| /* crypto/ec/ecp_nistp224.c */ |
| /* |
| * Written by Emilia Kasper (Google) for the OpenSSL project. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 2000-2010 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| |
| /* |
| * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication |
| * |
| * Inspired by Daniel J. Bernstein's public domain nistp224 implementation |
| * and Adam Langley's public domain 64-bit C implementation of curve25519 |
| */ |
| #ifdef EC_NISTP224_64_GCC_128 |
| #include <stdint.h> |
| #include <string.h> |
| #include <openssl/err.h> |
| #include "ec_lcl.h" |
| |
| #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) |
| /* even with gcc, the typedef won't work for 32-bit platforms */ |
| typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */ |
| #else |
| #error "Need GCC 3.1 or later to define type uint128_t" |
| #endif |
| |
| typedef uint8_t u8; |
| |
| |
| /******************************************************************************/ |
| /* INTERNAL REPRESENTATION OF FIELD ELEMENTS |
| * |
| * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3 |
| * where each slice a_i is a 64-bit word, i.e., a field element is an fslice |
| * array a with 4 elements, where a[i] = a_i. |
| * Outputs from multiplications are represented as unreduced polynomials |
| * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6 |
| * where each b_i is a 128-bit word. We ensure that inputs to each field |
| * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60, |
| * and fit into a 128-bit word without overflow. The coefficients are then |
| * again partially reduced to a_i < 2^57. We only reduce to the unique minimal |
| * representation at the end of the computation. |
| * |
| */ |
| |
| typedef uint64_t fslice; |
| |
| /* Field element represented as a byte arrary. |
| * 28*8 = 224 bits is also the group order size for the elliptic curve. */ |
| typedef u8 felem_bytearray[28]; |
| |
| static const felem_bytearray nistp224_curve_params[5] = { |
| {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* p */ |
| 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00, |
| 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01}, |
| {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* a */ |
| 0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF, |
| 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE}, |
| {0xB4,0x05,0x0A,0x85,0x0C,0x04,0xB3,0xAB,0xF5,0x41, /* b */ |
| 0x32,0x56,0x50,0x44,0xB0,0xB7,0xD7,0xBF,0xD8,0xBA, |
| 0x27,0x0B,0x39,0x43,0x23,0x55,0xFF,0xB4}, |
| {0xB7,0x0E,0x0C,0xBD,0x6B,0xB4,0xBF,0x7F,0x32,0x13, /* x */ |
| 0x90,0xB9,0x4A,0x03,0xC1,0xD3,0x56,0xC2,0x11,0x22, |
| 0x34,0x32,0x80,0xD6,0x11,0x5C,0x1D,0x21}, |
| {0xbd,0x37,0x63,0x88,0xb5,0xf7,0x23,0xfb,0x4c,0x22, /* y */ |
| 0xdf,0xe6,0xcd,0x43,0x75,0xa0,0x5a,0x07,0x47,0x64, |
| 0x44,0xd5,0x81,0x99,0x85,0x00,0x7e,0x34} |
| }; |
| |
| /* Precomputed multiples of the standard generator |
| * b_0*G + b_1*2^56*G + b_2*2^112*G + b_3*2^168*G for |
| * (b_3, b_2, b_1, b_0) in [0,15], i.e., gmul[0] = point_at_infinity, |
| * gmul[1] = G, gmul[2] = 2^56*G, gmul[3] = 2^56*G + G, etc. |
| * Points are given in Jacobian projective coordinates: words 0-3 represent the |
| * X-coordinate (slice a_0 is word 0, etc.), words 4-7 represent the |
| * Y-coordinate and words 8-11 represent the Z-coordinate. */ |
| static const fslice gmul[16][3][4] = { |
| {{0x00000000000000, 0x00000000000000, 0x00000000000000, 0x00000000000000}, |
| {0x00000000000000, 0x00000000000000, 0x00000000000000, 0x00000000000000}, |
| {0x00000000000000, 0x00000000000000, 0x00000000000000, 0x00000000000000}}, |
| {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf}, |
| {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723}, |
| {0x00000000000001, 0x00000000000000, 0x00000000000000, 0x00000000000000}}, |
| {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5}, |
| {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321}, |
| {0x00000000000001, 0x00000000000000, 0x00000000000000, 0x00000000000000}}, |
| {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748}, |
| {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17}, |
| {0x00000000000001, 0x00000000000000, 0x00000000000000, 0x00000000000000}}, |
| {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe}, |
| {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b}, |
| {0x00000000000001, 0x00000000000000, 0x00000000000000, 0x00000000000000}}, |
| {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3}, |
| {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a}, |
| {0x00000000000001, 0x00000000000000, 0x00000000000000, 0x00000000000000}}, |
| {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c}, |
| {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244}, |
| {0x00000000000001, 0x00000000000000, 0x00000000000000, 0x00000000000000}}, |
| {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849}, |
| {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112}, |
| {0x00000000000001, 0x00000000000000, 0x00000000000000, 0x00000000000000}}, |
| {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47}, |
| {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394}, |
| {0x00000000000001, 0x00000000000000, 0x00000000000000, 0x00000000000000}}, |
| {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d}, |
| {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7}, |
| {0x00000000000001, 0x00000000000000, 0x00000000000000, 0x00000000000000}}, |
| {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24}, |
| {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881}, |
| {0x00000000000001, 0x00000000000000, 0x00000000000000, 0x00000000000000}}, |
| {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984}, |
| {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369}, |
| {0x00000000000001, 0x00000000000000, 0x00000000000000, 0x00000000000000}}, |
| {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3}, |
| {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60}, |
| {0x00000000000001, 0x00000000000000, 0x00000000000000, 0x00000000000000}}, |
| {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057}, |
| {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9}, |
| {0x00000000000001, 0x00000000000000, 0x00000000000000, 0x00000000000000}}, |
