blob: 101cba6490935a29ca9d2217a59e9b9a1123c654 [file] [log] [blame]
/*
* Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
* Copyright 2005 Nokia. All rights reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include "ssl_local.h"
#include "record/record_local.h"
#include "internal/ktls.h"
#include "internal/cryptlib.h"
#include <openssl/comp.h>
#include <openssl/evp.h>
#include <openssl/kdf.h>
#include <openssl/rand.h>
#include <openssl/obj_mac.h>
#include <openssl/core_names.h>
#include <openssl/trace.h>
/* seed1 through seed5 are concatenated */
static int tls1_PRF(SSL *s,
const void *seed1, size_t seed1_len,
const void *seed2, size_t seed2_len,
const void *seed3, size_t seed3_len,
const void *seed4, size_t seed4_len,
const void *seed5, size_t seed5_len,
const unsigned char *sec, size_t slen,
unsigned char *out, size_t olen, int fatal)
{
const EVP_MD *md = ssl_prf_md(s);
EVP_KDF *kdf;
EVP_KDF_CTX *kctx = NULL;
OSSL_PARAM params[8], *p = params;
const char *mdname;
if (md == NULL) {
/* Should never happen */
if (fatal)
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
else
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
kdf = EVP_KDF_fetch(s->ctx->libctx, OSSL_KDF_NAME_TLS1_PRF, s->ctx->propq);
if (kdf == NULL)
goto err;
kctx = EVP_KDF_CTX_new(kdf);
EVP_KDF_free(kdf);
if (kctx == NULL)
goto err;
mdname = EVP_MD_get0_name(md);
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST,
(char *)mdname, 0);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SECRET,
(unsigned char *)sec,
(size_t)slen);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED,
(void *)seed1, (size_t)seed1_len);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED,
(void *)seed2, (size_t)seed2_len);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED,
(void *)seed3, (size_t)seed3_len);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED,
(void *)seed4, (size_t)seed4_len);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED,
(void *)seed5, (size_t)seed5_len);
*p = OSSL_PARAM_construct_end();
if (EVP_KDF_derive(kctx, out, olen, params)) {
EVP_KDF_CTX_free(kctx);
return 1;
}
err:
if (fatal)
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
else
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
EVP_KDF_CTX_free(kctx);
return 0;
}
static int tls1_generate_key_block(SSL *s, unsigned char *km, size_t num)
{
int ret;
/* Calls SSLfatal() as required */
ret = tls1_PRF(s,
TLS_MD_KEY_EXPANSION_CONST,
TLS_MD_KEY_EXPANSION_CONST_SIZE, s->s3.server_random,
SSL3_RANDOM_SIZE, s->s3.client_random, SSL3_RANDOM_SIZE,
NULL, 0, NULL, 0, s->session->master_key,
s->session->master_key_length, km, num, 1);
return ret;
}
#ifndef OPENSSL_NO_KTLS
/*
* Count the number of records that were not processed yet from record boundary.
*
* This function assumes that there are only fully formed records read in the
* record layer. If read_ahead is enabled, then this might be false and this
* function will fail.
*/
# ifndef OPENSSL_NO_KTLS_RX
static int count_unprocessed_records(SSL *s)
{
SSL3_BUFFER *rbuf = RECORD_LAYER_get_rbuf(&s->rlayer);
PACKET pkt, subpkt;
int count = 0;
if (!PACKET_buf_init(&pkt, rbuf->buf + rbuf->offset, rbuf->left))
return -1;
while (PACKET_remaining(&pkt) > 0) {
/* Skip record type and version */
if (!PACKET_forward(&pkt, 3))
return -1;
/* Read until next record */
if (!PACKET_get_length_prefixed_2(&pkt, &subpkt))
return -1;
count += 1;
}
return count;
}
# endif
#endif
int tls_provider_set_tls_params(SSL *s, EVP_CIPHER_CTX *ctx,
const EVP_CIPHER *ciph,
const EVP_MD *md)
{
/*
* Provided cipher, the TLS padding/MAC removal is performed provider
* side so we need to tell the ctx about our TLS version and mac size
*/
OSSL_PARAM params[3], *pprm = params;
size_t macsize = 0;
int imacsize = -1;
if ((EVP_CIPHER_get_flags(ciph) & EVP_CIPH_FLAG_AEAD_CIPHER) == 0
/*
* We look at s->ext.use_etm instead of SSL_READ_ETM() or
* SSL_WRITE_ETM() because this test applies to both reading
* and writing.
