| /* |
| * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <stdio.h> |
| #include <assert.h> |
| #include "internal/cryptlib.h" |
| #include <openssl/evp.h> |
| #include <openssl/err.h> |
| #include <openssl/rand.h> |
| #include <openssl/engine.h> |
| #include "internal/evp_int.h" |
| #include "evp_locl.h" |
| |
| int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *c) |
| { |
| if (c == NULL) |
| return 1; |
| if (c->cipher != NULL) { |
| if (c->cipher->cleanup && !c->cipher->cleanup(c)) |
| return 0; |
| /* Cleanse cipher context data */ |
| if (c->cipher_data && c->cipher->ctx_size) |
| OPENSSL_cleanse(c->cipher_data, c->cipher->ctx_size); |
| } |
| OPENSSL_free(c->cipher_data); |
| #ifndef OPENSSL_NO_ENGINE |
| ENGINE_finish(c->engine); |
| #endif |
| memset(c, 0, sizeof(*c)); |
| return 1; |
| } |
| |
| EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void) |
| { |
| return OPENSSL_zalloc(sizeof(EVP_CIPHER_CTX)); |
| } |
| |
| void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx) |
| { |
| EVP_CIPHER_CTX_reset(ctx); |
| OPENSSL_free(ctx); |
| } |
| |
| int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| const unsigned char *key, const unsigned char *iv, int enc) |
| { |
| EVP_CIPHER_CTX_reset(ctx); |
| return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc); |
| } |
| |
| int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| ENGINE *impl, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| if (enc == -1) |
| enc = ctx->encrypt; |
| else { |
| if (enc) |
| enc = 1; |
| ctx->encrypt = enc; |
| } |
| #ifndef OPENSSL_NO_ENGINE |
| /* |
| * Whether it's nice or not, "Inits" can be used on "Final"'d contexts so |
| * this context may already have an ENGINE! Try to avoid releasing the |
| * previous handle, re-querying for an ENGINE, and having a |
| * reinitialisation, when it may all be unnecessary. |
| */ |
| if (ctx->engine && ctx->cipher |
| && (cipher == NULL || cipher->nid == ctx->cipher->nid)) |
| goto skip_to_init; |
| #endif |
| if (cipher) { |
| /* |
| * Ensure a context left lying around from last time is cleared (the |
| * previous check attempted to avoid this if the same ENGINE and |
| * EVP_CIPHER could be used). |
| */ |
| if (ctx->cipher) { |
| unsigned long flags = ctx->flags; |
| EVP_CIPHER_CTX_reset(ctx); |
| /* Restore encrypt and flags */ |
| ctx->encrypt = enc; |
| ctx->flags = flags; |
| } |
| #ifndef OPENSSL_NO_ENGINE |
| if (impl) { |
| if (!ENGINE_init(impl)) { |
| EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR); |
| return 0; |
| } |
| } else |
| /* Ask if an ENGINE is reserved for this job */ |
| impl = ENGINE_get_cipher_engine(cipher->nid); |
| if (impl) { |
| /* There's an ENGINE for this job ... (apparently) */ |
| const EVP_CIPHER *c = ENGINE_get_cipher(impl, cipher->nid); |
| if (!c) { |
| /* |
| * One positive side-effect of US's export control history, |
| * is that we should at least be able to avoid using US |
| * misspellings of "initialisation"? |
| */ |
| EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR); |
| return 0; |
| } |
| /* We'll use the ENGINE's private cipher definition */ |
| cipher = c; |
| /* |
| * Store the ENGINE functional reference so we know 'cipher' came |
| * from an ENGINE and we need to release it when done. |
| */ |
| ctx->engine = impl; |
| } else |
| ctx->engine = NULL; |
| #endif |
| |
| ctx->cipher = cipher; |
| if (ctx->cipher->ctx_size) { |