| {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9}, |
| {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc}, |
| {0x00000000000001, 0x00000000000000, 0x00000000000000, 0x00000000000000}}, |
| {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58}, |
| {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558}, |
| {0x00000000000001, 0x00000000000000, 0x00000000000000, 0x00000000000000}} |
| }; |
| |
| /* Precomputation for the group generator. */ |
| typedef struct { |
| fslice g_pre_comp[16][3][4]; |
| int references; |
| } NISTP224_PRE_COMP; |
| |
| const EC_METHOD *EC_GFp_nistp224_method(void) |
| { |
| static const EC_METHOD ret = { |
| NID_X9_62_prime_field, |
| ec_GFp_nistp224_group_init, |
| ec_GFp_simple_group_finish, |
| ec_GFp_simple_group_clear_finish, |
| ec_GFp_nist_group_copy, |
| ec_GFp_nistp224_group_set_curve, |
| ec_GFp_simple_group_get_curve, |
| ec_GFp_simple_group_get_degree, |
| ec_GFp_simple_group_check_discriminant, |
| ec_GFp_simple_point_init, |
| ec_GFp_simple_point_finish, |
| ec_GFp_simple_point_clear_finish, |
| ec_GFp_simple_point_copy, |
| ec_GFp_simple_point_set_to_infinity, |
| ec_GFp_simple_set_Jprojective_coordinates_GFp, |
| ec_GFp_simple_get_Jprojective_coordinates_GFp, |
| ec_GFp_simple_point_set_affine_coordinates, |
| ec_GFp_nistp224_point_get_affine_coordinates, |
| ec_GFp_simple_set_compressed_coordinates, |
| ec_GFp_simple_point2oct, |
| ec_GFp_simple_oct2point, |
| ec_GFp_simple_add, |
| ec_GFp_simple_dbl, |
| ec_GFp_simple_invert, |
| ec_GFp_simple_is_at_infinity, |
| ec_GFp_simple_is_on_curve, |
| ec_GFp_simple_cmp, |
| ec_GFp_simple_make_affine, |
| ec_GFp_simple_points_make_affine, |
| ec_GFp_nistp224_points_mul, |
| ec_GFp_nistp224_precompute_mult, |
| ec_GFp_nistp224_have_precompute_mult, |
| ec_GFp_nist_field_mul, |
| ec_GFp_nist_field_sqr, |
| 0 /* field_div */, |
| 0 /* field_encode */, |
| 0 /* field_decode */, |
| 0 /* field_set_to_one */ }; |
| |
| return &ret; |
| } |
| |
| /* Helper functions to convert field elements to/from internal representation */ |
| static void bin28_to_felem(fslice out[4], const u8 in[28]) |
| { |
| out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff; |
| out[1] = (*((const uint64_t *)(in+7))) & 0x00ffffffffffffff; |
| out[2] = (*((const uint64_t *)(in+14))) & 0x00ffffffffffffff; |
| out[3] = (*((const uint64_t *)(in+21))) & 0x00ffffffffffffff; |
| } |
| |
| static void felem_to_bin28(u8 out[28], const fslice in[4]) |
| { |
| unsigned i; |
| for (i = 0; i < 7; ++i) |
| { |
| out[i] = in[0]>>(8*i); |
| out[i+7] = in[1]>>(8*i); |
| out[i+14] = in[2]>>(8*i); |
| out[i+21] = in[3]>>(8*i); |
| } |
| } |
| |
| /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ |
| static void flip_endian(u8 *out, const u8 *in, unsigned len) |
| { |
| unsigned i; |
| for (i = 0; i < len; ++i) |
| out[i] = in[len-1-i]; |
| } |
| |
| /* From OpenSSL BIGNUM to internal representation */ |
| static int BN_to_felem(fslice out[4], const BIGNUM *bn) |
| { |
| felem_bytearray b_in; |
| felem_bytearray b_out; |
| unsigned num_bytes; |
| |
| /* BN_bn2bin eats leading zeroes */ |
| memset(b_out, 0, sizeof b_out); |
| num_bytes = BN_num_bytes(bn); |
| if (num_bytes > sizeof b_out) |
| { |
| ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); |
| return 0; |
| } |
| if (BN_is_negative(bn)) |
| { |
| ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); |
| return 0; |
| } |
| num_bytes = BN_bn2bin(bn, b_in); |
| flip_endian(b_out, b_in, num_bytes); |
| bin28_to_felem(out, b_out); |
| return 1; |
| } |
| |
| /* From internal representation to OpenSSL BIGNUM */ |
| static BIGNUM *felem_to_BN(BIGNUM *out, const fslice in[4]) |
| { |
| felem_bytearray b_in, b_out; |
| felem_to_bin28(b_in, in); |
| flip_endian(b_out, b_in, sizeof b_out); |
| return BN_bin2bn(b_out, sizeof b_out, out); |
| } |
| |
| /******************************************************************************/ |
| /* FIELD OPERATIONS |
| * |
| * Field operations, using the internal representation of field elements. |
| * NB! These operations are specific to our point multiplication and cannot be |
| * expected to be correct in general - e.g., multiplication with a large scalar |
| * will cause an overflow. |
| * |
| */ |
| |
| /* Sum two field elements: out += in */ |
| static void felem_sum64(fslice out[4], const fslice in[4]) |
| { |
| out[0] += in[0]; |
| out[1] += in[1]; |
| out[2] += in[2]; |
| out[3] += in[3]; |
| } |
| |
| /* Subtract field elements: out -= in */ |
| /* Assumes in[i] < 2^57 */ |
| static void felem_diff64(fslice out[4], const fslice in[4]) |
| { |
| static const uint64_t two58p2 = (((uint64_t) 1) << 58) + (((uint64_t) 1) << 2); |
| static const uint64_t two58m2 = (((uint64_t) 1) << 58) - (((uint64_t) 1) << 2); |
| static const uint64_t two58m42m2 = (((uint64_t) 1) << 58) - |
| (((uint64_t) 1) << 42) - (((uint64_t) 1) << 2); |
| |
| /* Add 0 mod 2^224-2^96+1 to ensure out > in */ |
| out[0] += two58p2; |
| out[1] += two58m42m2; |
| out[2] += two58m2; |
| out[3] += two58m2; |
| |
| out[0] -= in[0]; |
| out[1] -= in[1]; |
| out[2] -= in[2]; |
| out[3] -= in[3]; |
| } |
| |
| /* Subtract in unreduced 128-bit mode: out128 -= in128 */ |
| /* Assumes in[i] < 2^119 */ |
| static void felem_diff128(uint128_t out[7], const uint128_t in[4]) |
| { |
| static const uint128_t two120 = ((uint128_t) 1) << 120; |
| static const uint128_t two120m64 = (((uint128_t) 1) << 120) - |
| (((uint128_t) 1) << 64); |
| static const uint128_t two120m104m64 = (((uint128_t) 1) << 120) - |
| (((uint128_t) 1) << 104) - (((uint128_t) 1) << 64); |
| |
| /* Add 0 mod 2^224-2^96+1 to ensure out > in */ |
| out[0] += two120; |
| out[1] += two120m64; |
| out[2] += two120m64; |
| out[3] += two120; |
| out[4] += two120m104m64; |
| out[5] += two120m64; |
| out[6] += two120m64; |
| |
| out[0] -= in[0]; |
| out[1] -= in[1]; |
| out[2] -= in[2]; |
| out[3] -= in[3]; |
| out[4] -= in[4]; |
| out[5] -= in[5]; |
| out[6] -= in[6]; |
| } |
| |
| /* Subtract in mixed mode: out128 -= in64 */ |
| /* in[i] < 2^63 */ |
| static void felem_diff_128_64(uint128_t out[7], const fslice in[4]) |
| { |
| static const uint128_t two64p8 = (((uint128_t) 1) << 64) + |
| (((uint128_t) 1) << 8); |
| static const uint128_t two64m8 = (((uint128_t) 1) << 64) - |
| (((uint128_t) 1) << 8); |
