| /* |
| * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved. |
| * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| /* |
| * EC_KEY low level APIs are deprecated for public use, but still ok for |
| * internal use. |
| */ |
| #include "internal/deprecated.h" |
| |
| #include "internal/cryptlib.h" |
| #include <string.h> |
| #include "ec_local.h" |
| #include "internal/refcount.h" |
| #include <openssl/err.h> |
| #ifndef FIPS_MODULE |
| # include <openssl/engine.h> |
| #endif |
| #include <openssl/self_test.h> |
| #include "prov/providercommon.h" |
| #include "crypto/bn.h" |
| |
| static int ecdsa_keygen_pairwise_test(EC_KEY *eckey, OSSL_CALLBACK *cb, |
| void *cbarg); |
| |
| #ifndef FIPS_MODULE |
| EC_KEY *EC_KEY_new(void) |
| { |
| return ossl_ec_key_new_method_int(NULL, NULL, NULL); |
| } |
| #endif |
| |
| EC_KEY *EC_KEY_new_ex(OSSL_LIB_CTX *ctx, const char *propq) |
| { |
| return ossl_ec_key_new_method_int(ctx, propq, NULL); |
| } |
| |
| EC_KEY *EC_KEY_new_by_curve_name_ex(OSSL_LIB_CTX *ctx, const char *propq, |
| int nid) |
| { |
| EC_KEY *ret = EC_KEY_new_ex(ctx, propq); |
| if (ret == NULL) |
| return NULL; |
| ret->group = EC_GROUP_new_by_curve_name_ex(ctx, propq, nid); |
| if (ret->group == NULL) { |
| EC_KEY_free(ret); |
| return NULL; |
| } |
| if (ret->meth->set_group != NULL |
| && ret->meth->set_group(ret, ret->group) == 0) { |
| EC_KEY_free(ret); |
| return NULL; |
| } |
| return ret; |
| } |
| |
| #ifndef FIPS_MODULE |
| EC_KEY *EC_KEY_new_by_curve_name(int nid) |
| { |
| return EC_KEY_new_by_curve_name_ex(NULL, NULL, nid); |
| } |
| #endif |
| |
| void EC_KEY_free(EC_KEY *r) |
| { |
| int i; |
| |
| if (r == NULL) |
| return; |
| |
| CRYPTO_DOWN_REF(&r->references, &i, r->lock); |
| REF_PRINT_COUNT("EC_KEY", r); |
| if (i > 0) |
| return; |
| REF_ASSERT_ISNT(i < 0); |
| |
| if (r->meth != NULL && r->meth->finish != NULL) |
| r->meth->finish(r); |
| |
| #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE) |
| ENGINE_finish(r->engine); |
| #endif |
| |
| if (r->group && r->group->meth->keyfinish) |
| r->group->meth->keyfinish(r); |
| |
| #ifndef FIPS_MODULE |
| CRYPTO_free_ex_data(CRYPTO_EX_INDEX_EC_KEY, r, &r->ex_data); |
| #endif |
| CRYPTO_THREAD_lock_free(r->lock); |
| EC_GROUP_free(r->group); |
| EC_POINT_free(r->pub_key); |
| BN_clear_free(r->priv_key); |
| OPENSSL_free(r->propq); |
| |
| OPENSSL_clear_free((void *)r, sizeof(EC_KEY)); |
| } |
| |
| EC_KEY *EC_KEY_copy(EC_KEY *dest, const EC_KEY *src) |
| { |
| if (dest == NULL || src == NULL) { |
| ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER); |
| return NULL; |
| } |
| if (src->meth != dest->meth) { |
| if (dest->meth->finish != NULL) |
| dest->meth->finish(dest); |
| if (dest->group && dest->group->meth->keyfinish) |
| dest->group->meth->keyfinish(dest); |
| #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE) |
| if (ENGINE_finish(dest->engine) == 0) |
| return 0; |
| dest->engine = NULL; |
| #endif |
| } |
| dest->libctx = src->libctx; |
| /* copy the parameters */ |
| if (src->group != NULL) { |
| /* clear the old group */ |
| EC_GROUP_free(dest->group); |
| dest->group = ossl_ec_group_new_ex(src->libctx, src->propq, |
| src->group->meth); |
| if (dest->group == NULL) |
| return NULL; |
| if (!EC_GROUP_copy(dest->group, src->group)) |
| return NULL; |
| |
| /* copy the public key */ |
| if (src->pub_key != NULL) { |
| EC_POINT_free(dest->pub_key); |
| dest->pub_key = EC_POINT_new(src->group); |
