| /* openssl/engine.h */ |
| /* |
| * Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL project |
| * 2000. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1999-2004 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * ECDH support in OpenSSL originally developed by |
| * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. |
| */ |
| |
| #ifndef HEADER_ENGINE_H |
| # define HEADER_ENGINE_H |
| |
| # include <openssl/opensslconf.h> |
| |
| # ifdef OPENSSL_NO_ENGINE |
| # error ENGINE is disabled. |
| # endif |
| |
| # ifdef OPENSSL_USE_DEPRECATED |
| # include <openssl/bn.h> |
| # ifndef OPENSSL_NO_RSA |
| # include <openssl/rsa.h> |
| # endif |
| # ifndef OPENSSL_NO_DSA |
| # include <openssl/dsa.h> |
| # endif |
| # ifndef OPENSSL_NO_DH |
| # include <openssl/dh.h> |
| # endif |
| # ifndef OPENSSL_NO_ECDH |
| # include <openssl/ecdh.h> |
| # endif |
| # ifndef OPENSSL_NO_ECDSA |
| # include <openssl/ecdsa.h> |
| # endif |
| # include <openssl/rand.h> |
| # include <openssl/ui.h> |
| # include <openssl/err.h> |
| # endif |
| |
| # include <openssl/ossl_typ.h> |
| # include <openssl/symhacks.h> |
| |
| # include <openssl/x509.h> |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| /* |
| * These flags are used to control combinations of algorithm (methods) by |
| * bitwise "OR"ing. |
| */ |
| # define ENGINE_METHOD_RSA (unsigned int)0x0001 |
| # define ENGINE_METHOD_DSA (unsigned int)0x0002 |
| # define ENGINE_METHOD_DH (unsigned int)0x0004 |
| # define ENGINE_METHOD_RAND (unsigned int)0x0008 |
| # define ENGINE_METHOD_ECDH (unsigned int)0x0010 |
| # define ENGINE_METHOD_ECDSA (unsigned int)0x0020 |
| # define ENGINE_METHOD_CIPHERS (unsigned int)0x0040 |
| # define ENGINE_METHOD_DIGESTS (unsigned int)0x0080 |
| # define ENGINE_METHOD_STORE (unsigned int)0x0100 |
| # define ENGINE_METHOD_PKEY_METHS (unsigned int)0x0200 |
| # define ENGINE_METHOD_PKEY_ASN1_METHS (unsigned int)0x0400 |
| /* Obvious all-or-nothing cases. */ |
| # define ENGINE_METHOD_ALL (unsigned int)0xFFFF |
| # define ENGINE_METHOD_NONE (unsigned int)0x0000 |
| |
| /* |
| * This(ese) flag(s) controls behaviour of the ENGINE_TABLE mechanism used |
| * internally to control registration of ENGINE implementations, and can be |
| * set by ENGINE_set_table_flags(). The "NOINIT" flag prevents attempts to |
| * initialise registered ENGINEs if they are not already initialised. |
| */ |
| # define ENGINE_TABLE_FLAG_NOINIT (unsigned int)0x0001 |
| |
| /* ENGINE flags that can be set by ENGINE_set_flags(). */ |
| /* Not used */ |
| /* #define ENGINE_FLAGS_MALLOCED 0x0001 */ |
| |
| /* |
| * This flag is for ENGINEs that wish to handle the various 'CMD'-related |
| * control commands on their own. Without this flag, ENGINE_ctrl() handles |
| * these control commands on behalf of the ENGINE using their "cmd_defns" |
| * data. |
| */ |
| # define ENGINE_FLAGS_MANUAL_CMD_CTRL (int)0x0002 |
| |
| /* |
| * This flag is for ENGINEs who return new duplicate structures when found |
| * via "ENGINE_by_id()". When an ENGINE must store state (eg. if |
| * ENGINE_ctrl() commands are called in sequence as part of some stateful |
| * process like key-generation setup and execution), it can set this flag - |
| * then each attempt to obtain the ENGINE will result in it being copied into |
| * a new structure. Normally, ENGINEs don't declare this flag so |
| * ENGINE_by_id() just increments the existing ENGINE's structural reference |
| * count. |
| */ |
| # define ENGINE_FLAGS_BY_ID_COPY (int)0x0004 |
| |
| /* |
| * This flag if for an ENGINE that does not want its methods registered as |
| * part of ENGINE_register_all_complete() for example if the methods are not |
| * usable as default methods. |
| */ |
| |
| # define ENGINE_FLAGS_NO_REGISTER_ALL (int)0x0008 |
| |
| /* |
| * ENGINEs can support their own command types, and these flags are used in |
| * ENGINE_CTRL_GET_CMD_FLAGS to indicate to the caller what kind of input |
| * each command expects. Currently only numeric and string input is |
| * supported. If a control command supports none of the _NUMERIC, _STRING, or |
| * _NO_INPUT options, then it is regarded as an "internal" control command - |
| * and not for use in config setting situations. As such, they're not |
| * available to the ENGINE_ctrl_cmd_string() function, only raw ENGINE_ctrl() |
| * access. Changes to this list of 'command types' should be reflected |
| * carefully in ENGINE_cmd_is_executable() and ENGINE_ctrl_cmd_string(). |
| */ |
| |
| /* accepts a 'long' input value (3rd parameter to ENGINE_ctrl) */ |
| # define ENGINE_CMD_FLAG_NUMERIC (unsigned int)0x0001 |
| /* |
| * accepts string input (cast from 'void*' to 'const char *', 4th parameter |
| * to ENGINE_ctrl) |
| */ |
| # define ENGINE_CMD_FLAG_STRING (unsigned int)0x0002 |
| /* |
| * Indicates that the control command takes *no* input. Ie. the control |
| * command is unparameterised. |
| */ |
| # define ENGINE_CMD_FLAG_NO_INPUT (unsigned int)0x0004 |
| /* |
| * Indicates that the control command is internal. This control command won't |
| * be shown in any output, and is only usable through the ENGINE_ctrl_cmd() |