| static const uint128_t two64m48m8 = (((uint128_t) 1) << 64) - |
| (((uint128_t) 1) << 48) - (((uint128_t) 1) << 8); |
| |
| /* Add 0 mod 2^224-2^96+1 to ensure out > in */ |
| out[0] += two64p8; |
| out[1] += two64m48m8; |
| out[2] += two64m8; |
| out[3] += two64m8; |
| |
| out[0] -= in[0]; |
| out[1] -= in[1]; |
| out[2] -= in[2]; |
| out[3] -= in[3]; |
| } |
| |
| /* Multiply a field element by a scalar: out64 = out64 * scalar |
| * The scalars we actually use are small, so results fit without overflow */ |
| static void felem_scalar64(fslice out[4], const fslice scalar) |
| { |
| out[0] *= scalar; |
| out[1] *= scalar; |
| out[2] *= scalar; |
| out[3] *= scalar; |
| } |
| |
| /* Multiply an unreduced field element by a scalar: out128 = out128 * scalar |
| * The scalars we actually use are small, so results fit without overflow */ |
| static void felem_scalar128(uint128_t out[7], const uint128_t scalar) |
| { |
| out[0] *= scalar; |
| out[1] *= scalar; |
| out[2] *= scalar; |
| out[3] *= scalar; |
| out[4] *= scalar; |
| out[5] *= scalar; |
| out[6] *= scalar; |
| } |
| |
| /* Square a field element: out = in^2 */ |
| static void felem_square(uint128_t out[7], const fslice in[4]) |
| { |
| out[0] = ((uint128_t) in[0]) * in[0]; |
| out[1] = ((uint128_t) in[0]) * in[1] * 2; |
| out[2] = ((uint128_t) in[0]) * in[2] * 2 + ((uint128_t) in[1]) * in[1]; |
| out[3] = ((uint128_t) in[0]) * in[3] * 2 + |
| ((uint128_t) in[1]) * in[2] * 2; |
| out[4] = ((uint128_t) in[1]) * in[3] * 2 + ((uint128_t) in[2]) * in[2]; |
| out[5] = ((uint128_t) in[2]) * in[3] * 2; |
| out[6] = ((uint128_t) in[3]) * in[3]; |
| } |
| |
| /* Multiply two field elements: out = in1 * in2 */ |
| static void felem_mul(uint128_t out[7], const fslice in1[4], const fslice in2[4]) |
| { |
| out[0] = ((uint128_t) in1[0]) * in2[0]; |
| out[1] = ((uint128_t) in1[0]) * in2[1] + ((uint128_t) in1[1]) * in2[0]; |
| out[2] = ((uint128_t) in1[0]) * in2[2] + ((uint128_t) in1[1]) * in2[1] + |
| ((uint128_t) in1[2]) * in2[0]; |
| out[3] = ((uint128_t) in1[0]) * in2[3] + ((uint128_t) in1[1]) * in2[2] + |
| ((uint128_t) in1[2]) * in2[1] + ((uint128_t) in1[3]) * in2[0]; |
| out[4] = ((uint128_t) in1[1]) * in2[3] + ((uint128_t) in1[2]) * in2[2] + |
| ((uint128_t) in1[3]) * in2[1]; |
| out[5] = ((uint128_t) in1[2]) * in2[3] + ((uint128_t) in1[3]) * in2[2]; |
| out[6] = ((uint128_t) in1[3]) * in2[3]; |
| } |
| |
| /* Reduce 128-bit coefficients to 64-bit coefficients. Requires in[i] < 2^126, |
| * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] < 2^57 */ |
| static void felem_reduce(fslice out[4], const uint128_t in[7]) |
| { |
| static const uint128_t two127p15 = (((uint128_t) 1) << 127) + |
| (((uint128_t) 1) << 15); |
| static const uint128_t two127m71 = (((uint128_t) 1) << 127) - |
| (((uint128_t) 1) << 71); |
| static const uint128_t two127m71m55 = (((uint128_t) 1) << 127) - |
| (((uint128_t) 1) << 71) - (((uint128_t) 1) << 55); |
| uint128_t output[5]; |
| |
| /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */ |
| output[0] = in[0] + two127p15; |
| output[1] = in[1] + two127m71m55; |
| output[2] = in[2] + two127m71; |
| output[3] = in[3]; |
| output[4] = in[4]; |
| |
| /* Eliminate in[4], in[5], in[6] */ |
| output[4] += in[6] >> 16; |
| output[3] += (in[6]&0xffff) << 40; |
| output[2] -= in[6]; |
| |
| output[3] += in[5] >> 16; |
| output[2] += (in[5]&0xffff) << 40; |
| output[1] -= in[5]; |
| |
| output[2] += output[4] >> 16; |
| output[1] += (output[4]&0xffff) << 40; |
| output[0] -= output[4]; |
| output[4] = 0; |
| |
| /* Carry 2 -> 3 -> 4 */ |
| output[3] += output[2] >> 56; |
| output[2] &= 0x00ffffffffffffff; |
| |
| output[4] += output[3] >> 56; |
| output[3] &= 0x00ffffffffffffff; |
| |
| /* Now output[2] < 2^56, output[3] < 2^56 */ |
| |
| /* Eliminate output[4] */ |
| output[2] += output[4] >> 16; |
| output[1] += (output[4]&0xffff) << 40; |
| output[0] -= output[4]; |
| |
| /* Carry 0 -> 1 -> 2 -> 3 */ |
| output[1] += output[0] >> 56; |
| out[0] = output[0] & 0x00ffffffffffffff; |
| |
| output[2] += output[1] >> 56; |
| out[1] = output[1] & 0x00ffffffffffffff; |
| output[3] += output[2] >> 56; |
| out[2] = output[2] & 0x00ffffffffffffff; |
| |
| /* out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, |
| * out[3] < 2^57 (due to final carry) */ |
| out[3] = output[3]; |
| } |
| |
| /* Reduce to unique minimal representation */ |
| static void felem_contract(fslice out[4], const fslice in[4]) |
| { |
| static const int64_t two56 = ((uint64_t) 1) << 56; |
| /* 0 <= in < 2^225 */ |
| /* if in > 2^224 , reduce in = in - 2^224 + 2^96 - 1 */ |
| int64_t tmp[4], a; |
| tmp[0] = (int64_t) in[0] - (in[3] >> 56); |
| tmp[1] = (int64_t) in[1] + ((in[3] >> 16) & 0x0000010000000000); |
| tmp[2] = (int64_t) in[2]; |
| tmp[3] = (int64_t) in[3] & 0x00ffffffffffffff; |
| |
| /* eliminate negative coefficients */ |
| a = tmp[0] >> 63; |
| tmp[0] += two56 & a; |
| tmp[1] -= 1 & a; |
| |
| a = tmp[1] >> 63; |
| tmp[1] += two56 & a; |
| tmp[2] -= 1 & a; |
| |
| a = tmp[2] >> 63; |
| tmp[2] += two56 & a; |
| tmp[3] -= 1 & a; |
| |
| a = tmp[3] >> 63; |
| tmp[3] += two56 & a; |
| tmp[0] += 1 & a; |
| tmp[1] -= (1 & a) << 40; |
| |
| /* carry 1 -> 2 -> 3 */ |
| tmp[2] += tmp[1] >> 56; |
| tmp[1] &= 0x00ffffffffffffff; |
| |
| tmp[3] += tmp[2] >> 56; |
| tmp[2] &= 0x00ffffffffffffff; |
| |
| /* 0 <= in < 2^224 + 2^96 - 1 */ |
| /* if in > 2^224 , reduce in = in - 2^224 + 2^96 - 1 */ |
| tmp[0] -= (tmp[3] >> 56); |
| tmp[1] += ((tmp[3] >> 16) & 0x0000010000000000); |
| tmp[3] &= 0x00ffffffffffffff; |
| |
| /* eliminate negative coefficients */ |
| a = tmp[0] >> 63; |
| tmp[0] += two56 & a; |
| tmp[1] -= 1 & a; |
| |
| a = tmp[1] >> 63; |
| tmp[1] += two56 & a; |
| tmp[2] -= 1 & a; |
| |
| a = tmp[2] >> 63; |
| tmp[2] += two56 & a; |
| tmp[3] -= 1 & a; |
| |
| a = tmp[3] >> 63; |
| tmp[3] += two56 & a; |
| tmp[0] += 1 & a; |
| tmp[1] -= (1 & a) << 40; |
| |
| /* carry 1 -> 2 -> 3 */ |
| tmp[2] += tmp[1] >> 56; |
| tmp[1] &= 0x00ffffffffffffff; |
| |
| tmp[3] += tmp[2] >> 56; |
| tmp[2] &= 0x00ffffffffffffff; |
| |
| /* Now 0 <= in < 2^224 */ |
| |
| /* if in > 2^224 - 2^96, reduce */ |
| /* a = 0 iff in > 2^224 - 2^96, i.e., |
| * the high 128 bits are all 1 and the lower part is non-zero */ |
| a = (tmp[3] + 1) | (tmp[2] + 1) | |
| ((tmp[1] | 0x000000ffffffffff) + 1) | |