*/
&& !s->ext.use_etm)
imacsize = EVP_MD_get_size(md);
if (imacsize >= 0)
macsize = (size_t)imacsize;
*pprm++ = OSSL_PARAM_construct_int(OSSL_CIPHER_PARAM_TLS_VERSION,
&s->version);
*pprm++ = OSSL_PARAM_construct_size_t(OSSL_CIPHER_PARAM_TLS_MAC_SIZE,
&macsize);
*pprm = OSSL_PARAM_construct_end();
if (!EVP_CIPHER_CTX_set_params(ctx, params)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
static int tls_iv_length_within_key_block(const EVP_CIPHER *c)
{
/* If GCM/CCM mode only part of IV comes from PRF */
if (EVP_CIPHER_get_mode(c) == EVP_CIPH_GCM_MODE)
return EVP_GCM_TLS_FIXED_IV_LEN;
else if (EVP_CIPHER_get_mode(c) == EVP_CIPH_CCM_MODE)
return EVP_CCM_TLS_FIXED_IV_LEN;
else
return EVP_CIPHER_get_iv_length(c);
}
int tls1_change_cipher_state(SSL *s, int which)
{
unsigned char *p, *mac_secret;
unsigned char *ms, *key, *iv;
EVP_CIPHER_CTX *dd;
const EVP_CIPHER *c;
#ifndef OPENSSL_NO_COMP
const SSL_COMP *comp;
#endif
const EVP_MD *m;
int mac_type;
size_t *mac_secret_size;
EVP_MD_CTX *mac_ctx;
EVP_PKEY *mac_key;
size_t n, i, j, k, cl;
int reuse_dd = 0;
#ifndef OPENSSL_NO_KTLS
ktls_crypto_info_t crypto_info;
unsigned char *rec_seq;
void *rl_sequence;
# ifndef OPENSSL_NO_KTLS_RX
int count_unprocessed;
int bit;
# endif
BIO *bio;
#endif
c = s->s3.tmp.new_sym_enc;
m = s->s3.tmp.new_hash;
mac_type = s->s3.tmp.new_mac_pkey_type;
#ifndef OPENSSL_NO_COMP
comp = s->s3.tmp.new_compression;
#endif
if (which & SSL3_CC_READ) {
if (s->ext.use_etm)
s->s3.flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC_READ;
else
s->s3.flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC_READ;
if (s->s3.tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
s->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM;
else
s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM;
if (s->s3.tmp.new_cipher->algorithm2 & TLS1_TLSTREE)
s->mac_flags |= SSL_MAC_FLAG_READ_MAC_TLSTREE;
else
s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_TLSTREE;
if (s->enc_read_ctx != NULL) {
reuse_dd = 1;
} else if ((s->enc_read_ctx = EVP_CIPHER_CTX_new()) == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
goto err;
} else {
/*
* make sure it's initialised in case we exit later with an error
*/
EVP_CIPHER_CTX_reset(s->enc_read_ctx);
}
dd = s->enc_read_ctx;
mac_ctx = ssl_replace_hash(&s->read_hash, NULL);
if (mac_ctx == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
#ifndef OPENSSL_NO_COMP
COMP_CTX_free(s->expand);
s->expand = NULL;
if (comp != NULL) {
s->expand = COMP_CTX_new(comp->method);
if (s->expand == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR,
SSL_R_COMPRESSION_LIBRARY_ERROR);
goto err;
}
}
#endif
/*
* this is done by dtls1_reset_seq_numbers for DTLS
*/
if (!SSL_IS_DTLS(s))
RECORD_LAYER_reset_read_sequence(&s->rlayer);
mac_secret = &(s->s3.read_mac_secret[0]);
mac_secret_size = &(s->s3.read_mac_secret_size);
} else {
s->statem.enc_write_state = ENC_WRITE_STATE_INVALID;
if (s->ext.use_etm)
s->s3.flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC_WRITE;
else
s->s3.flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC_WRITE;