| ctx->cipher_data = OPENSSL_zalloc(ctx->cipher->ctx_size); |
| if (ctx->cipher_data == NULL) { |
| ctx->cipher = NULL; |
| EVPerr(EVP_F_EVP_CIPHERINIT_EX, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| } else { |
| ctx->cipher_data = NULL; |
| } |
| ctx->key_len = cipher->key_len; |
| /* Preserve wrap enable flag, zero everything else */ |
| ctx->flags &= EVP_CIPHER_CTX_FLAG_WRAP_ALLOW; |
| if (ctx->cipher->flags & EVP_CIPH_CTRL_INIT) { |
| if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) { |
| ctx->cipher = NULL; |
| EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR); |
| return 0; |
| } |
| } |
| } else if (!ctx->cipher) { |
| EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_NO_CIPHER_SET); |
| return 0; |
| } |
| #ifndef OPENSSL_NO_ENGINE |
| skip_to_init: |
| #endif |
| /* we assume block size is a power of 2 in *cryptUpdate */ |
| OPENSSL_assert(ctx->cipher->block_size == 1 |
| || ctx->cipher->block_size == 8 |
| || ctx->cipher->block_size == 16); |
| |
| if (!(ctx->flags & EVP_CIPHER_CTX_FLAG_WRAP_ALLOW) |
| && EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_WRAP_MODE) { |
| EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_WRAP_MODE_NOT_ALLOWED); |
| return 0; |
| } |
| |
| if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_CUSTOM_IV)) { |
| switch (EVP_CIPHER_CTX_mode(ctx)) { |
| |
| case EVP_CIPH_STREAM_CIPHER: |
| case EVP_CIPH_ECB_MODE: |
| break; |
| |
| case EVP_CIPH_CFB_MODE: |
| case EVP_CIPH_OFB_MODE: |
| |
| ctx->num = 0; |
| /* fall-through */ |
| |
| case EVP_CIPH_CBC_MODE: |
| |
| OPENSSL_assert(EVP_CIPHER_CTX_iv_length(ctx) <= |
| (int)sizeof(ctx->iv)); |
| if (iv) |
| memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx)); |
| memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx)); |
| break; |
| |
| case EVP_CIPH_CTR_MODE: |
| ctx->num = 0; |
| /* Don't reuse IV for CTR mode */ |
| if (iv) |
| memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx)); |
| break; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) { |
| if (!ctx->cipher->init(ctx, key, iv, enc)) |
| return 0; |
| } |
| ctx->buf_len = 0; |
| ctx->final_used = 0; |
| ctx->block_mask = ctx->cipher->block_size - 1; |
| return 1; |
| } |
| |
| int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl, |
| const unsigned char *in, int inl) |
| { |
| if (ctx->encrypt) |
| return EVP_EncryptUpdate(ctx, out, outl, in, inl); |
| else |
| return EVP_DecryptUpdate(ctx, out, outl, in, inl); |
| } |
| |
| int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) |
| { |
| if (ctx->encrypt) |
| return EVP_EncryptFinal_ex(ctx, out, outl); |
| else |
| return EVP_DecryptFinal_ex(ctx, out, outl); |
| } |
| |
| int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) |
| { |
| if (ctx->encrypt) |
| return EVP_EncryptFinal(ctx, out, outl); |
| else |
| return EVP_DecryptFinal(ctx, out, outl); |
| } |
| |
| int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| const unsigned char *key, const unsigned char *iv) |
| { |
| return EVP_CipherInit(ctx, cipher, key, iv, 1); |
| } |
| |
| int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| ENGINE *impl, const unsigned char *key, |
| const unsigned char *iv) |
| { |
| return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 1); |
| } |
| |
| int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| const unsigned char *key, const unsigned char *iv) |
| { |
| return EVP_CipherInit(ctx, cipher, key, iv, 0); |