| ((((tmp[1] & 0xffff) - 1) >> 63) & ((tmp[0] - 1) >> 63)); |
| /* turn a into an all-one mask (if a = 0) or an all-zero mask */ |
| a = ((a & 0x00ffffffffffffff) - 1) >> 63; |
| /* subtract 2^224 - 2^96 + 1 if a is all-one*/ |
| tmp[3] &= a ^ 0xffffffffffffffff; |
| tmp[2] &= a ^ 0xffffffffffffffff; |
| tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff; |
| tmp[0] -= 1 & a; |
| /* eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be |
| * non-zero, so we only need one step */ |
| a = tmp[0] >> 63; |
| tmp[0] += two56 & a; |
| tmp[1] -= 1 & a; |
| |
| out[0] = tmp[0]; |
| out[1] = tmp[1]; |
| out[2] = tmp[2]; |
| out[3] = tmp[3]; |
| } |
| |
| /* Zero-check: returns 1 if input is 0, and 0 otherwise. |
| * We know that field elements are reduced to in < 2^225, |
| * so we only need to check three cases: 0, 2^224 - 2^96 + 1, |
| * and 2^225 - 2^97 + 2 */ |
| static fslice felem_is_zero(const fslice in[4]) |
| { |
| fslice zero, two224m96p1, two225m97p2; |
| |
| zero = in[0] | in[1] | in[2] | in[3]; |
| zero = (((int64_t)(zero) - 1) >> 63) & 1; |
| two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
| | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff); |
| two224m96p1 = (((int64_t)(two224m96p1) - 1) >> 63) & 1; |
| two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
| | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff); |
| two225m97p2 = (((int64_t)(two225m97p2) - 1) >> 63) & 1; |
| return (zero | two224m96p1 | two225m97p2); |
| } |
| |
| /* Invert a field element */ |
| /* Computation chain copied from djb's code */ |
| static void felem_inv(fslice out[4], const fslice in[4]) |
| { |
| fslice ftmp[4], ftmp2[4], ftmp3[4], ftmp4[4]; |
| uint128_t tmp[7]; |
| unsigned i; |
| |
| felem_square(tmp, in); felem_reduce(ftmp, tmp); /* 2 */ |
| felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^2 - 1 */ |
| felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 2 */ |
| felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 1 */ |
| felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^4 - 2 */ |
| felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^5 - 4 */ |
| felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^6 - 8 */ |
| felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp); /* 2^6 - 1 */ |
| felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^7 - 2 */ |
| for (i = 0; i < 5; ++i) /* 2^12 - 2^6 */ |
| { |
| felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); |
| } |
| felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp); /* 2^12 - 1 */ |
| felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp); /* 2^13 - 2 */ |
| for (i = 0; i < 11; ++i) /* 2^24 - 2^12 */ |
| { |
| felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); |
| } |
| felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp2, tmp); /* 2^24 - 1 */ |
| felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp); /* 2^25 - 2 */ |
| for (i = 0; i < 23; ++i) /* 2^48 - 2^24 */ |
| { |
| felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); |
| } |
| felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^48 - 1 */ |
| felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp); /* 2^49 - 2 */ |
| for (i = 0; i < 47; ++i) /* 2^96 - 2^48 */ |
| { |
| felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp); |
| } |
| felem_mul(tmp, ftmp3, ftmp4); felem_reduce(ftmp3, tmp); /* 2^96 - 1 */ |
| felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp); /* 2^97 - 2 */ |
| for (i = 0; i < 23; ++i) /* 2^120 - 2^24 */ |
| { |
| felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp); |
| } |
| felem_mul(tmp, ftmp2, ftmp4); felem_reduce(ftmp2, tmp); /* 2^120 - 1 */ |
| for (i = 0; i < 6; ++i) /* 2^126 - 2^6 */ |
| { |
| felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); |
| } |
| felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp); /* 2^126 - 1 */ |
| felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^127 - 2 */ |
| felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp); /* 2^127 - 1 */ |
| for (i = 0; i < 97; ++i) /* 2^224 - 2^97 */ |
| { |
| felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); |
| } |
| felem_mul(tmp, ftmp, ftmp3); felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */ |
| } |
| |
| /* Copy in constant time: |
| * if icopy == 1, copy in to out, |
| * if icopy == 0, copy out to itself. */ |
| static void |
| copy_conditional(fslice *out, const fslice *in, unsigned len, fslice icopy) |
| { |
| unsigned i; |
| /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */ |
| const fslice copy = -icopy; |
| for (i = 0; i < len; ++i) |
| { |
| const fslice tmp = copy & (in[i] ^ out[i]); |
| out[i] ^= tmp; |
| } |
| } |
| |
| /* Copy in constant time: |
| * if isel == 1, copy in2 to out, |
| * if isel == 0, copy in1 to out. */ |
| static void select_conditional(fslice *out, const fslice *in1, const fslice *in2, |
| unsigned len, fslice isel) |
| { |
| unsigned i; |
| /* isel is a (64-bit) 0 or 1, so sel is either all-zero or all-one */ |
| const fslice sel = -isel; |
| for (i = 0; i < len; ++i) |
| { |
| const fslice tmp = sel & (in1[i] ^ in2[i]); |
| out[i] = in1[i] ^ tmp; |
| } |
| } |
| |
| /******************************************************************************/ |
| /* ELLIPTIC CURVE POINT OPERATIONS |
| * |
| * Points are represented in Jacobian projective coordinates: |
| * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3), |
| * or to the point at infinity if Z == 0. |
| * |
| */ |
| |
| /* Double an elliptic curve point: |
| * (X', Y', Z') = 2 * (X, Y, Z), where |
| * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2 |
| * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2 |
| * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z |
| * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed, |
| * while x_out == y_in is not (maybe this works, but it's not tested). */ |
| static void |
| point_double(fslice x_out[4], fslice y_out[4], fslice z_out[4], |
| const fslice x_in[4], const fslice y_in[4], const fslice z_in[4]) |
| { |
| uint128_t tmp[7], tmp2[7]; |
| fslice delta[4]; |
| fslice gamma[4]; |
| fslice beta[4]; |
| fslice alpha[4]; |
| fslice ftmp[4], ftmp2[4]; |
| memcpy(ftmp, x_in, 4 * sizeof(fslice)); |
| memcpy(ftmp2, x_in, 4 * sizeof(fslice)); |
| |
| /* delta = z^2 */ |
| felem_square(tmp, z_in); |
