| /* |
| * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <stddef.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <openssl/evp.h> |
| #include <openssl/err.h> |
| #include <internal/numbers.h> |
| |
| #ifndef OPENSSL_NO_SCRYPT |
| |
| #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) |
| static void salsa208_word_specification(uint32_t inout[16]) |
| { |
| int i; |
| uint32_t x[16]; |
| memcpy(x, inout, sizeof(x)); |
| for (i = 8; i > 0; i -= 2) { |
| x[4] ^= R(x[0] + x[12], 7); |
| x[8] ^= R(x[4] + x[0], 9); |
| x[12] ^= R(x[8] + x[4], 13); |
| x[0] ^= R(x[12] + x[8], 18); |
| x[9] ^= R(x[5] + x[1], 7); |
| x[13] ^= R(x[9] + x[5], 9); |
| x[1] ^= R(x[13] + x[9], 13); |
| x[5] ^= R(x[1] + x[13], 18); |
| x[14] ^= R(x[10] + x[6], 7); |
| x[2] ^= R(x[14] + x[10], 9); |
| x[6] ^= R(x[2] + x[14], 13); |
| x[10] ^= R(x[6] + x[2], 18); |
| x[3] ^= R(x[15] + x[11], 7); |
| x[7] ^= R(x[3] + x[15], 9); |
| x[11] ^= R(x[7] + x[3], 13); |
| x[15] ^= R(x[11] + x[7], 18); |
| x[1] ^= R(x[0] + x[3], 7); |
| x[2] ^= R(x[1] + x[0], 9); |
| x[3] ^= R(x[2] + x[1], 13); |
| x[0] ^= R(x[3] + x[2], 18); |
| x[6] ^= R(x[5] + x[4], 7); |
| x[7] ^= R(x[6] + x[5], 9); |
| x[4] ^= R(x[7] + x[6], 13); |
| x[5] ^= R(x[4] + x[7], 18); |
| x[11] ^= R(x[10] + x[9], 7); |
| x[8] ^= R(x[11] + x[10], 9); |
| x[9] ^= R(x[8] + x[11], 13); |
| x[10] ^= R(x[9] + x[8], 18); |
| x[12] ^= R(x[15] + x[14], 7); |
| x[13] ^= R(x[12] + x[15], 9); |
| x[14] ^= R(x[13] + x[12], 13); |
| x[15] ^= R(x[14] + x[13], 18); |
| } |
| for (i = 0; i < 16; ++i) |
| inout[i] += x[i]; |
| OPENSSL_cleanse(x, sizeof(x)); |
| } |
| |
| static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r) |
| { |
| uint64_t i, j; |
| uint32_t X[16], *pB; |
| |
| memcpy(X, B + (r * 2 - 1) * 16, sizeof(X)); |
| pB = B; |
| for (i = 0; i < r * 2; i++) { |
| for (j = 0; j < 16; j++) |
| X[j] ^= *pB++; |
| salsa208_word_specification(X); |
| memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X)); |
| } |
| OPENSSL_cleanse(X, sizeof(X)); |
| } |
| |
| static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N, |
| uint32_t *X, uint32_t *T, uint32_t *V) |
| { |
| unsigned char *pB; |
| uint32_t *pV; |
| uint64_t i, k; |
| |
| /* Convert from little endian input */ |
| for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) { |
| *pV = *pB++; |
| *pV |= *pB++ << 8; |
| *pV |= *pB++ << 16; |
| *pV |= (uint32_t)*pB++ << 24; |
| } |
| |
| for (i = 1; i < N; i++, pV += 32 * r) |
| scryptBlockMix(pV, pV - 32 * r, r); |
| |
| scryptBlockMix(X, V + (N - 1) * 32 * r, r); |
| |
| for (i = 0; i < N; i++) { |
| uint32_t j; |
| j = X[16 * (2 * r - 1)] % N; |
| pV = V + 32 * r * j; |
| for (k = 0; k < 32 * r; k++) |
| T[k] = X[k] ^ *pV++; |
| scryptBlockMix(X, T, r); |
| } |
| /* Convert output to little endian */ |
| for (i = 0, pB = B; i < 32 * r; i++) { |
| uint32_t xtmp = X[i]; |
| *pB++ = xtmp & 0xff; |
| *pB++ = (xtmp >> 8) & 0xff; |
| *pB++ = (xtmp >> 16) & 0xff; |
| *pB++ = (xtmp >> 24) & 0xff; |
| } |
| } |
| |
| #ifndef SIZE_MAX |
| # define SIZE_MAX ((size_t)-1) |
| #endif |
| |
| /* |
| * Maximum power of two that will fit in uint64_t: this should work on |
| * most (all?) platforms. |
| */ |
| |
| #define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1) |
