex(s->ctx->libctx, "HMAC", |
| s->ctx->propq, mac_secret, |
| *mac_secret_size); |
| } else { |
| /* |
| * If its not HMAC then the only other types of MAC we support are |
| * the GOST MACs, so we need to use the old style way of creating |
| * a MAC key. |
| */ |
| mac_key = EVP_PKEY_new_mac_key(mac_type, NULL, mac_secret, |
| (int)*mac_secret_size); |
| } |
| if (mac_key == NULL |
| || EVP_DigestSignInit_ex(mac_ctx, NULL, EVP_MD_get0_name(m), |
| s->ctx->libctx, s->ctx->propq, mac_key, |
| NULL) <= 0) { |
| EVP_PKEY_free(mac_key); |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| EVP_PKEY_free(mac_key); |
| } |
| |
| OSSL_TRACE_BEGIN(TLS) { |
| BIO_printf(trc_out, "which = %04X, mac key:\n", which); |
| BIO_dump_indent(trc_out, ms, i, 4); |
| } OSSL_TRACE_END(TLS); |
| |
| if (EVP_CIPHER_get_mode(c) == EVP_CIPH_GCM_MODE) { |
| if (!EVP_CipherInit_ex(dd, c, NULL, key, NULL, (which & SSL3_CC_WRITE)) |
| || !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_GCM_SET_IV_FIXED, (int)k, |
| iv)) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| } else if (EVP_CIPHER_get_mode(c) == EVP_CIPH_CCM_MODE) { |
| int taglen; |
| if (s->s3.tmp. |
| new_cipher->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) |
| taglen = EVP_CCM8_TLS_TAG_LEN; |
| else |
| taglen = EVP_CCM_TLS_TAG_LEN; |
| if (!EVP_CipherInit_ex(dd, c, NULL, NULL, NULL, (which & SSL3_CC_WRITE)) |
| || !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_IVLEN, 12, NULL) |
| || !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_TAG, taglen, NULL) |
| || !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_CCM_SET_IV_FIXED, (int)k, iv) |
| || !EVP_CipherInit_ex(dd, NULL, NULL, key, NULL, -1)) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| } else { |
| if (!EVP_CipherInit_ex(dd, c, NULL, key, iv, (which & SSL3_CC_WRITE))) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| } |
| /* Needed for "composite" AEADs, such as RC4-HMAC-MD5 */ |
| if ((EVP_CIPHER_get_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER) |
| && *mac_secret_size |
| && !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_MAC_KEY, |
| (int)*mac_secret_size, mac_secret)) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| if (EVP_CIPHER_get0_provider(c) != NULL |
| && !tls_provider_set_tls_params(s, dd, c, m)) { |
| /* SSLfatal already called */ |
| goto err; |
| } |
| |
| #ifndef OPENSSL_NO_KTLS |
| if (s->compress || (s->options & SSL_OP_ENABLE_KTLS) == 0) |
| goto skip_ktls; |
| |
| /* ktls supports only the maximum fragment size */ |
| if (ssl_get_max_send_fragment(s) != SSL3_RT_MAX_PLAIN_LENGTH) |
| goto skip_ktls; |
| |
| /* check that cipher is supported */ |
| if (!ktls_check_supported_cipher(s, c, dd)) |
| goto skip_ktls; |
| |
| if (which & SSL3_CC_WRITE) |
| bio = s->wbio; |
| else |
| bio = s->rbio; |
| |
| if (!ossl_assert(bio != NULL)) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| /* All future data will get encrypted by ktls. Flush the BIO or skip ktls */ |
| if (which & SSL3_CC_WRITE) { |
| if (BIO_flush(bio) <= 0) |