| if (dest->pub_key == NULL) |
| return NULL; |
| if (!EC_POINT_copy(dest->pub_key, src->pub_key)) |
| return NULL; |
| } |
| /* copy the private key */ |
| if (src->priv_key != NULL) { |
| if (dest->priv_key == NULL) { |
| dest->priv_key = BN_new(); |
| if (dest->priv_key == NULL) |
| return NULL; |
| } |
| if (!BN_copy(dest->priv_key, src->priv_key)) |
| return NULL; |
| if (src->group->meth->keycopy |
| && src->group->meth->keycopy(dest, src) == 0) |
| return NULL; |
| } |
| } |
| |
| |
| /* copy the rest */ |
| dest->enc_flag = src->enc_flag; |
| dest->conv_form = src->conv_form; |
| dest->version = src->version; |
| dest->flags = src->flags; |
| #ifndef FIPS_MODULE |
| if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_EC_KEY, |
| &dest->ex_data, &src->ex_data)) |
| return NULL; |
| #endif |
| |
| if (src->meth != dest->meth) { |
| #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE) |
| if (src->engine != NULL && ENGINE_init(src->engine) == 0) |
| return NULL; |
| dest->engine = src->engine; |
| #endif |
| dest->meth = src->meth; |
| } |
| |
| if (src->meth->copy != NULL && src->meth->copy(dest, src) == 0) |
| return NULL; |
| |
| dest->dirty_cnt++; |
| |
| return dest; |
| } |
| |
| EC_KEY *EC_KEY_dup(const EC_KEY *ec_key) |
| { |
| return ossl_ec_key_dup(ec_key, OSSL_KEYMGMT_SELECT_ALL); |
| } |
| |
| int EC_KEY_up_ref(EC_KEY *r) |
| { |
| int i; |
| |
| if (CRYPTO_UP_REF(&r->references, &i, r->lock) <= 0) |
| return 0; |
| |
| REF_PRINT_COUNT("EC_KEY", r); |
| REF_ASSERT_ISNT(i < 2); |
| return ((i > 1) ? 1 : 0); |
| } |
| |
| ENGINE *EC_KEY_get0_engine(const EC_KEY *eckey) |
| { |
| return eckey->engine; |
| } |
| |
| int EC_KEY_generate_key(EC_KEY *eckey) |
| { |
| if (eckey == NULL || eckey->group == NULL) { |
| ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| if (eckey->meth->keygen != NULL) { |
| int ret; |
| |
| ret = eckey->meth->keygen(eckey); |
| if (ret == 1) |
| eckey->dirty_cnt++; |
| |
| return ret; |
| } |
| ERR_raise(ERR_LIB_EC, EC_R_OPERATION_NOT_SUPPORTED); |
| return 0; |
| } |
| |
| int ossl_ec_key_gen(EC_KEY *eckey) |
| { |
| int ret; |
| |
| ret = eckey->group->meth->keygen(eckey); |
| |
| if (ret == 1) |
| eckey->dirty_cnt++; |
| return ret; |
| } |
| |
| /* |
| * ECC Key generation. |
| * See SP800-56AR3 5.6.1.2.2 "Key Pair Generation by Testing Candidates" |
| * |
| * Params: |
| * libctx A context containing an optional self test callback. |
| * eckey An EC key object that contains domain params. The generated keypair |
| * is stored in this object. |
| * pairwise_test Set to non zero to perform a pairwise test. If the test |
| * fails then the keypair is not generated, |
| * Returns 1 if the keypair was generated or 0 otherwise. |
| */ |
| static int ec_generate_key(EC_KEY *eckey, int pairwise_test) |
| { |
| int ok = 0; |
| BIGNUM *priv_key = NULL; |
| const BIGNUM *tmp = NULL; |
| BIGNUM *order = NULL; |
| EC_POINT *pub_key = NULL; |
| const EC_GROUP *group = eckey->group; |
| BN_CTX *ctx = BN_CTX_secure_new_ex(eckey->libctx); |
| int sm2 = EC_KEY_get_flags(eckey) & EC_FLAG_SM2_RANGE ? 1 : 0; |
| |
| if (ctx == NULL) |
| goto err; |
| |
| if (eckey->priv_key == NULL) { |
| priv_key = BN_secure_new(); |
| if (priv_key == NULL) |
| goto err; |
| } else |
| priv_key = eckey->priv_key; |
| |
| /* |
| * Steps (1-2): Check domain parameters and security strength. |
| * These steps must be done by the user. This would need to be |