| * function. |
| */ |
| # define ENGINE_CMD_FLAG_INTERNAL (unsigned int)0x0008 |
| |
| /* |
| * NB: These 3 control commands are deprecated and should not be used. |
| * ENGINEs relying on these commands should compile conditional support for |
| * compatibility (eg. if these symbols are defined) but should also migrate |
| * the same functionality to their own ENGINE-specific control functions that |
| * can be "discovered" by calling applications. The fact these control |
| * commands wouldn't be "executable" (ie. usable by text-based config) |
| * doesn't change the fact that application code can find and use them |
| * without requiring per-ENGINE hacking. |
| */ |
| |
| /* |
| * These flags are used to tell the ctrl function what should be done. All |
| * command numbers are shared between all engines, even if some don't make |
| * sense to some engines. In such a case, they do nothing but return the |
| * error ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED. |
| */ |
| # define ENGINE_CTRL_SET_LOGSTREAM 1 |
| # define ENGINE_CTRL_SET_PASSWORD_CALLBACK 2 |
| # define ENGINE_CTRL_HUP 3/* Close and reinitialise |
| * any handles/connections |
| * etc. */ |
| # define ENGINE_CTRL_SET_USER_INTERFACE 4/* Alternative to callback */ |
| # define ENGINE_CTRL_SET_CALLBACK_DATA 5/* User-specific data, used |
| * when calling the password |
| * callback and the user |
| * interface */ |
| # define ENGINE_CTRL_LOAD_CONFIGURATION 6/* Load a configuration, |
| * given a string that |
| * represents a file name |
| * or so */ |
| # define ENGINE_CTRL_LOAD_SECTION 7/* Load data from a given |
| * section in the already |
| * loaded configuration */ |
| |
| /* |
| * These control commands allow an application to deal with an arbitrary |
| * engine in a dynamic way. Warn: Negative return values indicate errors FOR |
| * THESE COMMANDS because zero is used to indicate 'end-of-list'. Other |
| * commands, including ENGINE-specific command types, return zero for an |
| * error. An ENGINE can choose to implement these ctrl functions, and can |
| * internally manage things however it chooses - it does so by setting the |
| * ENGINE_FLAGS_MANUAL_CMD_CTRL flag (using ENGINE_set_flags()). Otherwise |
| * the ENGINE_ctrl() code handles this on the ENGINE's behalf using the |
| * cmd_defns data (set using ENGINE_set_cmd_defns()). This means an ENGINE's |
| * ctrl() handler need only implement its own commands - the above "meta" |
| * commands will be taken care of. |
| */ |
| |
| /* |
| * Returns non-zero if the supplied ENGINE has a ctrl() handler. If "not", |
| * then all the remaining control commands will return failure, so it is |
| * worth checking this first if the caller is trying to "discover" the |
| * engine's capabilities and doesn't want errors generated unnecessarily. |
| */ |
| # define ENGINE_CTRL_HAS_CTRL_FUNCTION 10 |
| /* |
| * Returns a positive command number for the first command supported by the |
| * engine. Returns zero if no ctrl commands are supported. |
| */ |
| # define ENGINE_CTRL_GET_FIRST_CMD_TYPE 11 |
| /* |
| * The 'long' argument specifies a command implemented by the engine, and the |
| * return value is the next command supported, or zero if there are no more. |
| */ |
| # define ENGINE_CTRL_GET_NEXT_CMD_TYPE 12 |
| /* |
| * The 'void*' argument is a command name (cast from 'const char *'), and the |
| * return value is the command that corresponds to it. |
| */ |
| # define ENGINE_CTRL_GET_CMD_FROM_NAME 13 |
| /* |
| * The next two allow a command to be converted into its corresponding string |
| * form. In each case, the 'long' argument supplies the command. In the |
| * NAME_LEN case, the return value is the length of the command name (not |
| * counting a trailing EOL). In the NAME case, the 'void*' argument must be a |
| * string buffer large enough, and it will be populated with the name of the |
| * command (WITH a trailing EOL). |
| */ |
| # define ENGINE_CTRL_GET_NAME_LEN_FROM_CMD 14 |
| # define ENGINE_CTRL_GET_NAME_FROM_CMD 15 |
| /* The next two are similar but give a "short description" of a command. */ |
| # define ENGINE_CTRL_GET_DESC_LEN_FROM_CMD 16 |
| # define ENGINE_CTRL_GET_DESC_FROM_CMD 17 |
| /* |
| * With this command, the return value is the OR'd combination of |
| * ENGINE_CMD_FLAG_*** values that indicate what kind of input a given |
| * engine-specific ctrl command expects. |
| */ |
| # define ENGINE_CTRL_GET_CMD_FLAGS 18 |
| |
| /* |
| * ENGINE implementations should start the numbering of their own control |
| * commands from this value. (ie. ENGINE_CMD_BASE, ENGINE_CMD_BASE + 1, etc). |
| */ |
| # define ENGINE_CMD_BASE 200 |
| |
| /* |
| * NB: These 2 nCipher "chil" control commands are deprecated, and their |
| * functionality is now available through ENGINE-specific control commands |
| * (exposed through the above-mentioned 'CMD'-handling). Code using these 2 |
| * commands should be migrated to the more general command handling before |
| * these are removed. |
| */ |
| |
| /* Flags specific to the nCipher "chil" engine */ |