| felem_reduce(delta, tmp); |
| |
| /* gamma = y^2 */ |
| felem_square(tmp, y_in); |
| felem_reduce(gamma, tmp); |
| |
| /* beta = x*gamma */ |
| felem_mul(tmp, x_in, gamma); |
| felem_reduce(beta, tmp); |
| |
| /* alpha = 3*(x-delta)*(x+delta) */ |
| felem_diff64(ftmp, delta); |
| /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */ |
| felem_sum64(ftmp2, delta); |
| /* ftmp2[i] < 2^57 + 2^57 = 2^58 */ |
| felem_scalar64(ftmp2, 3); |
| /* ftmp2[i] < 3 * 2^58 < 2^60 */ |
| felem_mul(tmp, ftmp, ftmp2); |
| /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */ |
| felem_reduce(alpha, tmp); |
| |
| /* x' = alpha^2 - 8*beta */ |
| felem_square(tmp, alpha); |
| /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ |
| memcpy(ftmp, beta, 4 * sizeof(fslice)); |
| felem_scalar64(ftmp, 8); |
| /* ftmp[i] < 8 * 2^57 = 2^60 */ |
| felem_diff_128_64(tmp, ftmp); |
| /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ |
| felem_reduce(x_out, tmp); |
| |
| /* z' = (y + z)^2 - gamma - delta */ |
| felem_sum64(delta, gamma); |
| /* delta[i] < 2^57 + 2^57 = 2^58 */ |
| memcpy(ftmp, y_in, 4 * sizeof(fslice)); |
| felem_sum64(ftmp, z_in); |
| /* ftmp[i] < 2^57 + 2^57 = 2^58 */ |
| felem_square(tmp, ftmp); |
| /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */ |
| felem_diff_128_64(tmp, delta); |
| /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */ |
| felem_reduce(z_out, tmp); |
| |
| /* y' = alpha*(4*beta - x') - 8*gamma^2 */ |
| felem_scalar64(beta, 4); |
| /* beta[i] < 4 * 2^57 = 2^59 */ |
| felem_diff64(beta, x_out); |
| /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */ |
| felem_mul(tmp, alpha, beta); |
| /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */ |
| felem_square(tmp2, gamma); |
| /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */ |
| felem_scalar128(tmp2, 8); |
| /* tmp2[i] < 8 * 2^116 = 2^119 */ |
| felem_diff128(tmp, tmp2); |
| /* tmp[i] < 2^119 + 2^120 < 2^121 */ |
| felem_reduce(y_out, tmp); |
| } |
| |
| /* Add two elliptic curve points: |
| * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where |
| * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 - |
| * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 |
| * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) - |
| * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3 |
| * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2) */ |
| |
| /* This function is not entirely constant-time: |
| * it includes a branch for checking whether the two input points are equal, |
| * (while not equal to the point at infinity). |
| * This case never happens during single point multiplication, |
| * so there is no timing leak for ECDH or ECDSA signing. */ |
| static void point_add(fslice x3[4], fslice y3[4], fslice z3[4], |
| const fslice x1[4], const fslice y1[4], const fslice z1[4], |
| const fslice x2[4], const fslice y2[4], const fslice z2[4]) |
| { |
| fslice ftmp[4], ftmp2[4], ftmp3[4], ftmp4[4], ftmp5[4]; |
| uint128_t tmp[7], tmp2[7]; |
| fslice z1_is_zero, z2_is_zero, x_equal, y_equal; |
| |
| /* ftmp = z1^2 */ |
| felem_square(tmp, z1); |
| felem_reduce(ftmp, tmp); |
| |
| /* ftmp2 = z2^2 */ |
| felem_square(tmp, z2); |
| felem_reduce(ftmp2, tmp); |
| |
| /* ftmp3 = z1^3 */ |
| felem_mul(tmp, ftmp, z1); |
| felem_reduce(ftmp3, tmp); |
| |
| /* ftmp4 = z2^3 */ |
| felem_mul(tmp, ftmp2, z2); |
| felem_reduce(ftmp4, tmp); |
| |
| /* ftmp3 = z1^3*y2 */ |
| felem_mul(tmp, ftmp3, y2); |
| /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ |
| |
| /* ftmp4 = z2^3*y1 */ |
| felem_mul(tmp2, ftmp4, y1); |
| felem_reduce(ftmp4, tmp2); |
| |
| /* ftmp3 = z1^3*y2 - z2^3*y1 */ |
| felem_diff_128_64(tmp, ftmp4); |
| /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ |
| felem_reduce(ftmp3, tmp); |
| |
| /* ftmp = z1^2*x2 */ |
| felem_mul(tmp, ftmp, x2); |
| /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ |
| |
| /* ftmp2 =z2^2*x1 */ |
| felem_mul(tmp2, ftmp2, x1); |
| felem_reduce(ftmp2, tmp2); |
| |
| /* ftmp = z1^2*x2 - z2^2*x1 */ |
| felem_diff128(tmp, tmp2); |
| /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ |
| felem_reduce(ftmp, tmp); |
| |
| /* the formulae are incorrect if the points are equal |
| * so we check for this and do doubling if this happens */ |
| x_equal = felem_is_zero(ftmp); |
| y_equal = felem_is_zero(ftmp3); |
| z1_is_zero = felem_is_zero(z1); |
| z2_is_zero = felem_is_zero(z2); |
| /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */ |
| if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) |
| { |
| point_double(x3, y3, z3, x1, y1, z1); |
| return; |
| } |
| |
| /* ftmp5 = z1*z2 */ |
| felem_mul(tmp, z1, z2); |
| felem_reduce(ftmp5, tmp); |
| |
| /* z3 = (z1^2*x2 - z2^2*x1)*(z1*z2) */ |
| felem_mul(tmp, ftmp, ftmp5); |
| felem_reduce(z3, tmp); |
| |
| /* ftmp = (z1^2*x2 - z2^2*x1)^2 */ |
| memcpy(ftmp5, ftmp, 4 * sizeof(fslice)); |
| felem_square(tmp, ftmp); |
| felem_reduce(ftmp, tmp); |
| |
| /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */ |
| felem_mul(tmp, ftmp, ftmp5); |
| felem_reduce(ftmp5, tmp); |
| |
| /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ |
| felem_mul(tmp, ftmp2, ftmp); |
| felem_reduce(ftmp2, tmp); |
| |
| /* ftmp4 = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ |
| felem_mul(tmp, ftmp4, ftmp5); |
| /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ |
| |
| /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */ |
| felem_square(tmp2, ftmp3); |
| /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */ |
| |
| /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */ |
| felem_diff_128_64(tmp2, ftmp5); |
| /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */ |
| |
| /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ |
| memcpy(ftmp5, ftmp2, 4 * sizeof(fslice)); |
| felem_scalar64(ftmp5, 2); |
| /* ftmp5[i] < 2 * 2^57 = 2^58 */ |
| |
| /* x3 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 - |
| 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ |
| felem_diff_128_64(tmp2, ftmp5); |
| /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */ |
| felem_reduce(x3, tmp2); |
| |
| /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x3 */ |
| felem_diff64(ftmp2, x3); |
| /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */ |
| |
| /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x3) */ |