| * stated in the security policy. |
| */ |
| |
| tmp = EC_GROUP_get0_order(group); |
| if (tmp == NULL) |
| goto err; |
| |
| /* |
| * Steps (3-7): priv_key = DRBG_RAND(order_n_bits) (range [1, n-1]). |
| * Although this is slightly different from the standard, it is effectively |
| * equivalent as it gives an unbiased result ranging from 1..n-1. It is also |
| * faster as the standard needs to retry more often. Also doing |
| * 1 + rand[0..n-2] would effect the way that tests feed dummy entropy into |
| * rand so the simpler backward compatible method has been used here. |
| */ |
| |
| /* range of SM2 private key is [1, n-1) */ |
| if (sm2) { |
| order = BN_new(); |
| if (order == NULL || !BN_sub(order, tmp, BN_value_one())) |
| goto err; |
| } else { |
| order = BN_dup(tmp); |
| if (order == NULL) |
| goto err; |
| } |
| |
| do |
| if (!BN_priv_rand_range_ex(priv_key, order, 0, ctx)) |
| goto err; |
| while (BN_is_zero(priv_key)) ; |
| |
| if (eckey->pub_key == NULL) { |
| pub_key = EC_POINT_new(group); |
| if (pub_key == NULL) |
| goto err; |
| } else |
| pub_key = eckey->pub_key; |
| |
| /* Step (8) : pub_key = priv_key * G (where G is a point on the curve) */ |
| if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx)) |
| goto err; |
| |
| eckey->priv_key = priv_key; |
| eckey->pub_key = pub_key; |
| priv_key = NULL; |
| pub_key = NULL; |
| |
| eckey->dirty_cnt++; |
| |
| #ifdef FIPS_MODULE |
| pairwise_test = 1; |
| #endif /* FIPS_MODULE */ |
| |
| ok = 1; |
| if (pairwise_test) { |
| OSSL_CALLBACK *cb = NULL; |
| void *cbarg = NULL; |
| |
| OSSL_SELF_TEST_get_callback(eckey->libctx, &cb, &cbarg); |
| ok = ecdsa_keygen_pairwise_test(eckey, cb, cbarg); |
| } |
| err: |
| /* Step (9): If there is an error return an invalid keypair. */ |
| if (!ok) { |
| ossl_set_error_state(OSSL_SELF_TEST_TYPE_PCT); |
| BN_clear(eckey->priv_key); |
| if (eckey->pub_key != NULL) |
| EC_POINT_set_to_infinity(group, eckey->pub_key); |
| } |
| |
| EC_POINT_free(pub_key); |
| BN_clear_free(priv_key); |
| BN_CTX_free(ctx); |
| BN_free(order); |
| return ok; |
| } |
| |
| int ossl_ec_key_simple_generate_key(EC_KEY *eckey) |
| { |
| return ec_generate_key(eckey, 0); |
| } |
| |
| int ossl_ec_key_simple_generate_public_key(EC_KEY *eckey) |
| { |
| int ret; |
| BN_CTX *ctx = BN_CTX_new_ex(eckey->libctx); |
| |
| if (ctx == NULL) |
| return 0; |
| |
| /* |
| * See SP800-56AR3 5.6.1.2.2: Step (8) |
| * pub_key = priv_key * G (where G is a point on the curve) |
| */ |
| ret = EC_POINT_mul(eckey->group, eckey->pub_key, eckey->priv_key, NULL, |
| NULL, ctx); |
| |
| BN_CTX_free(ctx); |
| if (ret == 1) |
| eckey->dirty_cnt++; |
| |
| return ret; |
| } |
| |
| int EC_KEY_check_key(const EC_KEY *eckey) |
| { |
| if (eckey == NULL || eckey->group == NULL || eckey->pub_key == NULL) { |
| ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| if (eckey->group->meth->keycheck == NULL) { |
| ERR_raise(ERR_LIB_EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| return eckey->group->meth->keycheck(eckey); |
| } |
| |
| /* |
| * Check the range of the EC public key. |
| * See SP800-56A R3 Section 5.6.2.3.3 (Part 2) |
| * i.e. |
| * - If q = odd prime p: Verify that xQ and yQ are integers in the |
| * interval[0, p - 1], OR |
| * - If q = 2m: Verify that xQ and yQ are bit strings of length m bits. |
| * Returns 1 if the public key has a valid range, otherwise it returns 0. |
| */ |