| # define ENGINE_CTRL_CHIL_SET_FORKCHECK 100 |
| /* |
| * Depending on the value of the (long)i argument, this sets or |
| * unsets the SimpleForkCheck flag in the CHIL API to enable or |
| * disable checking and workarounds for applications that fork(). |
| */ |
| # define ENGINE_CTRL_CHIL_NO_LOCKING 101 |
| /* |
| * This prevents the initialisation function from providing mutex |
| * callbacks to the nCipher library. |
| */ |
| |
| /* |
| * If an ENGINE supports its own specific control commands and wishes the |
| * framework to handle the above 'ENGINE_CMD_***'-manipulation commands on |
| * its behalf, it should supply a null-terminated array of ENGINE_CMD_DEFN |
| * entries to ENGINE_set_cmd_defns(). It should also implement a ctrl() |
| * handler that supports the stated commands (ie. the "cmd_num" entries as |
| * described by the array). NB: The array must be ordered in increasing order |
| * of cmd_num. "null-terminated" means that the last ENGINE_CMD_DEFN element |
| * has cmd_num set to zero and/or cmd_name set to NULL. |
| */ |
| typedef struct ENGINE_CMD_DEFN_st { |
| unsigned int cmd_num; /* The command number */ |
| const char *cmd_name; /* The command name itself */ |
| const char *cmd_desc; /* A short description of the command */ |
| unsigned int cmd_flags; /* The input the command expects */ |
| } ENGINE_CMD_DEFN; |
| |
| /* Generic function pointer */ |
| typedef int (*ENGINE_GEN_FUNC_PTR) (void); |
| /* Generic function pointer taking no arguments */ |
| typedef int (*ENGINE_GEN_INT_FUNC_PTR) (ENGINE *); |
| /* Specific control function pointer */ |
| typedef int (*ENGINE_CTRL_FUNC_PTR) (ENGINE *, int, long, void *, |
| void (*f) (void)); |
| /* Generic load_key function pointer */ |
| typedef EVP_PKEY *(*ENGINE_LOAD_KEY_PTR)(ENGINE *, const char *, |
| UI_METHOD *ui_method, |
| void *callback_data); |
| typedef int (*ENGINE_SSL_CLIENT_CERT_PTR) (ENGINE *, SSL *ssl, |
| STACK_OF(X509_NAME) *ca_dn, |
| X509 **pcert, EVP_PKEY **pkey, |
| STACK_OF(X509) **pother, |
| UI_METHOD *ui_method, |
| void *callback_data); |
| /*- |
| * These callback types are for an ENGINE's handler for cipher and digest logic. |
| * These handlers have these prototypes; |
| * int foo(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid); |
| * int foo(ENGINE *e, const EVP_MD **digest, const int **nids, int nid); |
| * Looking at how to implement these handlers in the case of cipher support, if |
| * the framework wants the EVP_CIPHER for 'nid', it will call; |
| * foo(e, &p_evp_cipher, NULL, nid); (return zero for failure) |
| * If the framework wants a list of supported 'nid's, it will call; |
| * foo(e, NULL, &p_nids, 0); (returns number of 'nids' or -1 for error) |
| */ |
| /* |
| * Returns to a pointer to the array of supported cipher 'nid's. If the |
| * second parameter is non-NULL it is set to the size of the returned array. |
| */ |
| typedef int (*ENGINE_CIPHERS_PTR) (ENGINE *, const EVP_CIPHER **, |
| const int **, int); |
| typedef int (*ENGINE_DIGESTS_PTR) (ENGINE *, const EVP_MD **, const int **, |
| int); |
| typedef int (*ENGINE_PKEY_METHS_PTR) (ENGINE *, EVP_PKEY_METHOD **, |
| const int **, int); |
| typedef int (*ENGINE_PKEY_ASN1_METHS_PTR) (ENGINE *, EVP_PKEY_ASN1_METHOD **, |
| const int **, int); |
| /* |
| * STRUCTURE functions ... all of these functions deal with pointers to |
| * ENGINE structures where the pointers have a "structural reference". This |
| * means that their reference is to allowed access to the structure but it |
| * does not imply that the structure is functional. To simply increment or |
| * decrement the structural reference count, use ENGINE_by_id and |
| * ENGINE_free. NB: This is not required when iterating using ENGINE_get_next |
| * as it will automatically decrement the structural reference count of the |
| * "current" ENGINE and increment the structural reference count of the |
| * ENGINE it returns (unless it is NULL). |
| */ |
| |
| /* Get the first/last "ENGINE" type available. */ |
| ENGINE *ENGINE_get_first(void); |
| ENGINE *ENGINE_get_last(void); |
| /* Iterate to the next/previous "ENGINE" type (NULL = end of the list). */ |
| ENGINE *ENGINE_get_next(ENGINE *e); |
| ENGINE *ENGINE_get_prev(ENGINE *e); |
| /* Add another "ENGINE" type into the array. */ |
| int ENGINE_add(ENGINE *e); |
| /* Remove an existing "ENGINE" type from the array. */ |
| int ENGINE_remove(ENGINE *e); |
| /* Retrieve an engine from the list by its unique "id" value. */ |
| ENGINE *ENGINE_by_id(const char *id); |
| /* Add all the built-in engines. */ |
| void ENGINE_load_openssl(void); |
| void ENGINE_load_dynamic(void); |
| # ifndef OPENSSL_NO_STATIC_ENGINE |
| void ENGINE_load_4758cca(void); |
| void ENGINE_load_aep(void); |
| void ENGINE_load_atalla(void); |
| void ENGINE_load_chil(void); |
| void ENGINE_load_cswift(void); |
| void ENGINE_load_nuron(void); |
| void ENGINE_load_sureware(void); |
| void ENGINE_load_ubsec(void); |
| void ENGINE_load_padlock(void); |
| void ENGINE_load_capi(void); |
| # ifndef OPENSSL_NO_GMP |
| void ENGINE_load_gmp(void); |
| # endif |
| # ifndef OPENSSL_NO_GOST |
| void ENGINE_load_gost(void); |