| goto skip_ktls; |
| } |
| |
| /* ktls doesn't support renegotiation */ |
| if ((BIO_get_ktls_send(s->wbio) && (which & SSL3_CC_WRITE)) || |
| (BIO_get_ktls_recv(s->rbio) && (which & SSL3_CC_READ))) { |
| SSLfatal(s, SSL_AD_NO_RENEGOTIATION, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| if (which & SSL3_CC_WRITE) |
| rl_sequence = RECORD_LAYER_get_write_sequence(&s->rlayer); |
| else |
| rl_sequence = RECORD_LAYER_get_read_sequence(&s->rlayer); |
| |
| if (!ktls_configure_crypto(s, c, dd, rl_sequence, &crypto_info, &rec_seq, |
| iv, key, ms, *mac_secret_size)) |
| goto skip_ktls; |
| |
| if (which & SSL3_CC_READ) { |
| # ifndef OPENSSL_NO_KTLS_RX |
| count_unprocessed = count_unprocessed_records(s); |
| if (count_unprocessed < 0) |
| goto skip_ktls; |
| |
| /* increment the crypto_info record sequence */ |
| while (count_unprocessed) { |
| for (bit = 7; bit >= 0; bit--) { /* increment */ |
| ++rec_seq[bit]; |
| if (rec_seq[bit] != 0) |
| break; |
| } |
| count_unprocessed--; |
| } |
| # else |
| goto skip_ktls; |
| # endif |
| } |
| |
| /* ktls works with user provided buffers directly */ |
| if (BIO_set_ktls(bio, &crypto_info, which & SSL3_CC_WRITE)) { |
| if (which & SSL3_CC_WRITE) |
| ssl3_release_write_buffer(s); |
| SSL_set_options(s, SSL_OP_NO_RENEGOTIATION); |
| } |
| |
| skip_ktls: |
| #endif /* OPENSSL_NO_KTLS */ |
| s->statem.enc_write_state = ENC_WRITE_STATE_VALID; |
| |
| OSSL_TRACE_BEGIN(TLS) { |
| BIO_printf(trc_out, "which = %04X, key:\n", which); |
| BIO_dump_indent(trc_out, key, EVP_CIPHER_get_key_length(c), 4); |
| BIO_printf(trc_out, "iv:\n"); |
| BIO_dump_indent(trc_out, iv, k, 4); |
| } OSSL_TRACE_END(TLS); |
| |
| return 1; |
| err: |
| return 0; |
| } |
| |
| int tls1_setup_key_block(SSL *s) |
| { |
| unsigned char *p; |
| const EVP_CIPHER *c; |
| const EVP_MD *hash; |
| SSL_COMP *comp; |
| int mac_type = NID_undef; |
| size_t num, mac_secret_size = 0; |
| int ret = 0; |
| |
| if (s->s3.tmp.key_block_length != 0) |
| return 1; |
| |
| if (!ssl_cipher_get_evp(s->ctx, s->session, &c, &hash, &mac_type, |
| &mac_secret_size, &comp, s->ext.use_etm)) { |
| /* Error is already recorded */ |
| SSLfatal_alert(s, SSL_AD_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| ssl_evp_cipher_free(s->s3.tmp.new_sym_enc); |
| s->s3.tmp.new_sym_enc = c; |
| ssl_evp_md_free(s->s3.tmp.new_hash); |
| s->s3.tmp.new_hash = hash; |
| s->s3.tmp.new_mac_pkey_type = mac_type; |
| s->s3.tmp.new_mac_secret_size = mac_secret_size; |
| num = mac_secret_size + EVP_CIPHER_get_key_length(c) |
| + tls_iv_length_within_key_block(c); |
| num *= 2; |
| |
| ssl3_cleanup_key_block(s); |
| |
| if ((p = OPENSSL_malloc(num)) == NULL) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| s->s3.tmp.key_block_length = num; |
| s->s3.tmp.key_block = p; |
| |
| OSSL_TRACE_BEGIN(TLS) { |
| BIO_printf(trc_out, "key block length: %zu\n", num); |
| BIO_printf(trc_out, "client random\n"); |
| BIO_dump_indent(trc_out, s->s3.client_random, SSL3_RANDOM_SIZE, 4); |
| BIO_printf(trc_out, "server random\n"); |