if (s->s3.tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM;
else
s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM;
if (s->s3.tmp.new_cipher->algorithm2 & TLS1_TLSTREE)
s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_TLSTREE;
else
s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_TLSTREE;
if (s->enc_write_ctx != NULL && !SSL_IS_DTLS(s)) {
reuse_dd = 1;
} else if ((s->enc_write_ctx = EVP_CIPHER_CTX_new()) == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
goto err;
}
dd = s->enc_write_ctx;
if (SSL_IS_DTLS(s)) {
mac_ctx = EVP_MD_CTX_new();
if (mac_ctx == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
goto err;
}
s->write_hash = mac_ctx;
} else {
mac_ctx = ssl_replace_hash(&s->write_hash, NULL);
if (mac_ctx == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
goto err;
}
}
#ifndef OPENSSL_NO_COMP
COMP_CTX_free(s->compress);
s->compress = NULL;
if (comp != NULL) {
s->compress = COMP_CTX_new(comp->method);
if (s->compress == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR,
SSL_R_COMPRESSION_LIBRARY_ERROR);
goto err;
}
}
#endif
/*
* this is done by dtls1_reset_seq_numbers for DTLS
*/
if (!SSL_IS_DTLS(s))
RECORD_LAYER_reset_write_sequence(&s->rlayer);
mac_secret = &(s->s3.write_mac_secret[0]);
mac_secret_size = &(s->s3.write_mac_secret_size);
}
if (reuse_dd)
EVP_CIPHER_CTX_reset(dd);
p = s->s3.tmp.key_block;
i = *mac_secret_size = s->s3.tmp.new_mac_secret_size;
cl = EVP_CIPHER_get_key_length(c);
j = cl;
k = tls_iv_length_within_key_block(c);
if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) ||
(which == SSL3_CHANGE_CIPHER_SERVER_READ)) {
ms = &(p[0]);
n = i + i;
key = &(p[n]);
n += j + j;
iv = &(p[n]);
n += k + k;
} else {
n = i;
ms = &(p[n]);
n += i + j;
key = &(p[n]);
n += j + k;
iv = &(p[n]);
n += k;
}
if (n > s->s3.tmp.key_block_length) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
memcpy(mac_secret, ms, i);
if (!(EVP_CIPHER_get_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER)) {
if (mac_type == EVP_PKEY_HMAC) {
mac_key = EVP_PKEY_new_raw_private_key_ex(s->ctx->libctx, "HMAC",
s->ctx->propq, mac_secret,
*mac_secret_size);
} else {
/*
* If its not HMAC then the only other types of MAC we support are
* the GOST MACs, so we need to use the old style way of creating
* a MAC key.
*/
mac_key = EVP_PKEY_new_mac_key(mac_type, NULL, mac_secret,
(int)*mac_secret_size);
}
if (mac_key == NULL
|| EVP_DigestSignInit_ex(mac_ctx, NULL, EVP_MD_get0_name(m),
s->ctx->libctx, s->ctx->propq, mac_key,
NULL) <= 0) {
EVP_PKEY_free(mac_key);
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
EVP_PKEY_free(mac_key);
}
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "which = %04X, mac key:\n", which);
BIO_dump_indent(trc_out, ms, i, 4);
} OSSL_TRACE_END(TLS);
if (EVP_CIPHER_get_mode(c) == EVP_CIPH_GCM_MODE) {
if (!EVP_CipherInit_ex(dd, c, NULL, key, NULL, (which & SSL3_CC_WRITE))
|| !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_GCM_SET_IV_FIXED, (int)k,
iv)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
} else if (EVP_CIPHER_get_mode(c) == EVP_CIPH_CCM_MODE) {
int taglen;
if (s->s3.tmp.