| } |
| |
| int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| ENGINE *impl, const unsigned char *key, |
| const unsigned char *iv) |
| { |
| return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 0); |
| } |
| |
| /* |
| * According to the letter of standard difference between pointers |
| * is specified to be valid only within same object. This makes |
| * it formally challenging to determine if input and output buffers |
| * are not partially overlapping with standard pointer arithmetic. |
| */ |
| #ifdef PTRDIFF_T |
| # undef PTRDIFF_T |
| #endif |
| #if defined(OPENSSL_SYS_VMS) && __INITIAL_POINTER_SIZE==64 |
| /* |
| * Then we have VMS that distinguishes itself by adhering to |
| * sizeof(size_t)==4 even in 64-bit builds, which means that |
| * difference between two pointers might be truncated to 32 bits. |
| * In the context one can even wonder how comparison for |
| * equality is implemented. To be on the safe side we adhere to |
| * PTRDIFF_T even for comparison for equality. |
| */ |
| # define PTRDIFF_T uint64_t |
| #else |
| # define PTRDIFF_T size_t |
| #endif |
| |
| int is_partially_overlapping(const void *ptr1, const void *ptr2, int len) |
| { |
| PTRDIFF_T diff = (PTRDIFF_T)ptr1-(PTRDIFF_T)ptr2; |
| /* |
| * Check for partially overlapping buffers. [Binary logical |
| * operations are used instead of boolean to minimize number |
| * of conditional branches.] |
| */ |
| int overlapped = (len > 0) & (diff != 0) & ((diff < (PTRDIFF_T)len) | |
| (diff > (0 - (PTRDIFF_T)len))); |
| |
| return overlapped; |
| } |
| |
| int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl, |
| const unsigned char *in, int inl) |
| { |
| int i, j, bl, cmpl = inl; |
| |
| if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) |
| cmpl = (cmpl + 7) / 8; |
| |
| bl = ctx->cipher->block_size; |
| |
| if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
| /* If block size > 1 then the cipher will have to do this check */ |
| if (bl == 1 && is_partially_overlapping(out, in, cmpl)) { |
| EVPerr(EVP_F_EVP_ENCRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING); |
| return 0; |
| } |
| |
| i = ctx->cipher->do_cipher(ctx, out, in, inl); |
| if (i < 0) |
| return 0; |
| else |
| *outl = i; |
| return 1; |
| } |
| |
| if (inl <= 0) { |
| *outl = 0; |
| return inl == 0; |
| } |
| if (is_partially_overlapping(out + ctx->buf_len, in, cmpl)) { |
| EVPerr(EVP_F_EVP_ENCRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING); |
| return 0; |
| } |
| |
| if (ctx->buf_len == 0 && (inl & (ctx->block_mask)) == 0) { |
| if (ctx->cipher->do_cipher(ctx, out, in, inl)) { |
| *outl = inl; |
| return 1; |
| } else { |
| *outl = 0; |
| return 0; |
| } |
| } |
| i = ctx->buf_len; |
| OPENSSL_assert(bl <= (int)sizeof(ctx->buf)); |
| if (i != 0) { |
| if (bl - i > inl) { |
| memcpy(&(ctx->buf[i]), in, inl); |
| ctx->buf_len += inl; |
| *outl = 0; |
| return 1; |
| } else { |
| j = bl - i; |
| memcpy(&(ctx->buf[i]), in, j); |
| inl -= j; |
| in += j; |
| if (!ctx->cipher->do_cipher(ctx, out, ctx->buf, bl)) |
| return 0; |
| out += bl; |
| *outl = bl; |
| } |
| } else |
| *outl = 0; |
| i = inl & (bl - 1); |
| inl -= i; |
| if (inl > 0) { |
| if (!ctx->cipher->do_cipher(ctx, out, in, inl)) |
| return 0; |
| *outl += inl; |
| } |
| |
| if (i != 0) |
| memcpy(ctx->buf, &(in[inl]), i); |
| ctx->buf_len = i; |
| return 1; |
| } |
| |
