| #!/usr/bin/env perl |
| # Copyright 2017 The OpenSSL Project Authors. All Rights Reserved. |
| # |
| # Licensed under the OpenSSL license (the "License"). You may not use |
| # this file except in compliance with the License. You can obtain a copy |
| # in the file LICENSE in the source distribution or at |
| # https://www.openssl.org/source/license.html |
| # |
| # ==================================================================== |
| # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL |
| # project. The module is, however, dual licensed under OpenSSL and |
| # CRYPTOGAMS licenses depending on where you obtain it. For further |
| # details see http://www.openssl.org/~appro/cryptogams/. |
| # ==================================================================== |
| # |
| # Keccak-1600 for x86 MMX. |
| # |
| # June 2017. |
| # |
| # Below code is KECCAK_2X implementation (see sha/keccak1600.c) with |
| # C[5] held in register bank and D[5] offloaded to memory. Though |
| # instead of actually unrolling the loop pair-wise I simply flip |
| # pointers to T[][] and A[][] and the end of round. Since number of |
| # rounds is even, last round writes to A[][] and everything works out. |
| # It's argued that MMX is the only code path meaningful to implement |
| # for x86. This is because non-MMX-capable processors is an extinct |
| # breed, and they as well can lurk executing compiler-generated code. |
| # For reference gcc-5.x-generated KECCAK_2X code takes 89 cycles per |
| # processed byte on Pentium. Which is fair result. But older compilers |
| # produce worse code. On the other hand one can wonder why not 128-bit |
| # SSE2? Well, SSE2 won't provide double improvement, rather far from |
| # that, if any at all on some processors, because it will take extra |
| # permutations and inter-bank data trasfers. Besides, contemporary |
| # CPUs are better off executing 64-bit code, and it makes lesser sense |
| # to invest into fancy 32-bit code. And the decision doesn't seem to |
| # be inadequate, if one compares below results to "64-bit platforms in |
| # 32-bit mode" SIMD data points available at |
| # http://keccak.noekeon.org/sw_performance.html. |
| # |
| ######################################################################## |
| # Numbers are cycles per processed byte out of large message. |
| # |
| # r=1088(i) |
| # |
| # PIII 30/+150% |
| # Pentium M 27/+150% |
| # P4 40/+85% |
| # Core 2 19/+170% |
| # Sandy Bridge(ii) 18/+140% |
| # Atom 33/+180% |
| # Silvermont(ii) 30/+180% |
| # VIA Nano(ii) 43/+60% |
| # Sledgehammer(ii)(iii) 24/+130% |
| # |
| # (i) Corresponds to SHA3-256. Numbers after slash are improvement |
| # coefficients over KECCAK_2X [with bit interleave and lane |
| # complementing] position-independent *scalar* code generated |
| # by gcc-5.x. It's not exactly fair comparison, but it's a |
| # datapoint... |
| # (ii) 64-bit processor executing 32-bit code. |
| # (iii) Result is considered to be representative even for older AMD |
| # processors. |
| |
| $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; |