new_cipher->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8))
taglen = EVP_CCM8_TLS_TAG_LEN;
else
taglen = EVP_CCM_TLS_TAG_LEN;
if (!EVP_CipherInit_ex(dd, c, NULL, NULL, NULL, (which & SSL3_CC_WRITE))
|| !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_IVLEN, 12, NULL)
|| !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_TAG, taglen, NULL)
|| !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_CCM_SET_IV_FIXED, (int)k, iv)
|| !EVP_CipherInit_ex(dd, NULL, NULL, key, NULL, -1)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
} else {
if (!EVP_CipherInit_ex(dd, c, NULL, key, iv, (which & SSL3_CC_WRITE))) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
}
/* Needed for "composite" AEADs, such as RC4-HMAC-MD5 */
if ((EVP_CIPHER_get_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER)
&& *mac_secret_size
&& !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_MAC_KEY,
(int)*mac_secret_size, mac_secret)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
if (EVP_CIPHER_get0_provider(c) != NULL
&& !tls_provider_set_tls_params(s, dd, c, m)) {
/* SSLfatal already called */
goto err;
}
#ifndef OPENSSL_NO_KTLS
if (s->compress || (s->options & SSL_OP_ENABLE_KTLS) == 0)
goto skip_ktls;
/* ktls supports only the maximum fragment size */
if (ssl_get_max_send_fragment(s) != SSL3_RT_MAX_PLAIN_LENGTH)
goto skip_ktls;
/* check that cipher is supported */
if (!ktls_check_supported_cipher(s, c, dd))
goto skip_ktls;
if (which & SSL3_CC_WRITE)
bio = s->wbio;
else
bio = s->rbio;
if (!ossl_assert(bio != NULL)) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
goto err;
}
/* All future data will get encrypted by ktls. Flush the BIO or skip ktls */
if (which & SSL3_CC_WRITE) {
if (BIO_flush(bio) <= 0)
goto skip_ktls;
}
/* ktls doesn't support renegotiation */
if ((BIO_get_ktls_send(s->wbio) && (which & SSL3_CC_WRITE)) ||
(BIO_get_ktls_recv(s->rbio) && (which & SSL3_CC_READ))) {
SSLfatal(s, SSL_AD_NO_RENEGOTIATION, ERR_R_INTERNAL_ERROR);
goto err;
}
if (which & SSL3_CC_WRITE)
rl_sequence = RECORD_LAYER_get_write_sequence(&s->rlayer);
else
rl_sequence = RECORD_LAYER_get_read_sequence(&s->rlayer);
if (!ktls_configure_crypto(s, c, dd, rl_sequence, &crypto_info, &rec_seq,
iv, key, ms, *mac_secret_size))
goto skip_ktls;
if (which & SSL3_CC_READ) {
# ifndef OPENSSL_NO_KTLS_RX
count_unprocessed = count_unprocessed_records(s);
if (count_unprocessed < 0)
goto skip_ktls;
/* increment the crypto_info record sequence */
while (count_unprocessed) {
for (bit = 7; bit >= 0; bit--) { /* increment */
++rec_seq[bit];
if (rec_seq[bit] != 0)
break;
}
count_unprocessed--;
}
# else
goto skip_ktls;
# endif
}
/* ktls works with user provided buffers directly */
if (BIO_set_ktls(bio, &crypto_info, which & SSL3_CC_WRITE)) {
if (which & SSL3_CC_WRITE)
ssl3_release_write_buffer(s);
SSL_set_options(s, SSL_OP_NO_RENEGOTIATION);
}
skip_ktls:
#endif /* OPENSSL_NO_KTLS */
s->statem.enc_write_state = ENC_WRITE_STATE_VALID;
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "which = %04X, key:\n", which);
BIO_dump_indent(trc_out, key, EVP_CIPHER_get_key_length(c), 4);