| # endif |
| # endif |
| void ENGINE_load_cryptodev(void); |
| void ENGINE_load_rdrand(void); |
| void ENGINE_load_builtin_engines(void); |
| |
| /* |
| * Get and set global flags (ENGINE_TABLE_FLAG_***) for the implementation |
| * "registry" handling. |
| */ |
| unsigned int ENGINE_get_table_flags(void); |
| void ENGINE_set_table_flags(unsigned int flags); |
| |
| /*- Manage registration of ENGINEs per "table". For each type, there are 3 |
| * functions; |
| * ENGINE_register_***(e) - registers the implementation from 'e' (if it has one) |
| * ENGINE_unregister_***(e) - unregister the implementation from 'e' |
| * ENGINE_register_all_***() - call ENGINE_register_***() for each 'e' in the list |
| * Cleanup is automatically registered from each table when required, so |
| * ENGINE_cleanup() will reverse any "register" operations. |
| */ |
| |
| int ENGINE_register_RSA(ENGINE *e); |
| void ENGINE_unregister_RSA(ENGINE *e); |
| void ENGINE_register_all_RSA(void); |
| |
| int ENGINE_register_DSA(ENGINE *e); |
| void ENGINE_unregister_DSA(ENGINE *e); |
| void ENGINE_register_all_DSA(void); |
| |
| int ENGINE_register_ECDH(ENGINE *e); |
| void ENGINE_unregister_ECDH(ENGINE *e); |
| void ENGINE_register_all_ECDH(void); |
| |
| int ENGINE_register_ECDSA(ENGINE *e); |
| void ENGINE_unregister_ECDSA(ENGINE *e); |
| void ENGINE_register_all_ECDSA(void); |
| |
| int ENGINE_register_DH(ENGINE *e); |
| void ENGINE_unregister_DH(ENGINE *e); |
| void ENGINE_register_all_DH(void); |
| |
| int ENGINE_register_RAND(ENGINE *e); |
| void ENGINE_unregister_RAND(ENGINE *e); |
| void ENGINE_register_all_RAND(void); |
| |
| int ENGINE_register_STORE(ENGINE *e); |
| void ENGINE_unregister_STORE(ENGINE *e); |
| void ENGINE_register_all_STORE(void); |
| |
| int ENGINE_register_ciphers(ENGINE *e); |
| void ENGINE_unregister_ciphers(ENGINE *e); |
| void ENGINE_register_all_ciphers(void); |
| |
| int ENGINE_register_digests(ENGINE *e); |
| void ENGINE_unregister_digests(ENGINE *e); |
| void ENGINE_register_all_digests(void); |
| |
| int ENGINE_register_pkey_meths(ENGINE *e); |
| void ENGINE_unregister_pkey_meths(ENGINE *e); |
| void ENGINE_register_all_pkey_meths(void); |
| |
| int ENGINE_register_pkey_asn1_meths(ENGINE *e); |
| void ENGINE_unregister_pkey_asn1_meths(ENGINE *e); |
| void ENGINE_register_all_pkey_asn1_meths(void); |
| |
| /* |
| * These functions register all support from the above categories. Note, use |
| * of these functions can result in static linkage of code your application |
| * may not need. If you only need a subset of functionality, consider using |
| * more selective initialisation. |
| */ |
| int ENGINE_register_complete(ENGINE *e); |
| int ENGINE_register_all_complete(void); |
| |
| /* |
| * Send parametrised control commands to the engine. The possibilities to |
| * send down an integer, a pointer to data or a function pointer are |
| * provided. Any of the parameters may or may not be NULL, depending on the |
| * command number. In actuality, this function only requires a structural |
| * (rather than functional) reference to an engine, but many control commands |
| * may require the engine be functional. The caller should be aware of trying |
| * commands that require an operational ENGINE, and only use functional |
| * references in such situations. |
| */ |
| int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void)); |
| |
| /* |
| * This function tests if an ENGINE-specific command is usable as a |
| * "setting". Eg. in an application's config file that gets processed through |
| * ENGINE_ctrl_cmd_string(). If this returns zero, it is not available to |
| * ENGINE_ctrl_cmd_string(), only ENGINE_ctrl(). |
| */ |
| int ENGINE_cmd_is_executable(ENGINE *e, int cmd); |
| |
| /* |
| * This function works like ENGINE_ctrl() with the exception of taking a |
| * command name instead of a command number, and can handle optional |
| * commands. See the comment on ENGINE_ctrl_cmd_string() for an explanation |
| * on how to use the cmd_name and cmd_optional. |
| */ |
| int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name, |
| long i, void *p, void (*f) (void), int cmd_optional); |
| |
| /* |
| * This function passes a command-name and argument to an ENGINE. The |
| * cmd_name is converted to a command number and the control command is |
| * called using 'arg' as an argument (unless the ENGINE doesn't support such |
| * a command, in which case no control command is called). The command is |
| * checked for input flags, and if necessary the argument will be converted |
| * to a numeric value. If cmd_optional is non-zero, then if the ENGINE |
| * doesn't support the given cmd_name the return value will be success |
| * anyway. This function is intended for applications to use so that users |
| * (or config files) can supply engine-specific config data to the ENGINE at |
| * run-time to control behaviour of specific engines. As such, it shouldn't |
| * be used for calling ENGINE_ctrl() functions that return data, deal with |
| * binary data, or that are otherwise supposed to be used directly through |