| push(@INC,"${dir}","${dir}../../perlasm"); |
| require "x86asm.pl"; |
| |
| $output=pop; |
| open STDOUT,">$output"; |
| |
| &asm_init($ARGV[0],$ARGV[$#ARGV] eq "386"); |
| |
| my @C = map("mm$_",(0..4)); |
| my @T = map("mm$_",(5..7)); |
| my @A = map([ 8*$_-100, 8*($_+1)-100, 8*($_+2)-100, |
| 8*($_+3)-100, 8*($_+4)-100 ], (0,5,10,15,20)); |
| my @D = map(8*$_+4, (0..4)); |
| my @rhotates = ([ 0, 1, 62, 28, 27 ], |
| [ 36, 44, 6, 55, 20 ], |
| [ 3, 10, 43, 25, 39 ], |
| [ 41, 45, 15, 21, 8 ], |
| [ 18, 2, 61, 56, 14 ]); |
| |
| &static_label("iotas"); |
| |
| &function_begin_B("_KeccakF1600"); |
| &movq (@C[0],&QWP($A[4][0],"esi")); |
| &movq (@C[1],&QWP($A[4][1],"esi")); |
| &movq (@C[2],&QWP($A[4][2],"esi")); |
| &movq (@C[3],&QWP($A[4][3],"esi")); |
| &movq (@C[4],&QWP($A[4][4],"esi")); |
| |
| &mov ("ecx",24); # loop counter |
| &jmp (&label("loop")); |
| |
| &set_label("loop",16); |
| ######################################### Theta |
| &pxor (@C[0],&QWP($A[0][0],"esi")); |
| &pxor (@C[1],&QWP($A[0][1],"esi")); |
| &pxor (@C[2],&QWP($A[0][2],"esi")); |
| &pxor (@C[3],&QWP($A[0][3],"esi")); |
| &pxor (@C[4],&QWP($A[0][4],"esi")); |
| |
| &pxor (@C[0],&QWP($A[1][0],"esi")); |
| &pxor (@C[1],&QWP($A[1][1],"esi")); |
| &pxor (@C[2],&QWP($A[1][2],"esi")); |
| &pxor (@C[3],&QWP($A[1][3],"esi")); |
| &pxor (@C[4],&QWP($A[1][4],"esi")); |
| |
| &pxor (@C[0],&QWP($A[2][0],"esi")); |
| &pxor (@C[1],&QWP($A[2][1],"esi")); |
| &pxor (@C[2],&QWP($A[2][2],"esi")); |
| &pxor (@C[3],&QWP($A[2][3],"esi")); |
| &pxor (@C[4],&QWP($A[2][4],"esi")); |
| |
| &pxor (@C[2],&QWP($A[3][2],"esi")); |
| &pxor (@C[0],&QWP($A[3][0],"esi")); |
| &pxor (@C[1],&QWP($A[3][1],"esi")); |
| &pxor (@C[3],&QWP($A[3][3],"esi")); |
| &movq (@T[0],@C[2]); |
| &pxor (@C[4],&QWP($A[3][4],"esi")); |
| |
| &movq (@T[2],@C[2]); |
| &psrlq (@T[0],63); |
| &movq (@T[1],@C[0]); |
| &psllq (@T[2],1); |
| &pxor (@T[0],@C[0]); |
| &psrlq (@C[0],63); |
| &pxor (@T[0],@T[2]); |
| &psllq (@T[1],1); |
| &movq (@T[2],@C[1]); |
| &movq (&QWP(@D[1],"esp"),@T[0]); # D[1] = E[0] = ROL64(C[2], 1) ^ C[0]; |
| |
| &pxor (@T[1],@C[0]); |
| &psrlq (@T[2],63); |
| &pxor (@T[1],@C[3]); |
| &movq (@C[0],@C[1]); |
| &movq (&QWP(@D[4],"esp"),@T[1]); # D[4] = E[1] = ROL64(C[0], 1) ^ C[3]; |
| |
| &psllq (@C[0],1); |
| &pxor (@T[2],@C[4]); |
| &pxor (@C[0],@T[2]); |
| |
| &movq (@T[2],@C[3]); |
| &psrlq (@C[3],63); |
| &movq (&QWP(@D[0],"esp"),@C[0]); # D[0] = C[0] = ROL64(C[1], 1) ^ C[4]; |
| &psllq (@T[2],1); |
| &movq (@T[0],@C[4]); |
| &psrlq (@C[4],63); |
| &pxor (@C[1],@C[3]); |
| &psllq (@T[0],1); |
| &pxor (@C[1],@T[2]); |
| &pxor (@C[2],@C[4]); |
| &movq (&QWP(@D[2],"esp"),@C[1]); # D[2] = C[1] = ROL64(C[3], 1) ^ C[1]; |
| &pxor (@C[2],@T[0]); |
| |
| ######################################### first Rho(0) is special |
| &movq (@C[3],&QWP($A[3][3],"esi")); |
| &movq (&QWP(@D[3],"esp"),@C[2]); # D[3] = C[2] = ROL64(C[4], 1) ^ C[2]; |
| &pxor (@C[3],@C[2]); |
| &movq (@C[4],&QWP($A[4][4],"esi")); |
| &movq (@T[2],@C[3]); |
| &psrlq (@C[3],64-$rhotates[3][3]); |