| static int ec_key_public_range_check(BN_CTX *ctx, const EC_KEY *key) |
| { |
| int ret = 0; |
| BIGNUM *x, *y; |
| |
| BN_CTX_start(ctx); |
| x = BN_CTX_get(ctx); |
| y = BN_CTX_get(ctx); |
| if (y == NULL) |
| goto err; |
| |
| if (!EC_POINT_get_affine_coordinates(key->group, key->pub_key, x, y, ctx)) |
| goto err; |
| |
| if (EC_GROUP_get_field_type(key->group) == NID_X9_62_prime_field) { |
| if (BN_is_negative(x) |
| || BN_cmp(x, key->group->field) >= 0 |
| || BN_is_negative(y) |
| || BN_cmp(y, key->group->field) >= 0) { |
| goto err; |
| } |
| } else { |
| int m = EC_GROUP_get_degree(key->group); |
| if (BN_num_bits(x) > m || BN_num_bits(y) > m) { |
| goto err; |
| } |
| } |
| ret = 1; |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* |
| * ECC Partial Public-Key Validation as specified in SP800-56A R3 |
| * Section 5.6.2.3.4 ECC Partial Public-Key Validation Routine. |
| */ |
| int ossl_ec_key_public_check_quick(const EC_KEY *eckey, BN_CTX *ctx) |
| { |
| if (eckey == NULL || eckey->group == NULL || eckey->pub_key == NULL) { |
| ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| /* 5.6.2.3.3 (Step 1): Q != infinity */ |
| if (EC_POINT_is_at_infinity(eckey->group, eckey->pub_key)) { |
| ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY); |
| return 0; |
| } |
| |
| /* 5.6.2.3.3 (Step 2) Test if the public key is in range */ |
| if (!ec_key_public_range_check(ctx, eckey)) { |
| ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE); |
| return 0; |
| } |
| |
| /* 5.6.2.3.3 (Step 3) is the pub_key on the elliptic curve */ |
| if (EC_POINT_is_on_curve(eckey->group, eckey->pub_key, ctx) <= 0) { |
| ERR_raise(ERR_LIB_EC, EC_R_POINT_IS_NOT_ON_CURVE); |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| * ECC Key validation as specified in SP800-56A R3. |
| * Section 5.6.2.3.3 ECC Full Public-Key Validation Routine. |
| */ |
| int ossl_ec_key_public_check(const EC_KEY *eckey, BN_CTX *ctx) |
| { |
| int ret = 0; |
| EC_POINT *point = NULL; |
| const BIGNUM *order = NULL; |
| |
| if (!ossl_ec_key_public_check_quick(eckey, ctx)) |
| return 0; |
| |
| point = EC_POINT_new(eckey->group); |
| if (point == NULL) |
| return 0; |
| |
| order = eckey->group->order; |
| if (BN_is_zero(order)) { |
| ERR_raise(ERR_LIB_EC, EC_R_INVALID_GROUP_ORDER); |
| goto err; |
| } |
| /* 5.6.2.3.3 (Step 4) : pub_key * order is the point at infinity. */ |
| if (!EC_POINT_mul(eckey->group, point, NULL, eckey->pub_key, order, ctx)) { |
| ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB); |
| goto err; |
| } |
| if (!EC_POINT_is_at_infinity(eckey->group, point)) { |
| ERR_raise(ERR_LIB_EC, EC_R_WRONG_ORDER); |
| goto err; |
| } |
| ret = 1; |
| err: |
| EC_POINT_free(point); |
| return ret; |
| } |
| |
| /* |
| * ECC Key validation as specified in SP800-56A R3. |
| * Section 5.6.2.1.2 Owner Assurance of Private-Key Validity |
| * The private key is in the range [1, order-1] |
| */ |
| int ossl_ec_key_private_check(const EC_KEY *eckey) |
| { |
| if (eckey == NULL || eckey->group == NULL || eckey->priv_key == NULL) { |
| ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| if (BN_cmp(eckey->priv_key, BN_value_one()) < 0 |
| || BN_cmp(eckey->priv_key, eckey->group->order) >= 0) { |
| ERR_raise(ERR_LIB_EC, EC_R_INVALID_PRIVATE_KEY); |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| * ECC Key validation as specified in SP800-56A R3. |
| * Section 5.6.2.1.4 Owner Assurance of Pair-wise Consistency (b) |