BIO_printf(trc_out, "iv:\n");
BIO_dump_indent(trc_out, iv, k, 4);
} OSSL_TRACE_END(TLS);
return 1;
err:
return 0;
}
int tls1_setup_key_block(SSL *s)
{
unsigned char *p;
const EVP_CIPHER *c;
const EVP_MD *hash;
SSL_COMP *comp;
int mac_type = NID_undef;
size_t num, mac_secret_size = 0;
int ret = 0;
if (s->s3.tmp.key_block_length != 0)
return 1;
if (!ssl_cipher_get_evp(s->ctx, s->session, &c, &hash, &mac_type,
&mac_secret_size, &comp, s->ext.use_etm)) {
/* Error is already recorded */
SSLfatal_alert(s, SSL_AD_INTERNAL_ERROR);
return 0;
}
ssl_evp_cipher_free(s->s3.tmp.new_sym_enc);
s->s3.tmp.new_sym_enc = c;
ssl_evp_md_free(s->s3.tmp.new_hash);
s->s3.tmp.new_hash = hash;
s->s3.tmp.new_mac_pkey_type = mac_type;
s->s3.tmp.new_mac_secret_size = mac_secret_size;
num = mac_secret_size + EVP_CIPHER_get_key_length(c)
+ tls_iv_length_within_key_block(c);
num *= 2;
ssl3_cleanup_key_block(s);
if ((p = OPENSSL_malloc(num)) == NULL) {
SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_MALLOC_FAILURE);
goto err;
}
s->s3.tmp.key_block_length = num;
s->s3.tmp.key_block = p;
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "key block length: %zu\n", num);
BIO_printf(trc_out, "client random\n");
BIO_dump_indent(trc_out, s->s3.client_random, SSL3_RANDOM_SIZE, 4);
BIO_printf(trc_out, "server random\n");
BIO_dump_indent(trc_out, s->s3.server_random, SSL3_RANDOM_SIZE, 4);
BIO_printf(trc_out, "master key\n");
BIO_dump_indent(trc_out,
s->session->master_key,
s->session->master_key_length, 4);
} OSSL_TRACE_END(TLS);
if (!tls1_generate_key_block(s, p, num)) {
/* SSLfatal() already called */
goto err;
}
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "key block\n");
BIO_dump_indent(trc_out, p, num, 4);
} OSSL_TRACE_END(TLS);
if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS)
&& s->method->version <= TLS1_VERSION) {
/*
* enable vulnerability countermeasure for CBC ciphers with known-IV
* problem (http://www.openssl.org/~bodo/tls-cbc.txt)
*/
s->s3.need_empty_fragments = 1;
if (s->session->cipher != NULL) {
if (s->session->cipher->algorithm_enc == SSL_eNULL)
s->s3.need_empty_fragments = 0;
if (s->session->cipher->algorithm_enc == SSL_RC4)
s->s3.need_empty_fragments = 0;
}
}
ret = 1;
err:
return ret;
}
size_t tls1_final_finish_mac(SSL *s, const char *str, size_t slen,
unsigned char *out)
{
size_t hashlen;
unsigned char hash[EVP_MAX_MD_SIZE];
size_t finished_size = TLS1_FINISH_MAC_LENGTH;
if (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kGOST18)
finished_size = 32;
if (!ssl3_digest_cached_records(s, 0)) {
/* SSLfatal() already called */
return 0;
}
if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen)) {
/* SSLfatal() already called */
return 0;
}
if (!tls1_PRF(s, str, slen, hash, hashlen, NULL, 0, NULL, 0, NULL, 0,
s->session->master_key, s->session->master_key_length,
out, finished_size, 1)) {
/* SSLfatal() already called */
return 0;
}
OPENSSL_cleanse(hash, hashlen);
return finished_size;
}
int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
size_t len, size_t *secret_size)
{
if (s->session->flags & SSL_SESS_FLAG_EXTMS) {