| &pxor (@C[4],@T[1]); |
| &psllq (@T[2],$rhotates[3][3]); |
| &movq (@T[1],@C[4]); |
| &psrlq (@C[4],64-$rhotates[4][4]); |
| &por (@C[3],@T[2]); # C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]); /* D[3] */ |
| &psllq (@T[1],$rhotates[4][4]); |
| |
| &movq (@C[2],&QWP($A[2][2],"esi")); |
| &por (@C[4],@T[1]); # C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]); /* D[4] */ |
| &pxor (@C[2],@C[1]); |
| &movq (@C[1],&QWP($A[1][1],"esi")); |
| &movq (@T[1],@C[2]); |
| &psrlq (@C[2],64-$rhotates[2][2]); |
| &pxor (@C[1],&QWP(@D[1],"esp")); |
| &psllq (@T[1],$rhotates[2][2]); |
| |
| &movq (@T[2],@C[1]); |
| &psrlq (@C[1],64-$rhotates[1][1]); |
| &por (@C[2],@T[1]); # C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]); /* D[2] */ |
| &psllq (@T[2],$rhotates[1][1]); |
| &pxor (@C[0],&QWP($A[0][0],"esi")); # /* rotate by 0 */ /* D[0] */ |
| &por (@C[1],@T[2]); # C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); |
| |
| sub Chi() { ######### regular Chi step |
| my ($y,$xrho) = @_; |
| |
| &movq (@T[0],@C[1]); |
| &movq (@T[1],@C[2]); |
| &pandn (@T[0],@C[2]); |
| &pandn (@C[2],@C[3]); |
| &pxor (@T[0],@C[0]); |
| &pxor (@C[2],@C[1]); |
| &pxor (@T[0],&QWP(0,"ebx")) if ($y == 0); |
| &lea ("ebx",&DWP(8,"ebx")) if ($y == 0); |
| |
| &movq (@T[2],@C[3]); |
| &movq (&QWP($A[$y][0],"edi"),@T[0]); # R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; |
| &movq (@T[0],@C[4]); |
| &pandn (@C[3],@C[4]); |
| &pandn (@C[4],@C[0]); |
| &pxor (@C[3],@T[1]); |
| &movq (&QWP($A[$y][1],"edi"),@C[2]); # R[0][1] = C[1] ^ (~C[2] & C[3]); |
| &pxor (@C[4],@T[2]); |
| &movq (@T[2],&QWP($A[0][$xrho],"esi")) if (defined($xrho)); |
| |
| &movq (&QWP($A[$y][2],"edi"),@C[3]); # R[0][2] = C[2] ^ (~C[3] & C[4]); |
| &pandn (@C[0],@C[1]); |
| &movq (&QWP($A[$y][3],"edi"),@C[4]); # R[0][3] = C[3] ^ (~C[4] & C[0]); |
| &pxor (@C[0],@T[0]); |
| &pxor (@T[2],&QWP(@D[$xrho],"esp")) if (defined($xrho)); |
| &movq (&QWP($A[$y][4],"edi"),@C[0]); # R[0][4] = C[4] ^ (~C[0] & C[1]); |
| } |
| &Chi (0, 3); |
| |
| sub Rho() { ######### regular Rho step |
| my $x = shift; |
| |
| #&movq (@T[2],&QWP($A[0][$x],"esi")); # moved to Chi |
| #&pxor (@T[2],&QWP(@D[$x],"esp")); # moved to Chi |
| &movq (@C[0],@T[2]); |
| &psrlq (@T[2],64-$rhotates[0][$x]); |
| &movq (@C[1],&QWP($A[1][($x+1)%5],"esi")); |
| &psllq (@C[0],$rhotates[0][$x]); |
| &pxor (@C[1],&QWP(@D[($x+1)%5],"esp")); |
| &por (@C[0],@T[2]); # C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); |
| |
| &movq (@T[1],@C[1]); |
| &psrlq (@C[1],64-$rhotates[1][($x+1)%5]); |
| &movq (@C[2],&QWP($A[2][($x+2)%5],"esi")); |
| &psllq (@T[1],$rhotates[1][($x+1)%5]); |
| &pxor (@C[2],&QWP(@D[($x+2)%5],"esp")); |
| &por (@C[1],@T[1]); # C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); |
| |
| &movq (@T[2],@C[2]); |
| &psrlq (@C[2],64-$rhotates[2][($x+2)%5]); |
| &movq (@C[3],&QWP($A[3][($x+3)%5],"esi")); |
| &psllq (@T[2],$rhotates[2][($x+2)%5]); |
| &pxor (@C[3],&QWP(@D[($x+3)%5],"esp")); |
| &por (@C[2],@T[2]); # C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); |