| felem_mul(tmp2, ftmp3, ftmp2); |
| /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */ |
| |
| /* y3 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x3) - |
| z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ |
| felem_diff128(tmp2, tmp); |
| /* tmp2[i] < 2^118 + 2^120 < 2^121 */ |
| felem_reduce(y3, tmp2); |
| |
| /* the result (x3, y3, z3) is incorrect if one of the inputs is the |
| * point at infinity, so we need to check for this separately */ |
| |
| /* if point 1 is at infinity, copy point 2 to output, and vice versa */ |
| copy_conditional(x3, x2, 4, z1_is_zero); |
| copy_conditional(x3, x1, 4, z2_is_zero); |
| copy_conditional(y3, y2, 4, z1_is_zero); |
| copy_conditional(y3, y1, 4, z2_is_zero); |
| copy_conditional(z3, z2, 4, z1_is_zero); |
| copy_conditional(z3, z1, 4, z2_is_zero); |
| } |
| |
| /* Select a point from an array of 16 precomputed point multiples, |
| * in constant time: for bits = {b_0, b_1, b_2, b_3}, return the point |
| * pre_comp[8*b_3 + 4*b_2 + 2*b_1 + b_0] */ |
| static void select_point(const fslice bits[4], const fslice pre_comp[16][3][4], |
| fslice out[12]) |
| { |
| fslice tmp[5][12]; |
| select_conditional(tmp[0], pre_comp[7][0], pre_comp[15][0], 12, bits[3]); |
| select_conditional(tmp[1], pre_comp[3][0], pre_comp[11][0], 12, bits[3]); |
| select_conditional(tmp[2], tmp[1], tmp[0], 12, bits[2]); |
| select_conditional(tmp[0], pre_comp[5][0], pre_comp[13][0], 12, bits[3]); |
| select_conditional(tmp[1], pre_comp[1][0], pre_comp[9][0], 12, bits[3]); |
| select_conditional(tmp[3], tmp[1], tmp[0], 12, bits[2]); |
| select_conditional(tmp[4], tmp[3], tmp[2], 12, bits[1]); |
| select_conditional(tmp[0], pre_comp[6][0], pre_comp[14][0], 12, bits[3]); |
| select_conditional(tmp[1], pre_comp[2][0], pre_comp[10][0], 12, bits[3]); |
| select_conditional(tmp[2], tmp[1], tmp[0], 12, bits[2]); |
| select_conditional(tmp[0], pre_comp[4][0], pre_comp[12][0], 12, bits[3]); |
| select_conditional(tmp[1], pre_comp[0][0], pre_comp[8][0], 12, bits[3]); |
| select_conditional(tmp[3], tmp[1], tmp[0], 12, bits[2]); |
| select_conditional(tmp[1], tmp[3], tmp[2], 12, bits[1]); |
| select_conditional(out, tmp[1], tmp[4], 12, bits[0]); |
| } |
| |
| /* Interleaved point multiplication using precomputed point multiples: |
| * The small point multiples 0*P, 1*P, ..., 15*P are in pre_comp[], |
| * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple |
| * of the generator, using certain (large) precomputed multiples in g_pre_comp. |
| * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ |
| static void batch_mul(fslice x_out[4], fslice y_out[4], fslice z_out[4], |
| const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar, |
| const fslice pre_comp[][16][3][4], const fslice g_pre_comp[16][3][4]) |
| { |
| unsigned i, j, num; |
| unsigned gen_mul = (g_scalar != NULL); |
| fslice nq[12], nqt[12], tmp[12]; |
| fslice bits[4]; |
| u8 byte; |
| |
| /* set nq to the point at infinity */ |
| memset(nq, 0, 12 * sizeof(fslice)); |
| |
| /* Loop over all scalars msb-to-lsb, 4 bits at a time: for each nibble, |
| * double 4 times, then add the precomputed point multiples. |
| * If we are also adding multiples of the generator, then interleave |
| * these additions with the last 56 doublings. */ |
| for (i = (num_points ? 28 : 7); i > 0; --i) |
| { |
| for (j = 0; j < 8; ++j) |
| { |
| /* double once */ |
| point_double(nq, nq+4, nq+8, nq, nq+4, nq+8); |
| /* add multiples of the generator */ |
| if ((gen_mul) && (i <= 7)) |
| { |
| bits[3] = (g_scalar[i+20] >> (7-j)) & 1; |
| bits[2] = (g_scalar[i+13] >> (7-j)) & 1; |
| bits[1] = (g_scalar[i+6] >> (7-j)) & 1; |
| bits[0] = (g_scalar[i-1] >> (7-j)) & 1; |
| /* select the point to add, in constant time */ |
| select_point(bits, g_pre_comp, tmp); |
| memcpy(nqt, nq, 12 * sizeof(fslice)); |
| point_add(nq, nq+4, nq+8, nqt, nqt+4, nqt+8, |
| tmp, tmp+4, tmp+8); |
| } |
| /* do an addition after every 4 doublings */ |
| if (j % 4 == 3) |
| { |
| /* loop over all scalars */ |
| for (num = 0; num < num_points; ++num) |
| { |
| byte = scalars[num][i-1]; |
| bits[3] = (byte >> (10-j)) & 1; |
| bits[2] = (byte >> (9-j)) & 1; |
| bits[1] = (byte >> (8-j)) & 1; |
| bits[0] = (byte >> (7-j)) & 1; |
| /* select the point to add */ |
| select_point(bits, |
| pre_comp[num], tmp); |
| memcpy(nqt, nq, 12 * sizeof(fslice)); |
| point_add(nq, nq+4, nq+8, nqt, nqt+4, |
| nqt+8, tmp, tmp+4, tmp+8); |
| } |
| } |
| } |
| } |
| memcpy(x_out, nq, 4 * sizeof(fslice)); |
| memcpy(y_out, nq+4, 4 * sizeof(fslice)); |
| memcpy(z_out, nq+8, 4 * sizeof(fslice)); |
| } |
| |
| /******************************************************************************/ |
| /* FUNCTIONS TO MANAGE PRECOMPUTATION |
| */ |
| |
| static NISTP224_PRE_COMP *nistp224_pre_comp_new() |
| { |
| NISTP224_PRE_COMP *ret = NULL; |
| ret = (NISTP224_PRE_COMP *)OPENSSL_malloc(sizeof(NISTP224_PRE_COMP)); |
| if (!ret) |
| { |
| ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); |
| return ret; |
| } |
| memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp)); |
| ret->references = 1; |
| return ret; |
| } |
| |
| static void *nistp224_pre_comp_dup(void *src_) |
| { |
| NISTP224_PRE_COMP *src = src_; |
| |
| /* no need to actually copy, these objects never change! */ |
| CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); |
| |
| return src_; |
| } |
| |
| static void nistp224_pre_comp_free(void *pre_) |
| { |
| int i; |
| NISTP224_PRE_COMP *pre = pre_; |
| |
| if (!pre) |
| return; |
| |
| i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); |
| if (i > 0) |
| return; |
| |
| OPENSSL_free(pre); |
| } |
| |
| static void nistp224_pre_comp_clear_free(void *pre_) |
| { |
| int i; |
| NISTP224_PRE_COMP *pre = pre_; |
| |
| if (!pre) |
| return; |
| |
| i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); |
| if (i > 0) |
| return; |
| |
| OPENSSL_cleanse(pre, sizeof *pre); |
| OPENSSL_free(pre); |
| } |
| |
| /******************************************************************************/ |
| /* OPENSSL EC_METHOD FUNCTIONS |
| */ |
| |
| int ec_GFp_nistp224_group_init(EC_GROUP *group) |
| { |
| int ret; |
| ret = ec_GFp_simple_group_init(group); |
| group->a_is_minus3 = 1; |
| return ret; |
| } |
| |
| int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p, |