| * Check if generator * priv_key = pub_key |
| */ |
| int ossl_ec_key_pairwise_check(const EC_KEY *eckey, BN_CTX *ctx) |
| { |
| int ret = 0; |
| EC_POINT *point = NULL; |
| |
| if (eckey == NULL |
| || eckey->group == NULL |
| || eckey->pub_key == NULL |
| || eckey->priv_key == NULL) { |
| ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| point = EC_POINT_new(eckey->group); |
| if (point == NULL) |
| goto err; |
| |
| |
| if (!EC_POINT_mul(eckey->group, point, eckey->priv_key, NULL, NULL, ctx)) { |
| ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB); |
| goto err; |
| } |
| if (EC_POINT_cmp(eckey->group, point, eckey->pub_key, ctx) != 0) { |
| ERR_raise(ERR_LIB_EC, EC_R_INVALID_PRIVATE_KEY); |
| goto err; |
| } |
| ret = 1; |
| err: |
| EC_POINT_free(point); |
| return ret; |
| } |
| |
| |
| /* |
| * ECC Key validation as specified in SP800-56A R3. |
| * Section 5.6.2.3.3 ECC Full Public-Key Validation |
| * Section 5.6.2.1.2 Owner Assurance of Private-Key Validity |
| * Section 5.6.2.1.4 Owner Assurance of Pair-wise Consistency |
| * NOTES: |
| * Before calling this method in fips mode, there should be an assurance that |
| * an approved elliptic-curve group is used. |
| * Returns 1 if the key is valid, otherwise it returns 0. |
| */ |
| int ossl_ec_key_simple_check_key(const EC_KEY *eckey) |
| { |
| int ok = 0; |
| BN_CTX *ctx = NULL; |
| |
| if (eckey == NULL) { |
| ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| if ((ctx = BN_CTX_new_ex(eckey->libctx)) == NULL) |
| return 0; |
| |
| if (!ossl_ec_key_public_check(eckey, ctx)) |
| goto err; |
| |
| if (eckey->priv_key != NULL) { |
| if (!ossl_ec_key_private_check(eckey) |
| || !ossl_ec_key_pairwise_check(eckey, ctx)) |
| goto err; |
| } |
| ok = 1; |
| err: |
| BN_CTX_free(ctx); |
| return ok; |
| } |
| |
| int EC_KEY_set_public_key_affine_coordinates(EC_KEY *key, BIGNUM *x, |
| BIGNUM *y) |
| { |
| BN_CTX *ctx = NULL; |
| BIGNUM *tx, *ty; |
| EC_POINT *point = NULL; |
| int ok = 0; |
| |
| if (key == NULL || key->group == NULL || x == NULL || y == NULL) { |
| ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| ctx = BN_CTX_new_ex(key->libctx); |
| if (ctx == NULL) |
| return 0; |
| |
| BN_CTX_start(ctx); |
| point = EC_POINT_new(key->group); |
| |
| if (point == NULL) |
| goto err; |
| |
| tx = BN_CTX_get(ctx); |
| ty = BN_CTX_get(ctx); |
| if (ty == NULL) |
| goto err; |
| |
| if (!EC_POINT_set_affine_coordinates(key->group, point, x, y, ctx)) |
| goto err; |
| if (!EC_POINT_get_affine_coordinates(key->group, point, tx, ty, ctx)) |
| goto err; |
| |
| /* |
| * Check if retrieved coordinates match originals. The range check is done |
| * inside EC_KEY_check_key(). |
| */ |
| if (BN_cmp(x, tx) || BN_cmp(y, ty)) { |
| ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE); |
| goto err; |
| } |
| |
| /* EC_KEY_set_public_key updates dirty_cnt */ |
| if (!EC_KEY_set_public_key(key, point)) |
| goto err; |
| |
| if (EC_KEY_check_key(key) == 0) |
| goto err; |
| |
| ok = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(ctx); |
| EC_POINT_free(point); |
| return ok; |
| |
| } |
| |
| OSSL_LIB_CTX *ossl_ec_key_get_libctx(const EC_KEY *key) |
| { |
| return key->libctx; |
| } |
| |
| const char *ossl_ec_key_get0_propq(const EC_KEY *key) |
| { |
| return key->propq; |
| } |
| |
| void ossl_ec_key_set0_libctx(EC_KEY *key, OSSL_LIB_CTX *libctx) |
| { |
| key->libctx = libctx; |
| /* Do we need to propagate this to the group? */ |