| int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) |
| { |
| int ret; |
| ret = EVP_EncryptFinal_ex(ctx, out, outl); |
| return ret; |
| } |
| |
| int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) |
| { |
| int n, ret; |
| unsigned int i, b, bl; |
| |
| if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
| ret = ctx->cipher->do_cipher(ctx, out, NULL, 0); |
| if (ret < 0) |
| return 0; |
| else |
| *outl = ret; |
| return 1; |
| } |
| |
| b = ctx->cipher->block_size; |
| OPENSSL_assert(b <= sizeof ctx->buf); |
| if (b == 1) { |
| *outl = 0; |
| return 1; |
| } |
| bl = ctx->buf_len; |
| if (ctx->flags & EVP_CIPH_NO_PADDING) { |
| if (bl) { |
| EVPerr(EVP_F_EVP_ENCRYPTFINAL_EX, |
| EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); |
| return 0; |
| } |
| *outl = 0; |
| return 1; |
| } |
| |
| n = b - bl; |
| for (i = bl; i < b; i++) |
| ctx->buf[i] = n; |
| ret = ctx->cipher->do_cipher(ctx, out, ctx->buf, b); |
| |
| if (ret) |
| *outl = b; |
| |
| return ret; |
| } |
| |
| int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl, |
| const unsigned char *in, int inl) |
| { |
| int fix_len, cmpl = inl; |
| unsigned int b; |
| |
| b = ctx->cipher->block_size; |
| |
| if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) |
| cmpl = (cmpl + 7) / 8; |
| |
| if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
| if (b == 1 && is_partially_overlapping(out, in, cmpl)) { |
| EVPerr(EVP_F_EVP_DECRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING); |
| return 0; |
| } |
| |
| fix_len = ctx->cipher->do_cipher(ctx, out, in, inl); |
| if (fix_len < 0) { |
| *outl = 0; |
| return 0; |
| } else |
| *outl = fix_len; |
| return 1; |
| } |
| |
| if (inl <= 0) { |
| *outl = 0; |
| return inl == 0; |
| } |
| |
| if (ctx->flags & EVP_CIPH_NO_PADDING) |
| return EVP_EncryptUpdate(ctx, out, outl, in, inl); |
| |
| OPENSSL_assert(b <= sizeof ctx->final); |
| |
| if (ctx->final_used) { |
| /* see comment about PTRDIFF_T comparison above */ |
| if (((PTRDIFF_T)out == (PTRDIFF_T)in) |
| || is_partially_overlapping(out, in, b)) { |
| EVPerr(EVP_F_EVP_DECRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING); |
| return 0; |
| } |
| memcpy(out, ctx->final, b); |
| out += b; |
| fix_len = 1; |
| } else |
| fix_len = 0; |
| |
| if (!EVP_EncryptUpdate(ctx, out, outl, in, inl)) |
| return 0; |
| |
| /* |
| * if we have 'decrypted' a multiple of block size, make sure we have a |
| * copy of this last block |
| */ |
| if (b > 1 && !ctx->buf_len) { |
| *outl -= b; |
| ctx->final_used = 1; |
| memcpy(ctx->final, &out[*outl], b); |
| } else |
| ctx->final_used = 0; |
| |
| if (fix_len) |
| *outl += b; |
| |
| return 1; |
| } |
| |
| int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) |
| { |
| int ret; |
| ret = EVP_DecryptFinal_ex(ctx, out, outl); |
| return ret; |
| } |
| |
| int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) |
| { |
| int i, n; |
| unsigned int b; |
| *outl = 0; |
| |
| if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
| i = ctx->cipher->do_cipher(ctx, out, NULL, 0); |
| if (i < 0) |
| return 0; |
| else |
| *outl = i; |
| return 1; |
| } |
| |
| b = ctx->cipher->block_size; |
| if (ctx->flags & EVP_CIPH_NO_PADDING) { |
| if (ctx->buf_len) { |
| EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, |
| EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); |
| return 0; |
| } |
| *outl = 0; |
| return 1; |
| } |
| if (b > 1) { |