| const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
| { |
| int ret = 0; |
| BN_CTX *new_ctx = NULL; |
| BIGNUM *curve_p, *curve_a, *curve_b; |
| |
| if (ctx == NULL) |
| if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; |
| BN_CTX_start(ctx); |
| if (((curve_p = BN_CTX_get(ctx)) == NULL) || |
| ((curve_a = BN_CTX_get(ctx)) == NULL) || |
| ((curve_b = BN_CTX_get(ctx)) == NULL)) goto err; |
| BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p); |
| BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a); |
| BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b); |
| if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || |
| (BN_cmp(curve_b, b))) |
| { |
| ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE, |
| EC_R_WRONG_CURVE_PARAMETERS); |
| goto err; |
| } |
| group->field_mod_func = BN_nist_mod_224; |
| ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); |
| err: |
| BN_CTX_end(ctx); |
| if (new_ctx != NULL) |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns |
| * (X', Y') = (X/Z^2, Y/Z^3) */ |
| int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group, |
| const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) |
| { |
| fslice z1[4], z2[4], x_in[4], y_in[4], x_out[4], y_out[4]; |
| uint128_t tmp[7]; |
| |
| if (EC_POINT_is_at_infinity(group, point)) |
| { |
| ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, |
| EC_R_POINT_AT_INFINITY); |
| return 0; |
| } |
| if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) || |
| (!BN_to_felem(z1, &point->Z))) return 0; |
| felem_inv(z2, z1); |
| felem_square(tmp, z2); felem_reduce(z1, tmp); |
| felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp); |
| felem_contract(x_out, x_in); |
| if (x != NULL) |
| { |
| if (!felem_to_BN(x, x_out)) { |
| ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, |
| ERR_R_BN_LIB); |
| return 0; |
| } |
| } |
| felem_mul(tmp, z1, z2); felem_reduce(z1, tmp); |
| felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp); |
| felem_contract(y_out, y_in); |
| if (y != NULL) |
| { |
| if (!felem_to_BN(y, y_out)) { |
| ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, |
| ERR_R_BN_LIB); |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values |
| * Result is stored in r (r can equal one of the inputs). */ |
| int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r, |
| const BIGNUM *scalar, size_t num, const EC_POINT *points[], |
| const BIGNUM *scalars[], BN_CTX *ctx) |
| { |
| int ret = 0; |
| int i, j; |
| BN_CTX *new_ctx = NULL; |
| BIGNUM *x, *y, *z, *tmp_scalar; |
| felem_bytearray g_secret; |
| felem_bytearray *secrets = NULL; |
| fslice (*pre_comp)[16][3][4] = NULL; |
| felem_bytearray tmp; |
| unsigned num_bytes; |
| int have_pre_comp = 0; |
| size_t num_points = num; |
| fslice x_in[4], y_in[4], z_in[4], x_out[4], y_out[4], z_out[4]; |
| NISTP224_PRE_COMP *pre = NULL; |
| fslice (*g_pre_comp)[3][4] = NULL; |
| EC_POINT *generator = NULL; |
| const EC_POINT *p = NULL; |
| const BIGNUM *p_scalar = NULL; |
| |
| if (ctx == NULL) |
| if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; |
| BN_CTX_start(ctx); |
| if (((x = BN_CTX_get(ctx)) == NULL) || |
| ((y = BN_CTX_get(ctx)) == NULL) || |
| ((z = BN_CTX_get(ctx)) == NULL) || |
| ((tmp_scalar = BN_CTX_get(ctx)) == NULL)) |
| goto err; |
| |
| if (scalar != NULL) |
| { |
| pre = EC_EX_DATA_get_data(group->extra_data, |
| nistp224_pre_comp_dup, nistp224_pre_comp_free, |
| nistp224_pre_comp_clear_free); |
| if (pre) |
| /* we have precomputation, try to use it */ |
| g_pre_comp = pre->g_pre_comp; |
| else |
| /* try to use the standard precomputation */ |
| g_pre_comp = (fslice (*)[3][4]) gmul; |
| generator = EC_POINT_new(group); |
| if (generator == NULL) |
| goto err; |
| /* get the generator from precomputation */ |
| if (!felem_to_BN(x, g_pre_comp[1][0]) || |
| !felem_to_BN(y, g_pre_comp[1][1]) || |
| !felem_to_BN(z, g_pre_comp[1][2])) |
| { |
| ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); |
| goto err; |
| } |
| if (!EC_POINT_set_Jprojective_coordinates_GFp(group, |
| generator, x, y, z, ctx)) |
| goto err; |
| if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) |
| /* precomputation matches generator */ |
| have_pre_comp = 1; |
| else |
| /* we don't have valid precomputation: |
| * treat the generator as a random point */ |
| num_points = num_points + 1; |
| } |
| secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray)); |
| pre_comp = OPENSSL_malloc(num_points * 16 * 3 * 4 * sizeof(fslice)); |
| |
| if ((num_points) && ((secrets == NULL) || (pre_comp == NULL))) |
| { |
| ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| /* we treat NULL scalars as 0, and NULL points as points at infinity, |
| * i.e., they contribute nothing to the linear combination */ |
| memset(secrets, 0, num_points * sizeof(felem_bytearray)); |
| memset(pre_comp, 0, num_points * 16 * 3 * 4 * sizeof(fslice)); |
| for (i = 0; i < num_points; ++i) |
| { |
| if (i == num) |
| /* the generator */ |
| { |
| p = EC_GROUP_get0_generator(group); |
| p_scalar = scalar; |
| } |
| else |
| /* the i^th point */ |
| { |
| p = points[i]; |
| p_scalar = scalars[i]; |
| } |
| if ((p_scalar != NULL) && (p != NULL)) |
| { |
| num_bytes = BN_num_bytes(p_scalar); |
| /* reduce scalar to 0 <= scalar < 2^224 */ |
| if ((num_bytes > sizeof(felem_bytearray)) || (BN_is_negative(p_scalar))) |
| { |
| /* this is an unusual input, and we don't guarantee |
| * constant-timeness */ |
| if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) |
| { |
| ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); |
| goto err; |
| } |
| num_bytes = BN_bn2bin(tmp_scalar, tmp); |
| } |
| else |
| BN_bn2bin(p_scalar, tmp); |
| flip_endian(secrets[i], tmp, num_bytes); |
| /* precompute multiples */ |
| if ((!BN_to_felem(x_out, &p->X)) || |
| (!BN_to_felem(y_out, &p->Y)) || |
| (!BN_to_felem(z_out, &p->Z))) goto err; |
| memcpy(pre_comp[i][1][0], x_out, 4 * sizeof(fslice)); |
| memcpy(pre_comp[i][1][1], y_out, 4 * sizeof(fslice)); |
| memcpy(pre_comp[i][1][2], z_out, 4 * sizeof(fslice)); |
| for (j = 1; j < 8; ++j) |
| { |
| point_double(pre_comp[i][2*j][0], |
| pre_comp[i][2*j][1], |
| pre_comp[i][2*j][2], |
| pre_comp[i][j][0], |
| pre_comp[i][j][1], |
| pre_comp[i][j][2]); |
| point_add(pre_comp[i][2*j+1][0], |
| pre_comp[i][2*j+1][1], |