| BIO_dump_indent(trc_out, s->s3.server_random, SSL3_RANDOM_SIZE, 4); |
| BIO_printf(trc_out, "master key\n"); |
| BIO_dump_indent(trc_out, |
| s->session->master_key, |
| s->session->master_key_length, 4); |
| } OSSL_TRACE_END(TLS); |
| |
| if (!tls1_generate_key_block(s, p, num)) { |
| /* SSLfatal() already called */ |
| goto err; |
| } |
| |
| OSSL_TRACE_BEGIN(TLS) { |
| BIO_printf(trc_out, "key block\n"); |
| BIO_dump_indent(trc_out, p, num, 4); |
| } OSSL_TRACE_END(TLS); |
| |
| if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) |
| && s->method->version <= TLS1_VERSION) { |
| /* |
| * enable vulnerability countermeasure for CBC ciphers with known-IV |
| * problem (http://www.openssl.org/~bodo/tls-cbc.txt) |
| */ |
| s->s3.need_empty_fragments = 1; |
| |
| if (s->session->cipher != NULL) { |
| if (s->session->cipher->algorithm_enc == SSL_eNULL) |
| s->s3.need_empty_fragments = 0; |
| |
| if (s->session->cipher->algorithm_enc == SSL_RC4) |
| s->s3.need_empty_fragments = 0; |
| } |
| } |
| |
| ret = 1; |
| err: |
| return ret; |
| } |
| |
| size_t tls1_final_finish_mac(SSL *s, const char *str, size_t slen, |
| unsigned char *out) |
| { |
| size_t hashlen; |
| unsigned char hash[EVP_MAX_MD_SIZE]; |
| size_t finished_size = TLS1_FINISH_MAC_LENGTH; |
| |
| if (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kGOST18) |
| finished_size = 32; |
| |
| if (!ssl3_digest_cached_records(s, 0)) { |
| /* SSLfatal() already called */ |
| return 0; |
| } |
| |
| if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen)) { |
| /* SSLfatal() already called */ |
| return 0; |
| } |
| |
| if (!tls1_PRF(s, str, slen, hash, hashlen, NULL, 0, NULL, 0, NULL, 0, |
| s->session->master_key, s->session->master_key_length, |
| out, finished_size, 1)) { |
| /* SSLfatal() already called */ |
| return 0; |
| } |
| OPENSSL_cleanse(hash, hashlen); |
| return finished_size; |
| } |
| |
| int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p, |
| size_t len, size_t *secret_size) |
| { |
| if (s->session->flags & SSL_SESS_FLAG_EXTMS) { |
| unsigned char hash[EVP_MAX_MD_SIZE * 2]; |
| size_t hashlen; |
| /* |
| * Digest cached records keeping record buffer (if present): this won't |
| * affect client auth because we're freezing the buffer at the same |
| * point (after client key exchange and before certificate verify) |
| */ |
| if (!ssl3_digest_cached_records(s, 1) |
| || !ssl_handshake_hash(s, hash, sizeof(hash), &hashlen)) { |
| /* SSLfatal() already called */ |
| return 0; |
| } |
| OSSL_TRACE_BEGIN(TLS) { |
| BIO_printf(trc_out, "Handshake hashes:\n"); |
| BIO_dump(trc_out, (char *)hash, hashlen); |
| } OSSL_TRACE_END(TLS); |
| if (!tls1_PRF(s, |
| TLS_MD_EXTENDED_MASTER_SECRET_CONST, |
| TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE, |
| hash, hashlen, |
| NULL, 0, |
| NULL, 0, |
| NULL, 0, p, len, out, |
| SSL3_MASTER_SECRET_SIZE, 1)) { |
| /* SSLfatal() already called */ |
| return 0; |
| } |
| OPENSSL_cleanse(hash, hashlen); |
| } else { |
| if (!tls1_PRF(s, |
| TLS_MD_MASTER_SECRET_CONST, |