| |
| /* |
| * Maximum value of p * r: |
| * p <= ((2^32-1) * hLen) / MFLen => |
| * p <= ((2^32-1) * 32) / (128 * r) => |
| * p * r <= (2^30-1) |
| * |
| */ |
| |
| #define SCRYPT_PR_MAX ((1 << 30) - 1) |
| |
| /* |
| * Maximum permitted memory allow this to be overridden with Configuration |
| * option: e.g. -DSCRYPT_MAX_MEM=0 for maximum possible. |
| */ |
| |
| #ifdef SCRYPT_MAX_MEM |
| # if SCRYPT_MAX_MEM == 0 |
| # undef SCRYPT_MAX_MEM |
| /* |
| * Although we could theoretically allocate SIZE_MAX memory that would leave |
| * no memory available for anything else so set limit as half that. |
| */ |
| # define SCRYPT_MAX_MEM (SIZE_MAX/2) |
| # endif |
| #else |
| /* Default memory limit: 32 MB */ |
| # define SCRYPT_MAX_MEM (1024 * 1024 * 32) |
| #endif |
| |
| int EVP_PBE_scrypt(const char *pass, size_t passlen, |
| const unsigned char *salt, size_t saltlen, |
| uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, |
| unsigned char *key, size_t keylen) |
| { |
| int rv = 0; |
| unsigned char *B; |
| uint32_t *X, *V, *T; |
| uint64_t i, Blen, Vlen; |
| size_t allocsize; |
| |
| /* Sanity check parameters */ |
| /* initial check, r,p must be non zero, N >= 2 and a power of 2 */ |
| if (r == 0 || p == 0 || N < 2 || (N & (N - 1))) |
| return 0; |
| /* Check p * r < SCRYPT_PR_MAX avoiding overflow */ |
| if (p > SCRYPT_PR_MAX / r) |
| return 0; |
| |
| /* |
| * Need to check N: if 2^(128 * r / 8) overflows limit this is |
| * automatically satisfied since N <= UINT64_MAX. |
| */ |
| |
| if (16 * r <= LOG2_UINT64_MAX) { |
| if (N >= (((uint64_t)1) << (16 * r))) |
| return 0; |
| } |
| |
| /* Memory checks: check total allocated buffer size fits in uint64_t */ |
| |
| /* |
| * B size in section 5 step 1.S |
| * Note: we know p * 128 * r < UINT64_MAX because we already checked |
| * p * r < SCRYPT_PR_MAX |
| */ |
| Blen = p * 128 * r; |
| |
| /* |
| * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in |
| * uint64_t and also size_t (their sizes are unrelated). |
| * This is combined size V, X and T (section 4) |
| */ |
| i = UINT64_MAX / (32 * sizeof(uint32_t)); |
| if (N + 2 > i / r) |
| return 0; |
| Vlen = 32 * r * (N + 2) * sizeof(uint32_t); |
| |
| /* check total allocated size fits in uint64_t */ |
| if (Blen > UINT64_MAX - Vlen) |
| return 0; |
| /* check total allocated size fits in size_t */ |
| if (Blen > SIZE_MAX - Vlen) |
| return 0; |
| |
| allocsize = (size_t)(Blen + Vlen); |
| |
| if (maxmem == 0) |
| maxmem = SCRYPT_MAX_MEM; |
| |
| if (allocsize > maxmem) { |
| EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| return 0; |
| } |
| |
| /* If no key return to indicate parameters are OK */ |
| if (key == NULL) |
| return 1; |
| |
| B = OPENSSL_malloc(allocsize); |
| if (B == NULL) |
| return 0; |
| X = (uint32_t *)(B + Blen); |
| T = X + 32 * r; |
| V = T + 32 * r; |
| if (PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, 1, EVP_sha256(), |
| Blen, B) == 0) |
| goto err; |
| |
| for (i = 0; i < p; i++) |
| scryptROMix(B + 128 * r * i, r, N, X, T, V); |
| |
| if (PKCS5_PBKDF2_HMAC(pass, passlen, B, Blen, 1, EVP_sha256(), |
| keylen, key) == 0) |
| goto err; |
| rv = 1; |
| err: |
| OPENSSL_clear_free(B, allocsize); |
| return rv; |
| } |
| #endif |