| pre_comp[i][2*j+1][2], |
| pre_comp[i][1][0], |
| pre_comp[i][1][1], |
| pre_comp[i][1][2], |
| pre_comp[i][2*j][0], |
| pre_comp[i][2*j][1], |
| pre_comp[i][2*j][2]); |
| } |
| } |
| } |
| |
| /* the scalar for the generator */ |
| if ((scalar != NULL) && (have_pre_comp)) |
| { |
| memset(g_secret, 0, sizeof g_secret); |
| num_bytes = BN_num_bytes(scalar); |
| /* reduce scalar to 0 <= scalar < 2^224 */ |
| if ((num_bytes > sizeof(felem_bytearray)) || (BN_is_negative(scalar))) |
| { |
| /* this is an unusual input, and we don't guarantee |
| * constant-timeness */ |
| if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) |
| { |
| ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); |
| goto err; |
| } |
| num_bytes = BN_bn2bin(tmp_scalar, tmp); |
| } |
| else |
| BN_bn2bin(scalar, tmp); |
| flip_endian(g_secret, tmp, num_bytes); |
| /* do the multiplication with generator precomputation*/ |
| batch_mul(x_out, y_out, z_out, |
| (const felem_bytearray (*)) secrets, num_points, |
| g_secret, (const fslice (*)[16][3][4]) pre_comp, |
| (const fslice (*)[3][4]) g_pre_comp); |
| } |
| else |
| /* do the multiplication without generator precomputation */ |
| batch_mul(x_out, y_out, z_out, |
| (const felem_bytearray (*)) secrets, num_points, |
| NULL, (const fslice (*)[16][3][4]) pre_comp, NULL); |
| /* reduce the output to its unique minimal representation */ |
| felem_contract(x_in, x_out); |
| felem_contract(y_in, y_out); |
| felem_contract(z_in, z_out); |
| if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || |
| (!felem_to_BN(z, z_in))) |
| { |
| ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); |
| goto err; |
| } |
| ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); |
| |
| err: |
| BN_CTX_end(ctx); |
| if (generator != NULL) |
| EC_POINT_free(generator); |
| if (new_ctx != NULL) |
| BN_CTX_free(new_ctx); |
| if (secrets != NULL) |
| OPENSSL_free(secrets); |
| if (pre_comp != NULL) |
| OPENSSL_free(pre_comp); |
| return ret; |
| } |
| |
| int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx) |
| { |
| int ret = 0; |
| NISTP224_PRE_COMP *pre = NULL; |
| int i, j; |
| BN_CTX *new_ctx = NULL; |
| BIGNUM *x, *y; |
| EC_POINT *generator = NULL; |
| |
| /* throw away old precomputation */ |
| EC_EX_DATA_free_data(&group->extra_data, nistp224_pre_comp_dup, |
| nistp224_pre_comp_free, nistp224_pre_comp_clear_free); |
| if (ctx == NULL) |
| if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; |
| BN_CTX_start(ctx); |
| if (((x = BN_CTX_get(ctx)) == NULL) || |
| ((y = BN_CTX_get(ctx)) == NULL)) |
| goto err; |
| /* get the generator */ |
| if (group->generator == NULL) goto err; |
| generator = EC_POINT_new(group); |
| if (generator == NULL) |
| goto err; |
| BN_bin2bn(nistp224_curve_params[3], sizeof (felem_bytearray), x); |
| BN_bin2bn(nistp224_curve_params[4], sizeof (felem_bytearray), y); |
| if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx)) |
| goto err; |
| if ((pre = nistp224_pre_comp_new()) == NULL) |
| goto err; |
| /* if the generator is the standard one, use built-in precomputation */ |
| if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) |
| { |
| memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); |
| ret = 1; |
| goto err; |
| } |
| if ((!BN_to_felem(pre->g_pre_comp[1][0], &group->generator->X)) || |
| (!BN_to_felem(pre->g_pre_comp[1][1], &group->generator->Y)) || |
| (!BN_to_felem(pre->g_pre_comp[1][2], &group->generator->Z))) |
| goto err; |
| /* compute 2^56*G, 2^112*G, 2^168*G */ |
| for (i = 1; i < 5; ++i) |
| { |
| point_double(pre->g_pre_comp[2*i][0], pre->g_pre_comp[2*i][1], |
| pre->g_pre_comp[2*i][2], pre->g_pre_comp[i][0], |
| pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]); |
| for (j = 0; j < 55; ++j) |
| { |
| point_double(pre->g_pre_comp[2*i][0], |
| pre->g_pre_comp[2*i][1], |
| pre->g_pre_comp[2*i][2], |
| pre->g_pre_comp[2*i][0], |
| pre->g_pre_comp[2*i][1], |
| pre->g_pre_comp[2*i][2]); |
| } |
| } |
| /* g_pre_comp[0] is the point at infinity */ |
| memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0])); |
| /* the remaining multiples */ |
| /* 2^56*G + 2^112*G */ |
| point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1], |
| pre->g_pre_comp[6][2], pre->g_pre_comp[4][0], |
| pre->g_pre_comp[4][1], pre->g_pre_comp[4][2], |
| pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], |
| pre->g_pre_comp[2][2]); |
| /* 2^56*G + 2^168*G */ |
| point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1], |
| pre->g_pre_comp[10][2], pre->g_pre_comp[8][0], |
| pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], |
| pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], |
| pre->g_pre_comp[2][2]); |
| /* 2^112*G + 2^168*G */ |
| point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], |
| pre->g_pre_comp[12][2], pre->g_pre_comp[8][0], |
| pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], |
| pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], |
| pre->g_pre_comp[4][2]); |
| /* 2^56*G + 2^112*G + 2^168*G */ |
| point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1], |
| pre->g_pre_comp[14][2], pre->g_pre_comp[12][0], |
| pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], |
| pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], |
| pre->g_pre_comp[2][2]); |
| for (i = 1; i < 8; ++i) |
| { |
| /* odd multiples: add G */ |
| point_add(pre->g_pre_comp[2*i+1][0], pre->g_pre_comp[2*i+1][1], |
| pre->g_pre_comp[2*i+1][2], pre->g_pre_comp[2*i][0], |
| pre->g_pre_comp[2*i][1], pre->g_pre_comp[2*i][2], |
| pre->g_pre_comp[1][0], pre->g_pre_comp[1][1], |
| pre->g_pre_comp[1][2]); |
| } |
| |
| if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp224_pre_comp_dup, |
| nistp224_pre_comp_free, nistp224_pre_comp_clear_free)) |
| goto err; |
| ret = 1; |
| pre = NULL; |
| err: |
| BN_CTX_end(ctx); |
| if (generator != NULL) |
| EC_POINT_free(generator); |
| if (new_ctx != NULL) |
| BN_CTX_free(new_ctx); |
| if (pre) |
| nistp224_pre_comp_free(pre); |
| return ret; |
| } |
| |
| int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group) |
| { |
| if (EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup, |
| nistp224_pre_comp_free, nistp224_pre_comp_clear_free) |
| != NULL) |
| return 1; |
| else |
| return 0; |
| } |
| |
| #else |
| static void *dummy=&dummy; |
| #endif |