unsigned char hash[EVP_MAX_MD_SIZE * 2];
size_t hashlen;
/*
* Digest cached records keeping record buffer (if present): this won't
* affect client auth because we're freezing the buffer at the same
* point (after client key exchange and before certificate verify)
*/
if (!ssl3_digest_cached_records(s, 1)
|| !ssl_handshake_hash(s, hash, sizeof(hash), &hashlen)) {
/* SSLfatal() already called */
return 0;
}
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "Handshake hashes:\n");
BIO_dump(trc_out, (char *)hash, hashlen);
} OSSL_TRACE_END(TLS);
if (!tls1_PRF(s,
TLS_MD_EXTENDED_MASTER_SECRET_CONST,
TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE,
hash, hashlen,
NULL, 0,
NULL, 0,
NULL, 0, p, len, out,
SSL3_MASTER_SECRET_SIZE, 1)) {
/* SSLfatal() already called */
return 0;
}
OPENSSL_cleanse(hash, hashlen);
} else {
if (!tls1_PRF(s,
TLS_MD_MASTER_SECRET_CONST,
TLS_MD_MASTER_SECRET_CONST_SIZE,
s->s3.client_random, SSL3_RANDOM_SIZE,
NULL, 0,
s->s3.server_random, SSL3_RANDOM_SIZE,
NULL, 0, p, len, out,
SSL3_MASTER_SECRET_SIZE, 1)) {
/* SSLfatal() already called */
return 0;
}
}
OSSL_TRACE_BEGIN(TLS) {
BIO_printf(trc_out, "Premaster Secret:\n");
BIO_dump_indent(trc_out, p, len, 4);
BIO_printf(trc_out, "Client Random:\n");
BIO_dump_indent(trc_out, s->s3.client_random, SSL3_RANDOM_SIZE, 4);
BIO_printf(trc_out, "Server Random:\n");
BIO_dump_indent(trc_out, s->s3.server_random, SSL3_RANDOM_SIZE, 4);
BIO_printf(trc_out, "Master Secret:\n");
BIO_dump_indent(trc_out,
s->session->master_key,
SSL3_MASTER_SECRET_SIZE, 4);
} OSSL_TRACE_END(TLS);
*secret_size = SSL3_MASTER_SECRET_SIZE;
return 1;
}
int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen,
const char *label, size_t llen,
const unsigned char *context,
size_t contextlen, int use_context)
{
unsigned char *val = NULL;
size_t vallen = 0, currentvalpos;
int rv;
/*
* construct PRF arguments we construct the PRF argument ourself rather
* than passing separate values into the TLS PRF to ensure that the
* concatenation of values does not create a prohibited label.
*/
vallen = llen + SSL3_RANDOM_SIZE * 2;
if (use_context) {
vallen += 2 + contextlen;
}
val = OPENSSL_malloc(vallen);
if (val == NULL)
goto err2;
currentvalpos = 0;
memcpy(val + currentvalpos, (unsigned char *)label, llen);
currentvalpos += llen;
memcpy(val + currentvalpos, s->s3.client_random, SSL3_RANDOM_SIZE);
currentvalpos += SSL3_RANDOM_SIZE;
memcpy(val + currentvalpos, s->s3.server_random, SSL3_RANDOM_SIZE);
currentvalpos += SSL3_RANDOM_SIZE;
if (use_context) {
val[currentvalpos] = (contextlen >> 8) & 0xff;
currentvalpos++;
val[currentvalpos] = contextlen & 0xff;
currentvalpos++;
if ((contextlen > 0) || (context != NULL)) {
memcpy(val + currentvalpos, context, contextlen);
}
}
/*
* disallow prohibited labels note that SSL3_RANDOM_SIZE > max(prohibited
* label len) = 15, so size of val > max(prohibited label len) = 15 and
* the comparisons won't have buffer overflow
*/
if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST,
TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_SERVER_FINISH_CONST,