| TLS_MD_MASTER_SECRET_CONST_SIZE, |
| s->s3.client_random, SSL3_RANDOM_SIZE, |
| NULL, 0, |
| s->s3.server_random, SSL3_RANDOM_SIZE, |
| NULL, 0, p, len, out, |
| SSL3_MASTER_SECRET_SIZE, 1)) { |
| /* SSLfatal() already called */ |
| return 0; |
| } |
| } |
| |
| OSSL_TRACE_BEGIN(TLS) { |
| BIO_printf(trc_out, "Premaster Secret:\n"); |
| BIO_dump_indent(trc_out, p, len, 4); |
| BIO_printf(trc_out, "Client Random:\n"); |
| BIO_dump_indent(trc_out, s->s3.client_random, SSL3_RANDOM_SIZE, 4); |
| BIO_printf(trc_out, "Server Random:\n"); |
| BIO_dump_indent(trc_out, s->s3.server_random, SSL3_RANDOM_SIZE, 4); |
| BIO_printf(trc_out, "Master Secret:\n"); |
| BIO_dump_indent(trc_out, |
| s->session->master_key, |
| SSL3_MASTER_SECRET_SIZE, 4); |
| } OSSL_TRACE_END(TLS); |
| |
| *secret_size = SSL3_MASTER_SECRET_SIZE; |
| return 1; |
| } |
| |
| int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen, |
| const char *label, size_t llen, |
| const unsigned char *context, |
| size_t contextlen, int use_context) |
| { |
| unsigned char *val = NULL; |
| size_t vallen = 0, currentvalpos; |
| int rv; |
| |
| /* |
| * construct PRF arguments we construct the PRF argument ourself rather |
| * than passing separate values into the TLS PRF to ensure that the |
| * concatenation of values does not create a prohibited label. |
| */ |
| vallen = llen + SSL3_RANDOM_SIZE * 2; |
| if (use_context) { |
| vallen += 2 + contextlen; |
| } |
| |
| val = OPENSSL_malloc(vallen); |
| if (val == NULL) |
| goto err2; |
| currentvalpos = 0; |
| memcpy(val + currentvalpos, (unsigned char *)label, llen); |
| currentvalpos += llen; |
| memcpy(val + currentvalpos, s->s3.client_random, SSL3_RANDOM_SIZE); |
| currentvalpos += SSL3_RANDOM_SIZE; |
| memcpy(val + currentvalpos, s->s3.server_random, SSL3_RANDOM_SIZE); |
| currentvalpos += SSL3_RANDOM_SIZE; |
| |
| if (use_context) { |
| val[currentvalpos] = (contextlen >> 8) & 0xff; |
| currentvalpos++; |
| val[currentvalpos] = contextlen & 0xff; |
| currentvalpos++; |
| if ((contextlen > 0) || (context != NULL)) { |
| memcpy(val + currentvalpos, context, contextlen); |
| } |
| } |
| |
| /* |
| * disallow prohibited labels note that SSL3_RANDOM_SIZE > max(prohibited |
| * label len) = 15, so size of val > max(prohibited label len) = 15 and |
| * the comparisons won't have buffer overflow |
| */ |
| if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST, |
| TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0) |
| goto err1; |
| if (memcmp(val, TLS_MD_SERVER_FINISH_CONST, |
| TLS_MD_SERVER_FINISH_CONST_SIZE) == 0) |
| goto err1; |
| if (memcmp(val, TLS_MD_MASTER_SECRET_CONST, |
| TLS_MD_MASTER_SECRET_CONST_SIZE) == 0) |
| goto err1; |
| if (memcmp(val, TLS_MD_EXTENDED_MASTER_SECRET_CONST, |
| TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE) == 0) |
| goto err1; |
| if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST, |
| TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0) |
| goto err1; |
| |
| rv = tls1_PRF(s, |
| val, vallen, |
| NULL, 0, |
| NULL, 0, |