| } |
| |
| const EC_GROUP *EC_KEY_get0_group(const EC_KEY *key) |
| { |
| return key->group; |
| } |
| |
| int EC_KEY_set_group(EC_KEY *key, const EC_GROUP *group) |
| { |
| if (key->meth->set_group != NULL && key->meth->set_group(key, group) == 0) |
| return 0; |
| EC_GROUP_free(key->group); |
| key->group = EC_GROUP_dup(group); |
| if (key->group != NULL && EC_GROUP_get_curve_name(key->group) == NID_sm2) |
| EC_KEY_set_flags(key, EC_FLAG_SM2_RANGE); |
| |
| key->dirty_cnt++; |
| return (key->group == NULL) ? 0 : 1; |
| } |
| |
| const BIGNUM *EC_KEY_get0_private_key(const EC_KEY *key) |
| { |
| return key->priv_key; |
| } |
| |
| int EC_KEY_set_private_key(EC_KEY *key, const BIGNUM *priv_key) |
| { |
| int fixed_top; |
| const BIGNUM *order = NULL; |
| BIGNUM *tmp_key = NULL; |
| |
| if (key->group == NULL || key->group->meth == NULL) |
| return 0; |
| |
| /* |
| * Not only should key->group be set, but it should also be in a valid |
| * fully initialized state. |
| * |
| * Specifically, to operate in constant time, we need that the group order |
| * is set, as we use its length as the fixed public size of any scalar used |
| * as an EC private key. |
| */ |
| order = EC_GROUP_get0_order(key->group); |
| if (order == NULL || BN_is_zero(order)) |
| return 0; /* This should never happen */ |
| |
| if (key->group->meth->set_private != NULL |
| && key->group->meth->set_private(key, priv_key) == 0) |
| return 0; |
| if (key->meth->set_private != NULL |
| && key->meth->set_private(key, priv_key) == 0) |
| return 0; |
| |
| /* |
| * We should never leak the bit length of the secret scalar in the key, |
| * so we always set the `BN_FLG_CONSTTIME` flag on the internal `BIGNUM` |
| * holding the secret scalar. |
| * |
| * This is important also because `BN_dup()` (and `BN_copy()`) do not |
| * propagate the `BN_FLG_CONSTTIME` flag from the source `BIGNUM`, and |
| * this brings an extra risk of inadvertently losing the flag, even when |
| * the caller specifically set it. |
| * |
| * The propagation has been turned on and off a few times in the past |
| * years because in some conditions has shown unintended consequences in |
| * some code paths, so at the moment we can't fix this in the BN layer. |
| * |
| * In `EC_KEY_set_private_key()` we can work around the propagation by |
| * manually setting the flag after `BN_dup()` as we know for sure that |
| * inside the EC module the `BN_FLG_CONSTTIME` is always treated |
| * correctly and should not generate unintended consequences. |
| * |
| * Setting the BN_FLG_CONSTTIME flag alone is never enough, we also have |
| * to preallocate the BIGNUM internal buffer to a fixed public size big |
| * enough that operations performed during the processing never trigger |
| * a realloc which would leak the size of the scalar through memory |
| * accesses. |
| * |
| * Fixed Length |
| * ------------ |
| * |
| * The order of the large prime subgroup of the curve is our choice for |
| * a fixed public size, as that is generally the upper bound for |
| * generating a private key in EC cryptosystems and should fit all valid |
| * secret scalars. |
| * |
| * For preallocating the BIGNUM storage we look at the number of "words" |
| * required for the internal representation of the order, and we |
| * preallocate 2 extra "words" in case any of the subsequent processing |
| * might temporarily overflow the order length. |
| */ |