| * ENGINE_ctrl() in application code. Any "return" data from an ENGINE_ctrl() |
| * operation in this function will be lost - the return value is interpreted |
| * as failure if the return value is zero, success otherwise, and this |
| * function returns a boolean value as a result. In other words, vendors of |
| * 'ENGINE'-enabled devices should write ENGINE implementations with |
| * parameterisations that work in this scheme, so that compliant ENGINE-based |
| * applications can work consistently with the same configuration for the |
| * same ENGINE-enabled devices, across applications. |
| */ |
| int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg, |
| int cmd_optional); |
| |
| /* |
| * These functions are useful for manufacturing new ENGINE structures. They |
| * don't address reference counting at all - one uses them to populate an |
| * ENGINE structure with personalised implementations of things prior to |
| * using it directly or adding it to the builtin ENGINE list in OpenSSL. |
| * These are also here so that the ENGINE structure doesn't have to be |
| * exposed and break binary compatibility! |
| */ |
| ENGINE *ENGINE_new(void); |
| int ENGINE_free(ENGINE *e); |
| int ENGINE_up_ref(ENGINE *e); |
| int ENGINE_set_id(ENGINE *e, const char *id); |
| int ENGINE_set_name(ENGINE *e, const char *name); |
| int ENGINE_set_RSA(ENGINE *e, const RSA_METHOD *rsa_meth); |
| int ENGINE_set_DSA(ENGINE *e, const DSA_METHOD *dsa_meth); |
| int ENGINE_set_ECDH(ENGINE *e, const ECDH_METHOD *ecdh_meth); |
| int ENGINE_set_ECDSA(ENGINE *e, const ECDSA_METHOD *ecdsa_meth); |
| int ENGINE_set_DH(ENGINE *e, const DH_METHOD *dh_meth); |
| int ENGINE_set_RAND(ENGINE *e, const RAND_METHOD *rand_meth); |
| int ENGINE_set_STORE(ENGINE *e, const STORE_METHOD *store_meth); |
| int ENGINE_set_destroy_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR destroy_f); |
| int ENGINE_set_init_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR init_f); |
| int ENGINE_set_finish_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR finish_f); |
| int ENGINE_set_ctrl_function(ENGINE *e, ENGINE_CTRL_FUNC_PTR ctrl_f); |
| int ENGINE_set_load_privkey_function(ENGINE *e, |
| ENGINE_LOAD_KEY_PTR loadpriv_f); |
| int ENGINE_set_load_pubkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpub_f); |
| int ENGINE_set_load_ssl_client_cert_function(ENGINE *e, |
| ENGINE_SSL_CLIENT_CERT_PTR |
| loadssl_f); |
| int ENGINE_set_ciphers(ENGINE *e, ENGINE_CIPHERS_PTR f); |
| int ENGINE_set_digests(ENGINE *e, ENGINE_DIGESTS_PTR f); |
| int ENGINE_set_pkey_meths(ENGINE *e, ENGINE_PKEY_METHS_PTR f); |
| int ENGINE_set_pkey_asn1_meths(ENGINE *e, ENGINE_PKEY_ASN1_METHS_PTR f); |
| int ENGINE_set_flags(ENGINE *e, int flags); |
| int ENGINE_set_cmd_defns(ENGINE *e, const ENGINE_CMD_DEFN *defns); |
| /* These functions allow control over any per-structure ENGINE data. */ |
| int ENGINE_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func, |
| CRYPTO_EX_dup *dup_func, |
| CRYPTO_EX_free *free_func); |
| int ENGINE_set_ex_data(ENGINE *e, int idx, void *arg); |
| void *ENGINE_get_ex_data(const ENGINE *e, int idx); |
| |
| /* |
| * This function cleans up anything that needs it. Eg. the ENGINE_add() |
| * function automatically ensures the list cleanup function is registered to |
| * be called from ENGINE_cleanup(). Similarly, all ENGINE_register_*** |
| * functions ensure ENGINE_cleanup() will clean up after them. |
| */ |
| void ENGINE_cleanup(void); |
| |
| /* |
| * These return values from within the ENGINE structure. These can be useful |
| * with functional references as well as structural references - it depends |
| * which you obtained. Using the result for functional purposes if you only |
| * obtained a structural reference may be problematic! |
| */ |
| const char *ENGINE_get_id(const ENGINE *e); |
| const char *ENGINE_get_name(const ENGINE *e); |
| const RSA_METHOD *ENGINE_get_RSA(const ENGINE *e); |
| const DSA_METHOD *ENGINE_get_DSA(const ENGINE *e); |
| const ECDH_METHOD *ENGINE_get_ECDH(const ENGINE *e); |
| const ECDSA_METHOD *ENGINE_get_ECDSA(const ENGINE *e); |
| const DH_METHOD *ENGINE_get_DH(const ENGINE *e); |
| const RAND_METHOD *ENGINE_get_RAND(const ENGINE *e); |
| const STORE_METHOD *ENGINE_get_STORE(const ENGINE *e); |
| ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const ENGINE *e); |
| ENGINE_GEN_INT_FUNC_PTR ENGINE_get_init_function(const ENGINE *e); |
| ENGINE_GEN_INT_FUNC_PTR ENGINE_get_finish_function(const ENGINE *e); |
| ENGINE_CTRL_FUNC_PTR ENGINE_get_ctrl_function(const ENGINE *e); |
| ENGINE_LOAD_KEY_PTR ENGINE_get_load_privkey_function(const ENGINE *e); |
| ENGINE_LOAD_KEY_PTR ENGINE_get_load_pubkey_function(const ENGINE *e); |
| ENGINE_SSL_CLIENT_CERT_PTR ENGINE_get_ssl_client_cert_function(const ENGINE |
| *e); |
| ENGINE_CIPHERS_PTR ENGINE_get_ciphers(const ENGINE *e); |
| ENGINE_DIGESTS_PTR ENGINE_get_digests(const ENGINE *e); |
| ENGINE_PKEY_METHS_PTR ENGINE_get_pkey_meths(const ENGINE *e); |
| ENGINE_PKEY_ASN1_METHS_PTR ENGINE_get_pkey_asn1_meths(const ENGINE *e); |
| const EVP_CIPHER *ENGINE_get_cipher(ENGINE *e, int nid); |