| if (ctx->buf_len || !ctx->final_used) { |
| EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_WRONG_FINAL_BLOCK_LENGTH); |
| return (0); |
| } |
| OPENSSL_assert(b <= sizeof ctx->final); |
| |
| /* |
| * The following assumes that the ciphertext has been authenticated. |
| * Otherwise it provides a padding oracle. |
| */ |
| n = ctx->final[b - 1]; |
| if (n == 0 || n > (int)b) { |
| EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_BAD_DECRYPT); |
| return (0); |
| } |
| for (i = 0; i < n; i++) { |
| if (ctx->final[--b] != n) { |
| EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_BAD_DECRYPT); |
| return (0); |
| } |
| } |
| n = ctx->cipher->block_size - n; |
| for (i = 0; i < n; i++) |
| out[i] = ctx->final[i]; |
| *outl = n; |
| } else |
| *outl = 0; |
| return (1); |
| } |
| |
| int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, int keylen) |
| { |
| if (c->cipher->flags & EVP_CIPH_CUSTOM_KEY_LENGTH) |
| return EVP_CIPHER_CTX_ctrl(c, EVP_CTRL_SET_KEY_LENGTH, keylen, NULL); |
| if (c->key_len == keylen) |
| return 1; |
| if ((keylen > 0) && (c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) { |
| c->key_len = keylen; |
| return 1; |
| } |
| EVPerr(EVP_F_EVP_CIPHER_CTX_SET_KEY_LENGTH, EVP_R_INVALID_KEY_LENGTH); |
| return 0; |
| } |
| |
| int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad) |
| { |
| if (pad) |
| ctx->flags &= ~EVP_CIPH_NO_PADDING; |
| else |
| ctx->flags |= EVP_CIPH_NO_PADDING; |
| return 1; |
| } |
| |
| int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) |
| { |
| int ret; |
| if (!ctx->cipher) { |
| EVPerr(EVP_F_EVP_CIPHER_CTX_CTRL, EVP_R_NO_CIPHER_SET); |
| return 0; |
| } |
| |
| if (!ctx->cipher->ctrl) { |
| EVPerr(EVP_F_EVP_CIPHER_CTX_CTRL, EVP_R_CTRL_NOT_IMPLEMENTED); |
| return 0; |
| } |
| |
| ret = ctx->cipher->ctrl(ctx, type, arg, ptr); |
| if (ret == -1) { |
| EVPerr(EVP_F_EVP_CIPHER_CTX_CTRL, |
| EVP_R_CTRL_OPERATION_NOT_IMPLEMENTED); |
| return 0; |
| } |
| return ret; |
| } |
| |
| int EVP_CIPHER_CTX_rand_key(EVP_CIPHER_CTX *ctx, unsigned char *key) |
| { |
| if (ctx->cipher->flags & EVP_CIPH_RAND_KEY) |
| return EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_RAND_KEY, 0, key); |
| if (RAND_bytes(key, ctx->key_len) <= 0) |
| return 0; |
| return 1; |
| } |
| |
| int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in) |
| { |
| if ((in == NULL) || (in->cipher == NULL)) { |
| EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, EVP_R_INPUT_NOT_INITIALIZED); |
| return 0; |
| } |
| #ifndef OPENSSL_NO_ENGINE |
| /* Make sure it's safe to copy a cipher context using an ENGINE */ |
| if (in->engine && !ENGINE_init(in->engine)) { |
| EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, ERR_R_ENGINE_LIB); |
| return 0; |
| } |
| #endif |
| |
| EVP_CIPHER_CTX_reset(out); |
| memcpy(out, in, sizeof(*out)); |
| |
| if (in->cipher_data && in->cipher->ctx_size) { |
| out->cipher_data = OPENSSL_malloc(in->cipher->ctx_size); |
| if (out->cipher_data == NULL) { |
| out->cipher = NULL; |
| EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| memcpy(out->cipher_data, in->cipher_data, in->cipher->ctx_size); |
| } |
| |
| if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY) |
| if (!in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY, 0, out)) { |
| out->cipher = NULL; |
| EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, EVP_R_INITIALIZATION_ERROR); |
| return 0; |
| } |
| return 1; |
| } |