| tmp_key = BN_dup(priv_key); |
| if (tmp_key == NULL) |
| return 0; |
| |
| BN_set_flags(tmp_key, BN_FLG_CONSTTIME); |
| |
| fixed_top = bn_get_top(order) + 2; |
| if (bn_wexpand(tmp_key, fixed_top) == NULL) { |
| BN_clear_free(tmp_key); |
| return 0; |
| } |
| |
| BN_clear_free(key->priv_key); |
| key->priv_key = tmp_key; |
| key->dirty_cnt++; |
| |
| return 1; |
| } |
| |
| const EC_POINT *EC_KEY_get0_public_key(const EC_KEY *key) |
| { |
| return key->pub_key; |
| } |
| |
| int EC_KEY_set_public_key(EC_KEY *key, const EC_POINT *pub_key) |
| { |
| if (key->meth->set_public != NULL |
| && key->meth->set_public(key, pub_key) == 0) |
| return 0; |
| EC_POINT_free(key->pub_key); |
| key->pub_key = EC_POINT_dup(pub_key, key->group); |
| key->dirty_cnt++; |
| return (key->pub_key == NULL) ? 0 : 1; |
| } |
| |
| unsigned int EC_KEY_get_enc_flags(const EC_KEY *key) |
| { |
| return key->enc_flag; |
| } |
| |
| void EC_KEY_set_enc_flags(EC_KEY *key, unsigned int flags) |
| { |
| key->enc_flag = flags; |
| } |
| |
| point_conversion_form_t EC_KEY_get_conv_form(const EC_KEY *key) |
| { |
| return key->conv_form; |
| } |
| |
| void EC_KEY_set_conv_form(EC_KEY *key, point_conversion_form_t cform) |
| { |
| key->conv_form = cform; |
| if (key->group != NULL) |
| EC_GROUP_set_point_conversion_form(key->group, cform); |
| } |
| |
| void EC_KEY_set_asn1_flag(EC_KEY *key, int flag) |
| { |
| if (key->group != NULL) |
| EC_GROUP_set_asn1_flag(key->group, flag); |
| } |
| |
| #ifndef OPENSSL_NO_DEPRECATED_3_0 |
| int EC_KEY_precompute_mult(EC_KEY *key, BN_CTX *ctx) |
| { |
| if (key->group == NULL) |
| return 0; |
| return EC_GROUP_precompute_mult(key->group, ctx); |
| } |
| #endif |
| |
| int EC_KEY_get_flags(const EC_KEY *key) |
| { |
| return key->flags; |
| } |
| |
| void EC_KEY_set_flags(EC_KEY *key, int flags) |
| { |
| key->flags |= flags; |
| key->dirty_cnt++; |
| } |
| |
| void EC_KEY_clear_flags(EC_KEY *key, int flags) |
| { |
| key->flags &= ~flags; |
| key->dirty_cnt++; |
| } |
| |
| int EC_KEY_decoded_from_explicit_params(const EC_KEY *key) |
| { |
| if (key == NULL || key->group == NULL) |
| return -1; |
| return key->group->decoded_from_explicit_params; |
| } |
| |
| size_t EC_KEY_key2buf(const EC_KEY *key, point_conversion_form_t form, |
| unsigned char **pbuf, BN_CTX *ctx) |
| { |
| if (key == NULL || key->pub_key == NULL || key->group == NULL) |
| return 0; |
| return EC_POINT_point2buf(key->group, key->pub_key, form, pbuf, ctx); |
| } |
| |
| int EC_KEY_oct2key(EC_KEY *key, const unsigned char *buf, size_t len, |
| BN_CTX *ctx) |
| { |
| if (key == NULL || key->group == NULL) |
| return 0; |
| if (key->pub_key == NULL) |
| key->pub_key = EC_POINT_new(key->group); |
| if (key->pub_key == NULL) |
| return 0; |
| if (EC_POINT_oct2point(key->group, key->pub_key, buf, len, ctx) == 0) |
| return 0; |
| key->dirty_cnt++; |
| /* |
| * Save the point conversion form. |
| * For non-custom curves the first octet of the buffer (excluding |
| * the last significant bit) contains the point conversion form. |
| * EC_POINT_oct2point() has already performed sanity checking of |
| * the buffer so we know it is valid. |
| */ |
| if ((key->group->meth->flags & EC_FLAGS_CUSTOM_CURVE) == 0) |
| key->conv_form = (point_conversion_form_t)(buf[0] & ~0x01); |
| return 1; |
| } |
| |
| size_t EC_KEY_priv2oct(const EC_KEY *eckey, |
| unsigned char *buf, size_t len) |
| { |
| if (eckey->group == NULL || eckey->group->meth == NULL) |