| const EVP_MD *ENGINE_get_digest(ENGINE *e, int nid); |
| const EVP_PKEY_METHOD *ENGINE_get_pkey_meth(ENGINE *e, int nid); |
| const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth(ENGINE *e, int nid); |
| const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth_str(ENGINE *e, |
| const char *str, |
| int len); |
| const EVP_PKEY_ASN1_METHOD *ENGINE_pkey_asn1_find_str(ENGINE **pe, |
| const char *str, |
| int len); |
| const ENGINE_CMD_DEFN *ENGINE_get_cmd_defns(const ENGINE *e); |
| int ENGINE_get_flags(const ENGINE *e); |
| |
| /* |
| * FUNCTIONAL functions. These functions deal with ENGINE structures that |
| * have (or will) be initialised for use. Broadly speaking, the structural |
| * functions are useful for iterating the list of available engine types, |
| * creating new engine types, and other "list" operations. These functions |
| * actually deal with ENGINEs that are to be used. As such these functions |
| * can fail (if applicable) when particular engines are unavailable - eg. if |
| * a hardware accelerator is not attached or not functioning correctly. Each |
| * ENGINE has 2 reference counts; structural and functional. Every time a |
| * functional reference is obtained or released, a corresponding structural |
| * reference is automatically obtained or released too. |
| */ |
| |
| /* |
| * Initialise a engine type for use (or up its reference count if it's |
| * already in use). This will fail if the engine is not currently operational |
| * and cannot initialise. |
| */ |
| int ENGINE_init(ENGINE *e); |
| /* |
| * Free a functional reference to a engine type. This does not require a |
| * corresponding call to ENGINE_free as it also releases a structural |
| * reference. |
| */ |
| int ENGINE_finish(ENGINE *e); |
| |
| /* |
| * The following functions handle keys that are stored in some secondary |
| * location, handled by the engine. The storage may be on a card or |
| * whatever. |
| */ |
| EVP_PKEY *ENGINE_load_private_key(ENGINE *e, const char *key_id, |
| UI_METHOD *ui_method, void *callback_data); |
| EVP_PKEY *ENGINE_load_public_key(ENGINE *e, const char *key_id, |
| UI_METHOD *ui_method, void *callback_data); |
| int ENGINE_load_ssl_client_cert(ENGINE *e, SSL *s, |
| STACK_OF(X509_NAME) *ca_dn, X509 **pcert, |
| EVP_PKEY **ppkey, STACK_OF(X509) **pother, |
| UI_METHOD *ui_method, void *callback_data); |
| |
| /* |
| * This returns a pointer for the current ENGINE structure that is (by |
| * default) performing any RSA operations. The value returned is an |
| * incremented reference, so it should be free'd (ENGINE_finish) before it is |
| * discarded. |
| */ |
| ENGINE *ENGINE_get_default_RSA(void); |
| /* Same for the other "methods" */ |
| ENGINE *ENGINE_get_default_DSA(void); |
| ENGINE *ENGINE_get_default_ECDH(void); |
| ENGINE *ENGINE_get_default_ECDSA(void); |
| ENGINE *ENGINE_get_default_DH(void); |
| ENGINE *ENGINE_get_default_RAND(void); |
| /* |
| * These functions can be used to get a functional reference to perform |
| * ciphering or digesting corresponding to "nid". |
| */ |
| ENGINE *ENGINE_get_cipher_engine(int nid); |
| ENGINE *ENGINE_get_digest_engine(int nid); |
| ENGINE *ENGINE_get_pkey_meth_engine(int nid); |
| ENGINE *ENGINE_get_pkey_asn1_meth_engine(int nid); |
| |
| /* |
| * This sets a new default ENGINE structure for performing RSA operations. If |
| * the result is non-zero (success) then the ENGINE structure will have had |
| * its reference count up'd so the caller should still free their own |
| * reference 'e'. |
| */ |
| int ENGINE_set_default_RSA(ENGINE *e); |
| int ENGINE_set_default_string(ENGINE *e, const char *def_list); |
| /* Same for the other "methods" */ |
| int ENGINE_set_default_DSA(ENGINE *e); |
| int ENGINE_set_default_ECDH(ENGINE *e); |
| int ENGINE_set_default_ECDSA(ENGINE *e); |
| int ENGINE_set_default_DH(ENGINE *e); |
| int ENGINE_set_default_RAND(ENGINE *e); |
| int ENGINE_set_default_ciphers(ENGINE *e); |
| int ENGINE_set_default_digests(ENGINE *e); |
| int ENGINE_set_default_pkey_meths(ENGINE *e); |
| int ENGINE_set_default_pkey_asn1_meths(ENGINE *e); |
| |
| /* |
| * The combination "set" - the flags are bitwise "OR"d from the |
| * ENGINE_METHOD_*** defines above. As with the "ENGINE_register_complete()" |
| * function, this function can result in unnecessary static linkage. If your |
| * application requires only specific functionality, consider using more |
| * selective functions. |
| */ |
| int ENGINE_set_default(ENGINE *e, unsigned int flags); |
| |
| void ENGINE_add_conf_module(void); |
| |
| /* Deprecated functions ... */ |
| /* int ENGINE_clear_defaults(void); */ |
| |
| /**************************/ |
| /* DYNAMIC ENGINE SUPPORT */ |
| /**************************/ |
| |
| /* Binary/behaviour compatibility levels */ |
| # define OSSL_DYNAMIC_VERSION (unsigned long)0x00020000 |
| /* |
| * Binary versions older than this are too old for us (whether we're a loader |
| * or a loadee) |
| */ |
| # define OSSL_DYNAMIC_OLDEST (unsigned long)0x00020000 |
| |
| /* |
| * When compiling an ENGINE entirely as an external shared library, loadable |