TLS_MD_SERVER_FINISH_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_MASTER_SECRET_CONST,
TLS_MD_MASTER_SECRET_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_EXTENDED_MASTER_SECRET_CONST,
TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE) == 0)
goto err1;
if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST,
TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0)
goto err1;
rv = tls1_PRF(s,
val, vallen,
NULL, 0,
NULL, 0,
NULL, 0,
NULL, 0,
s->session->master_key, s->session->master_key_length,
out, olen, 0);
goto ret;
err1:
ERR_raise(ERR_LIB_SSL, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL);
rv = 0;
goto ret;
err2:
ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
rv = 0;
ret:
OPENSSL_clear_free(val, vallen);
return rv;
}
int tls1_alert_code(int code)
{
switch (code) {
case SSL_AD_CLOSE_NOTIFY:
return SSL3_AD_CLOSE_NOTIFY;
case SSL_AD_UNEXPECTED_MESSAGE:
return SSL3_AD_UNEXPECTED_MESSAGE;
case SSL_AD_BAD_RECORD_MAC:
return SSL3_AD_BAD_RECORD_MAC;
case SSL_AD_DECRYPTION_FAILED:
return TLS1_AD_DECRYPTION_FAILED;
case SSL_AD_RECORD_OVERFLOW:
return TLS1_AD_RECORD_OVERFLOW;
case SSL_AD_DECOMPRESSION_FAILURE:
return SSL3_AD_DECOMPRESSION_FAILURE;
case SSL_AD_HANDSHAKE_FAILURE:
return SSL3_AD_HANDSHAKE_FAILURE;
case SSL_AD_NO_CERTIFICATE:
return -1;
case SSL_AD_BAD_CERTIFICATE:
return SSL3_AD_BAD_CERTIFICATE;
case SSL_AD_UNSUPPORTED_CERTIFICATE:
return SSL3_AD_UNSUPPORTED_CERTIFICATE;
case SSL_AD_CERTIFICATE_REVOKED:
return SSL3_AD_CERTIFICATE_REVOKED;
case SSL_AD_CERTIFICATE_EXPIRED:
return SSL3_AD_CERTIFICATE_EXPIRED;
case SSL_AD_CERTIFICATE_UNKNOWN:
return SSL3_AD_CERTIFICATE_UNKNOWN;
case SSL_AD_ILLEGAL_PARAMETER:
return SSL3_AD_ILLEGAL_PARAMETER;
case SSL_AD_UNKNOWN_CA:
return TLS1_AD_UNKNOWN_CA;
case SSL_AD_ACCESS_DENIED:
return TLS1_AD_ACCESS_DENIED;
case SSL_AD_DECODE_ERROR:
return TLS1_AD_DECODE_ERROR;
case SSL_AD_DECRYPT_ERROR:
return TLS1_AD_DECRYPT_ERROR;
case SSL_AD_EXPORT_RESTRICTION:
return TLS1_AD_EXPORT_RESTRICTION;
case SSL_AD_PROTOCOL_VERSION:
return TLS1_AD_PROTOCOL_VERSION;
case SSL_AD_INSUFFICIENT_SECURITY:
return TLS1_AD_INSUFFICIENT_SECURITY;
case SSL_AD_INTERNAL_ERROR:
return TLS1_AD_INTERNAL_ERROR;
case SSL_AD_USER_CANCELLED:
return TLS1_AD_USER_CANCELLED;
case SSL_AD_NO_RENEGOTIATION:
return TLS1_AD_NO_RENEGOTIATION;
case SSL_AD_UNSUPPORTED_EXTENSION:
return TLS1_AD_UNSUPPORTED_EXTENSION;
case SSL_AD_CERTIFICATE_UNOBTAINABLE:
return TLS1_AD_CERTIFICATE_UNOBTAINABLE;
case SSL_AD_UNRECOGNIZED_NAME:
return TLS1_AD_UNRECOGNIZED_NAME;
case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
return TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE;
case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
return TLS1_AD_BAD_CERTIFICATE_HASH_VALUE;
case SSL_AD_UNKNOWN_PSK_IDENTITY:
return TLS1_AD_UNKNOWN_PSK_IDENTITY;
case SSL_AD_INAPPROPRIATE_FALLBACK:
return TLS1_AD_INAPPROPRIATE_FALLBACK;
case SSL_AD_NO_APPLICATION_PROTOCOL:
return TLS1_AD_NO_APPLICATION_PROTOCOL;
case SSL_AD_CERTIFICATE_REQUIRED:
return SSL_AD_HANDSHAKE_FAILURE;
case TLS13_AD_MISSING_EXTENSION:
return SSL_AD_HANDSHAKE_FAILURE;
default:
return -1;
}
}