| return 0; |
| if (eckey->group->meth->priv2oct == NULL) { |
| ERR_raise(ERR_LIB_EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| return eckey->group->meth->priv2oct(eckey, buf, len); |
| } |
| |
| size_t ossl_ec_key_simple_priv2oct(const EC_KEY *eckey, |
| unsigned char *buf, size_t len) |
| { |
| size_t buf_len; |
| |
| buf_len = (EC_GROUP_order_bits(eckey->group) + 7) / 8; |
| if (eckey->priv_key == NULL) |
| return 0; |
| if (buf == NULL) |
| return buf_len; |
| else if (len < buf_len) |
| return 0; |
| |
| /* Octetstring may need leading zeros if BN is to short */ |
| |
| if (BN_bn2binpad(eckey->priv_key, buf, buf_len) == -1) { |
| ERR_raise(ERR_LIB_EC, EC_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| return buf_len; |
| } |
| |
| int EC_KEY_oct2priv(EC_KEY *eckey, const unsigned char *buf, size_t len) |
| { |
| int ret; |
| |
| if (eckey->group == NULL || eckey->group->meth == NULL) |
| return 0; |
| if (eckey->group->meth->oct2priv == NULL) { |
| ERR_raise(ERR_LIB_EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| ret = eckey->group->meth->oct2priv(eckey, buf, len); |
| if (ret == 1) |
| eckey->dirty_cnt++; |
| return ret; |
| } |
| |
| int ossl_ec_key_simple_oct2priv(EC_KEY *eckey, const unsigned char *buf, |
| size_t len) |
| { |
| if (eckey->priv_key == NULL) |
| eckey->priv_key = BN_secure_new(); |
| if (eckey->priv_key == NULL) { |
| ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| eckey->priv_key = BN_bin2bn(buf, len, eckey->priv_key); |
| if (eckey->priv_key == NULL) { |
| ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
| return 0; |
| } |
| eckey->dirty_cnt++; |
| return 1; |
| } |
| |
| size_t EC_KEY_priv2buf(const EC_KEY *eckey, unsigned char **pbuf) |
| { |
| size_t len; |
| unsigned char *buf; |
| |
| len = EC_KEY_priv2oct(eckey, NULL, 0); |
| if (len == 0) |
| return 0; |
| if ((buf = OPENSSL_malloc(len)) == NULL) { |
| ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| len = EC_KEY_priv2oct(eckey, buf, len); |
| if (len == 0) { |
| OPENSSL_free(buf); |
| return 0; |
| } |
| *pbuf = buf; |
| return len; |
| } |
| |
| int EC_KEY_can_sign(const EC_KEY *eckey) |
| { |
| if (eckey->group == NULL || eckey->group->meth == NULL |
| || (eckey->group->meth->flags & EC_FLAGS_NO_SIGN)) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * FIPS 140-2 IG 9.9 AS09.33 |
| * Perform a sign/verify operation. |
| * |
| * NOTE: When generating keys for key-agreement schemes - FIPS 140-2 IG 9.9 |
| * states that no additional pairwise tests are required (apart from the tests |
| * specified in SP800-56A) when generating keys. Hence pairwise ECDH tests are |
| * omitted here. |
| */ |
| static int ecdsa_keygen_pairwise_test(EC_KEY *eckey, OSSL_CALLBACK *cb, |
| void *cbarg) |
| { |
| int ret = 0; |
| unsigned char dgst[16] = {0}; |
| int dgst_len = (int)sizeof(dgst); |
| ECDSA_SIG *sig = NULL; |
| OSSL_SELF_TEST *st = NULL; |
| |
| st = OSSL_SELF_TEST_new(cb, cbarg); |
| if (st == NULL) |
| return 0; |
| |
| OSSL_SELF_TEST_onbegin(st, OSSL_SELF_TEST_TYPE_PCT, |
| OSSL_SELF_TEST_DESC_PCT_ECDSA); |
| |
| sig = ECDSA_do_sign(dgst, dgst_len, eckey); |
| if (sig == NULL) |
| goto err; |
| |
| OSSL_SELF_TEST_oncorrupt_byte(st, dgst); |
| |
| if (ECDSA_do_verify(dgst, dgst_len, sig, eckey) != 1) |
| goto err; |
| |
| ret = 1; |
| err: |
| OSSL_SELF_TEST_onend(st, ret); |
| OSSL_SELF_TEST_free(st); |
| ECDSA_SIG_free(sig); |
| return ret; |
| } |