| * by the "dynamic" ENGINE, these types are needed. The 'dynamic_fns' |
| * structure type provides the calling application's (or library's) error |
| * functionality and memory management function pointers to the loaded |
| * library. These should be used/set in the loaded library code so that the |
| * loading application's 'state' will be used/changed in all operations. The |
| * 'static_state' pointer allows the loaded library to know if it shares the |
| * same static data as the calling application (or library), and thus whether |
| * these callbacks need to be set or not. |
| */ |
| typedef void *(*dyn_MEM_malloc_cb) (size_t); |
| typedef void *(*dyn_MEM_realloc_cb) (void *, size_t); |
| typedef void (*dyn_MEM_free_cb) (void *); |
| typedef struct st_dynamic_MEM_fns { |
| dyn_MEM_malloc_cb malloc_cb; |
| dyn_MEM_realloc_cb realloc_cb; |
| dyn_MEM_free_cb free_cb; |
| } dynamic_MEM_fns; |
| /* |
| * FIXME: Perhaps the memory and locking code (crypto.h) should declare and |
| * use these types so we (and any other dependant code) can simplify a bit?? |
| */ |
| typedef void (*dyn_lock_locking_cb) (int, int, const char *, int); |
| typedef int (*dyn_lock_add_lock_cb) (int *, int, int, const char *, int); |
| typedef struct CRYPTO_dynlock_value *(*dyn_dynlock_create_cb) (const char *, |
| int); |
| typedef void (*dyn_dynlock_lock_cb) (int, struct CRYPTO_dynlock_value *, |
| const char *, int); |
| typedef void (*dyn_dynlock_destroy_cb) (struct CRYPTO_dynlock_value *, |
| const char *, int); |
| typedef struct st_dynamic_LOCK_fns { |
| dyn_lock_locking_cb lock_locking_cb; |
| dyn_lock_add_lock_cb lock_add_lock_cb; |
| dyn_dynlock_create_cb dynlock_create_cb; |
| dyn_dynlock_lock_cb dynlock_lock_cb; |
| dyn_dynlock_destroy_cb dynlock_destroy_cb; |
| } dynamic_LOCK_fns; |
| /* The top-level structure */ |
| typedef struct st_dynamic_fns { |
| void *static_state; |
| const ERR_FNS *err_fns; |
| const CRYPTO_EX_DATA_IMPL *ex_data_fns; |
| dynamic_MEM_fns mem_fns; |
| dynamic_LOCK_fns lock_fns; |
| } dynamic_fns; |
| |
| /* |
| * The version checking function should be of this prototype. NB: The |
| * ossl_version value passed in is the OSSL_DYNAMIC_VERSION of the loading |
| * code. If this function returns zero, it indicates a (potential) version |
| * incompatibility and the loaded library doesn't believe it can proceed. |
| * Otherwise, the returned value is the (latest) version supported by the |
| * loading library. The loader may still decide that the loaded code's |
| * version is unsatisfactory and could veto the load. The function is |
| * expected to be implemented with the symbol name "v_check", and a default |
| * implementation can be fully instantiated with |
| * IMPLEMENT_DYNAMIC_CHECK_FN(). |
| */ |
| typedef unsigned long (*dynamic_v_check_fn) (unsigned long ossl_version); |
| # define IMPLEMENT_DYNAMIC_CHECK_FN() \ |
| OPENSSL_EXPORT unsigned long v_check(unsigned long v); \ |
| OPENSSL_EXPORT unsigned long v_check(unsigned long v) { \ |
| if(v >= OSSL_DYNAMIC_OLDEST) return OSSL_DYNAMIC_VERSION; \ |
| return 0; } |
| |
| /* |
| * This function is passed the ENGINE structure to initialise with its own |
| * function and command settings. It should not adjust the structural or |
| * functional reference counts. If this function returns zero, (a) the load |
| * will be aborted, (b) the previous ENGINE state will be memcpy'd back onto |
| * the structure, and (c) the shared library will be unloaded. So |
| * implementations should do their own internal cleanup in failure |
| * circumstances otherwise they could leak. The 'id' parameter, if non-NULL, |
| * represents the ENGINE id that the loader is looking for. If this is NULL, |
| * the shared library can choose to return failure or to initialise a |
| * 'default' ENGINE. If non-NULL, the shared library must initialise only an |
| * ENGINE matching the passed 'id'. The function is expected to be |
| * implemented with the symbol name "bind_engine". A standard implementation |
| * can be instantiated with IMPLEMENT_DYNAMIC_BIND_FN(fn) where the parameter |
| * 'fn' is a callback function that populates the ENGINE structure and |
| * returns an int value (zero for failure). 'fn' should have prototype; |
| * [static] int fn(ENGINE *e, const char *id); |
| */ |
| typedef int (*dynamic_bind_engine) (ENGINE *e, const char *id, |
| const dynamic_fns *fns); |
| # define IMPLEMENT_DYNAMIC_BIND_FN(fn) \ |
| OPENSSL_EXPORT \ |
| int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns); \ |
| OPENSSL_EXPORT \ |
| int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns) { \ |
| if(ENGINE_get_static_state() == fns->static_state) goto skip_cbs; \ |
| if(!CRYPTO_set_mem_functions(fns->mem_fns.malloc_cb, \ |
| fns->mem_fns.realloc_cb, fns->mem_fns.free_cb)) \ |
| return 0; \ |
| CRYPTO_set_locking_callback(fns->lock_fns.lock_locking_cb); \ |
| CRYPTO_set_add_lock_callback(fns->lock_fns.lock_add_lock_cb); \ |
| CRYPTO_set_dynlock_create_callback(fns->lock_fns.dynlock_create_cb); \ |
| CRYPTO_set_dynlock_lock_callback(fns->lock_fns.dynlock_lock_cb); \ |