| NULL, 0, |
| NULL, 0, |
| s->session->master_key, s->session->master_key_length, |
| out, olen, 0); |
| |
| goto ret; |
| err1: |
| ERR_raise(ERR_LIB_SSL, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL); |
| rv = 0; |
| goto ret; |
| err2: |
| ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); |
| rv = 0; |
| ret: |
| OPENSSL_clear_free(val, vallen); |
| return rv; |
| } |
| |
| int tls1_alert_code(int code) |
| { |
| switch (code) { |
| case SSL_AD_CLOSE_NOTIFY: |
| return SSL3_AD_CLOSE_NOTIFY; |
| case SSL_AD_UNEXPECTED_MESSAGE: |
| return SSL3_AD_UNEXPECTED_MESSAGE; |
| case SSL_AD_BAD_RECORD_MAC: |
| return SSL3_AD_BAD_RECORD_MAC; |
| case SSL_AD_DECRYPTION_FAILED: |
| return TLS1_AD_DECRYPTION_FAILED; |
| case SSL_AD_RECORD_OVERFLOW: |
| return TLS1_AD_RECORD_OVERFLOW; |
| case SSL_AD_DECOMPRESSION_FAILURE: |
| return SSL3_AD_DECOMPRESSION_FAILURE; |
| case SSL_AD_HANDSHAKE_FAILURE: |
| return SSL3_AD_HANDSHAKE_FAILURE; |
| case SSL_AD_NO_CERTIFICATE: |
| return -1; |
| case SSL_AD_BAD_CERTIFICATE: |
| return SSL3_AD_BAD_CERTIFICATE; |
| case SSL_AD_UNSUPPORTED_CERTIFICATE: |
| return SSL3_AD_UNSUPPORTED_CERTIFICATE; |
| case SSL_AD_CERTIFICATE_REVOKED: |
| return SSL3_AD_CERTIFICATE_REVOKED; |
| case SSL_AD_CERTIFICATE_EXPIRED: |
| return SSL3_AD_CERTIFICATE_EXPIRED; |
| case SSL_AD_CERTIFICATE_UNKNOWN: |
| return SSL3_AD_CERTIFICATE_UNKNOWN; |
| case SSL_AD_ILLEGAL_PARAMETER: |
| return SSL3_AD_ILLEGAL_PARAMETER; |
| case SSL_AD_UNKNOWN_CA: |
| return TLS1_AD_UNKNOWN_CA; |
| case SSL_AD_ACCESS_DENIED: |
| return TLS1_AD_ACCESS_DENIED; |
| case SSL_AD_DECODE_ERROR: |
| return TLS1_AD_DECODE_ERROR; |
| case SSL_AD_DECRYPT_ERROR: |
| return TLS1_AD_DECRYPT_ERROR; |
| case SSL_AD_EXPORT_RESTRICTION: |
| return TLS1_AD_EXPORT_RESTRICTION; |
| case SSL_AD_PROTOCOL_VERSION: |
| return TLS1_AD_PROTOCOL_VERSION; |
| case SSL_AD_INSUFFICIENT_SECURITY: |
| return TLS1_AD_INSUFFICIENT_SECURITY; |
| case SSL_AD_INTERNAL_ERROR: |
| return TLS1_AD_INTERNAL_ERROR; |
| case SSL_AD_USER_CANCELLED: |
| return TLS1_AD_USER_CANCELLED; |
| case SSL_AD_NO_RENEGOTIATION: |
| return TLS1_AD_NO_RENEGOTIATION; |
| case SSL_AD_UNSUPPORTED_EXTENSION: |
| return TLS1_AD_UNSUPPORTED_EXTENSION; |
| case SSL_AD_CERTIFICATE_UNOBTAINABLE: |
| return TLS1_AD_CERTIFICATE_UNOBTAINABLE; |
| case SSL_AD_UNRECOGNIZED_NAME: |
| return TLS1_AD_UNRECOGNIZED_NAME; |
| case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE: |
| return TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE; |
| case SSL_AD_BAD_CERTIFICATE_HASH_VALUE: |
| return TLS1_AD_BAD_CERTIFICATE_HASH_VALUE; |
| case SSL_AD_UNKNOWN_PSK_IDENTITY: |
| return TLS1_AD_UNKNOWN_PSK_IDENTITY; |
| case SSL_AD_INAPPROPRIATE_FALLBACK: |
| return TLS1_AD_INAPPROPRIATE_FALLBACK; |
| case SSL_AD_NO_APPLICATION_PROTOCOL: |
| return TLS1_AD_NO_APPLICATION_PROTOCOL; |
| case SSL_AD_CERTIFICATE_REQUIRED: |
| return SSL_AD_HANDSHAKE_FAILURE; |
| case TLS13_AD_MISSING_EXTENSION: |
| return SSL_AD_HANDSHAKE_FAILURE; |
| default: |
| return -1; |
| } |
| } |