| |
| &movq (@T[0],@C[3]); |
| &psrlq (@C[3],64-$rhotates[3][($x+3)%5]); |
| &movq (@C[4],&QWP($A[4][($x+4)%5],"esi")); |
| &psllq (@T[0],$rhotates[3][($x+3)%5]); |
| &pxor (@C[4],&QWP(@D[($x+4)%5],"esp")); |
| &por (@C[3],@T[0]); # C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); |
| |
| &movq (@T[1],@C[4]); |
| &psrlq (@C[4],64-$rhotates[4][($x+4)%5]); |
| &psllq (@T[1],$rhotates[4][($x+4)%5]); |
| &por (@C[4],@T[1]); # C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); |
| } |
| &Rho (3); &Chi (1, 1); |
| &Rho (1); &Chi (2, 4); |
| &Rho (4); &Chi (3, 2); |
| &Rho (2); ###&Chi (4); |
| |
| &movq (@T[0],@C[0]); ######### last Chi(4) is special |
| &xor ("edi","esi"); # &xchg ("esi","edi"); |
| &movq (&QWP(@D[1],"esp"),@C[1]); |
| &xor ("esi","edi"); |
| &xor ("edi","esi"); |
| |
| &movq (@T[1],@C[1]); |
| &movq (@T[2],@C[2]); |
| &pandn (@T[1],@C[2]); |
| &pandn (@T[2],@C[3]); |
| &pxor (@C[0],@T[1]); |
| &pxor (@C[1],@T[2]); |
| |
| &movq (@T[1],@C[3]); |
| &movq (&QWP($A[4][0],"esi"),@C[0]); # R[4][0] = C[0] ^= (~C[1] & C[2]); |
| &pandn (@T[1],@C[4]); |
| &movq (&QWP($A[4][1],"esi"),@C[1]); # R[4][1] = C[1] ^= (~C[2] & C[3]); |
| &pxor (@C[2],@T[1]); |
| &movq (@T[2],@C[4]); |
| &movq (&QWP($A[4][2],"esi"),@C[2]); # R[4][2] = C[2] ^= (~C[3] & C[4]); |
| |
| &pandn (@T[2],@T[0]); |
| &pandn (@T[0],&QWP(@D[1],"esp")); |
| &pxor (@C[3],@T[2]); |
| &pxor (@C[4],@T[0]); |
| &movq (&QWP($A[4][3],"esi"),@C[3]); # R[4][3] = C[3] ^= (~C[4] & D[0]); |
| &sub ("ecx",1); |
| &movq (&QWP($A[4][4],"esi"),@C[4]); # R[4][4] = C[4] ^= (~D[0] & D[1]); |
| &jnz (&label("loop")); |
| |
| &lea ("ebx",&DWP(-192,"ebx")); # rewind iotas |
| &ret (); |
| &function_end_B("_KeccakF1600"); |
| |
| &function_begin("KeccakF1600"); |
| &mov ("esi",&wparam(0)); |
| &mov ("ebp","esp"); |
| &sub ("esp",240); |
| &call (&label("pic_point")); |
| &set_label("pic_point"); |
| &blindpop("ebx"); |
| &lea ("ebx",&DWP(&label("iotas")."-".&label("pic_point"),"ebx")); |
| &and ("esp",-8); |
| &lea ("esi",&DWP(100,"esi")); # size optimization |
| &lea ("edi",&DWP(8*5+100,"esp")); # size optimization |
| |
| &call ("_KeccakF1600"); |
| |
| &mov ("esp","ebp"); |
| &emms (); |
| &function_end("KeccakF1600"); |
| |
| &function_begin("SHA3_absorb"); |
| &mov ("esi",&wparam(0)); # A[][] |
| &mov ("eax",&wparam(1)); # inp |
| &mov ("ecx",&wparam(2)); # len |
| &mov ("edx",&wparam(3)); # bsz |
| &mov ("ebp","esp"); |
| &sub ("esp",240+8); |
| &call (&label("pic_point")); |
| &set_label("pic_point"); |
| &blindpop("ebx"); |
| &lea ("ebx",&DWP(&label("iotas")."-".&label("pic_point"),"ebx")); |
| &and ("esp",-8); |
| |
| &mov ("edi","esi"); |
| &lea ("esi",&DWP(100,"esi")); # size optimization |
| &mov (&DWP(-4,"ebp"),"edx"); # save bsz |
| &jmp (&label("loop")); |
| |
| &set_label("loop",16); |
| &cmp ("ecx","edx"); # len < bsz? |
| &jc (&label("absorbed")); |
| |
| &shr ("edx",3); # bsz /= 8 |
| &set_label("block"); |
| &movq ("mm0",&QWP(0,"eax")); |
| &lea ("eax",&DWP(8,"eax")); |
| &pxor ("mm0",&QWP(0,"edi")); |
| &lea ("edi",&DWP(8,"edi")); |