| CRYPTO_set_dynlock_destroy_callback(fns->lock_fns.dynlock_destroy_cb); \ |
| if(!CRYPTO_set_ex_data_implementation(fns->ex_data_fns)) \ |
| return 0; \ |
| if(!ERR_set_implementation(fns->err_fns)) return 0; \ |
| skip_cbs: \ |
| if(!fn(e,id)) return 0; \ |
| return 1; } |
| |
| /* |
| * If the loading application (or library) and the loaded ENGINE library |
| * share the same static data (eg. they're both dynamically linked to the |
| * same libcrypto.so) we need a way to avoid trying to set system callbacks - |
| * this would fail, and for the same reason that it's unnecessary to try. If |
| * the loaded ENGINE has (or gets from through the loader) its own copy of |
| * the libcrypto static data, we will need to set the callbacks. The easiest |
| * way to detect this is to have a function that returns a pointer to some |
| * static data and let the loading application and loaded ENGINE compare |
| * their respective values. |
| */ |
| void *ENGINE_get_static_state(void); |
| |
| # if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(HAVE_CRYPTODEV) |
| void ENGINE_setup_bsd_cryptodev(void); |
| # endif |
| |
| /* BEGIN ERROR CODES */ |
| /* |
| * The following lines are auto generated by the script mkerr.pl. Any changes |
| * made after this point may be overwritten when the script is next run. |
| */ |
| void ERR_load_ENGINE_strings(void); |
| |
| /* Error codes for the ENGINE functions. */ |
| |
| /* Function codes. */ |
| # define ENGINE_F_DYNAMIC_CTRL 180 |
| # define ENGINE_F_DYNAMIC_GET_DATA_CTX 181 |
| # define ENGINE_F_DYNAMIC_LOAD 182 |
| # define ENGINE_F_DYNAMIC_SET_DATA_CTX 183 |
| # define ENGINE_F_ENGINE_ADD 105 |
| # define ENGINE_F_ENGINE_BY_ID 106 |
| # define ENGINE_F_ENGINE_CMD_IS_EXECUTABLE 170 |
| # define ENGINE_F_ENGINE_CTRL 142 |
| # define ENGINE_F_ENGINE_CTRL_CMD 178 |
| # define ENGINE_F_ENGINE_CTRL_CMD_STRING 171 |
| # define ENGINE_F_ENGINE_FINISH 107 |
| # define ENGINE_F_ENGINE_FREE_UTIL 108 |
| # define ENGINE_F_ENGINE_GET_CIPHER 185 |
| # define ENGINE_F_ENGINE_GET_DEFAULT_TYPE 177 |
| # define ENGINE_F_ENGINE_GET_DIGEST 186 |
| # define ENGINE_F_ENGINE_GET_NEXT 115 |
| # define ENGINE_F_ENGINE_GET_PKEY_ASN1_METH 193 |
| # define ENGINE_F_ENGINE_GET_PKEY_METH 192 |
| # define ENGINE_F_ENGINE_GET_PREV 116 |
| # define ENGINE_F_ENGINE_INIT 119 |
| # define ENGINE_F_ENGINE_LIST_ADD 120 |
| # define ENGINE_F_ENGINE_LIST_REMOVE 121 |
| # define ENGINE_F_ENGINE_LOAD_PRIVATE_KEY 150 |
| # define ENGINE_F_ENGINE_LOAD_PUBLIC_KEY 151 |
| # define ENGINE_F_ENGINE_LOAD_SSL_CLIENT_CERT 194 |
| # define ENGINE_F_ENGINE_NEW 122 |
| # define ENGINE_F_ENGINE_REMOVE 123 |
| # define ENGINE_F_ENGINE_SET_DEFAULT_STRING 189 |
| # define ENGINE_F_ENGINE_SET_DEFAULT_TYPE 126 |
| # define ENGINE_F_ENGINE_SET_ID 129 |
| # define ENGINE_F_ENGINE_SET_NAME 130 |
| # define ENGINE_F_ENGINE_TABLE_REGISTER 184 |
| # define ENGINE_F_ENGINE_UNLOAD_KEY 152 |
| # define ENGINE_F_ENGINE_UNLOCKED_FINISH 191 |
| # define ENGINE_F_ENGINE_UP_REF 190 |
| # define ENGINE_F_INT_CTRL_HELPER 172 |
| # define ENGINE_F_INT_ENGINE_CONFIGURE 188 |
| # define ENGINE_F_INT_ENGINE_MODULE_INIT 187 |
| # define ENGINE_F_LOG_MESSAGE 141 |
| |
| /* Reason codes. */ |
| # define ENGINE_R_ALREADY_LOADED 100 |
| # define ENGINE_R_ARGUMENT_IS_NOT_A_NUMBER 133 |
| # define ENGINE_R_CMD_NOT_EXECUTABLE 134 |
| # define ENGINE_R_COMMAND_TAKES_INPUT 135 |
| # define ENGINE_R_COMMAND_TAKES_NO_INPUT 136 |
| # define ENGINE_R_CONFLICTING_ENGINE_ID 103 |
| # define ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED 119 |
| # define ENGINE_R_DH_NOT_IMPLEMENTED 139 |
| # define ENGINE_R_DSA_NOT_IMPLEMENTED 140 |
| # define ENGINE_R_DSO_FAILURE 104 |
| # define ENGINE_R_DSO_NOT_FOUND 132 |
| # define ENGINE_R_ENGINES_SECTION_ERROR 148 |
| # define ENGINE_R_ENGINE_CONFIGURATION_ERROR 102 |
| # define ENGINE_R_ENGINE_IS_NOT_IN_LIST 105 |
| # define ENGINE_R_ENGINE_SECTION_ERROR 149 |
| # define ENGINE_R_FAILED_LOADING_PRIVATE_KEY 128 |
| # define ENGINE_R_FAILED_LOADING_PUBLIC_KEY 129 |
| # define ENGINE_R_FINISH_FAILED 106 |
| # define ENGINE_R_GET_HANDLE_FAILED 107 |
| # define ENGINE_R_ID_OR_NAME_MISSING 108 |
| # define ENGINE_R_INIT_FAILED 109 |
| # define ENGINE_R_INTERNAL_LIST_ERROR 110 |
| # define ENGINE_R_INVALID_ARGUMENT 143 |
| # define ENGINE_R_INVALID_CMD_NAME 137 |
| # define ENGINE_R_INVALID_CMD_NUMBER 138 |
| # define ENGINE_R_INVALID_INIT_VALUE 151 |
| # define ENGINE_R_INVALID_STRING 150 |
| # define ENGINE_R_NOT_INITIALISED 117 |
| # define ENGINE_R_NOT_LOADED 112 |
| # define ENGINE_R_NO_CONTROL_FUNCTION 120 |
| # define ENGINE_R_NO_INDEX 144 |
| # define ENGINE_R_NO_LOAD_FUNCTION 125 |
| # define ENGINE_R_NO_REFERENCE 130 |
| # define ENGINE_R_NO_SUCH_ENGINE 116 |
| # define ENGINE_R_NO_UNLOAD_FUNCTION 126 |
| # define ENGINE_R_PROVIDE_PARAMETERS 113 |
| # define ENGINE_R_RSA_NOT_IMPLEMENTED 141 |
| # define ENGINE_R_UNIMPLEMENTED_CIPHER 146 |
| # define ENGINE_R_UNIMPLEMENTED_DIGEST 147 |
| # define ENGINE_R_UNIMPLEMENTED_PUBLIC_KEY_METHOD 101 |
| # define ENGINE_R_VERSION_INCOMPATIBILITY 145 |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| #endif |