| &sub ("ecx",8); # len -= 8 |
| &movq (&QWP(-8,"edi"),"mm0"); |
| &dec ("edx"); # bsz-- |
| &jnz (&label("block")); |
| |
| &lea ("edi",&DWP(8*5+100,"esp")); # size optimization |
| &mov (&DWP(-8,"ebp"),"ecx"); # save len |
| &call ("_KeccakF1600"); |
| &mov ("ecx",&DWP(-8,"ebp")); # pull len |
| &mov ("edx",&DWP(-4,"ebp")); # pull bsz |
| &lea ("edi",&DWP(-100,"esi")); |
| &jmp (&label("loop")); |
| |
| &set_label("absorbed",16); |
| &mov ("eax","ecx"); # return value |
| &mov ("esp","ebp"); |
| &emms (); |
| &function_end("SHA3_absorb"); |
| |
| &function_begin("SHA3_squeeze"); |
| &mov ("esi",&wparam(0)); # A[][] |
| &mov ("eax",&wparam(1)); # out |
| &mov ("ecx",&wparam(2)); # len |
| &mov ("edx",&wparam(3)); # bsz |
| &mov ("ebp","esp"); |
| &sub ("esp",240+8); |
| &call (&label("pic_point")); |
| &set_label("pic_point"); |
| &blindpop("ebx"); |
| &lea ("ebx",&DWP(&label("iotas")."-".&label("pic_point"),"ebx")); |
| &and ("esp",-8); |
| |
| &shr ("edx",3); # bsz /= 8 |
| &mov ("edi","esi"); |
| &lea ("esi",&DWP(100,"esi")); # size optimization |
| &mov (&DWP(-4,"ebp"),"edx"); # save bsz |
| &jmp (&label("loop")); |
| |
| &set_label("loop",16); |
| &cmp ("ecx",8); # len < 8? |
| &jc (&label("tail")); |
| |
| &movq ("mm0",&QWP(0,"edi")); |
| &lea ("edi",&DWP(8,"edi")); |
| &movq (&QWP(0,"eax"),"mm0"); |
| &lea ("eax",&DWP(8,"eax")); |
| &sub ("ecx",8); # len -= 8 |
| &jz (&label("done")); |
| |
| &dec ("edx"); # bsz-- |
| &jnz (&label("loop")); |
| |
| &lea ("edi",&DWP(8*5+100,"esp")); # size optimization |
| &mov (&DWP(-8,"ebp"),"ecx"); # save len |
| &call ("_KeccakF1600"); |
| &mov ("ecx",&DWP(-8,"ebp")); # pull len |
| &mov ("edx",&DWP(-4,"ebp")); # pull bsz |
| &lea ("edi",&DWP(-100,"esi")); |
| &jmp (&label("loop")); |
| |
| &set_label("tail",16); |
| &mov ("esi","edi"); |
| &mov ("edi","eax"); |
| &data_word("0xA4F39066"); # rep movsb |
| |
| &set_label("done"); |
| &mov ("esp","ebp"); |
| &emms (); |
| &function_end("SHA3_squeeze"); |
| |
| &set_label("iotas",32); |
| &data_word(0x00000001,0x00000000); |
| &data_word(0x00008082,0x00000000); |
| &data_word(0x0000808a,0x80000000); |
| &data_word(0x80008000,0x80000000); |
| &data_word(0x0000808b,0x00000000); |
| &data_word(0x80000001,0x00000000); |
| &data_word(0x80008081,0x80000000); |
| &data_word(0x00008009,0x80000000); |
| &data_word(0x0000008a,0x00000000); |
| &data_word(0x00000088,0x00000000); |
| &data_word(0x80008009,0x00000000); |
| &data_word(0x8000000a,0x00000000); |
| &data_word(0x8000808b,0x00000000); |
| &data_word(0x0000008b,0x80000000); |
| &data_word(0x00008089,0x80000000); |
| &data_word(0x00008003,0x80000000); |
| &data_word(0x00008002,0x80000000); |
| &data_word(0x00000080,0x80000000); |
| &data_word(0x0000800a,0x00000000); |
| &data_word(0x8000000a,0x80000000); |
| &data_word(0x80008081,0x80000000); |
| &data_word(0x00008080,0x80000000); |
| &data_word(0x80000001,0x00000000); |
| &data_word(0x80008008,0x80000000); |
| &asciz("Keccak-1600 absorb and squeeze for MMX, CRYPTOGAMS by <appro\@openssl.org>"); |
| |
| &asm_finish(); |
| |
| close STDOUT; |