| /* scrypt.c */ |
| /* |
| * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL project |
| * 2015. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 2015 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| |
| #include <stddef.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <openssl/evp.h> |
| #include <openssl/err.h> |
| #include <internal/numbers.h> |
| |
| #ifndef OPENSSL_NO_SCRYPT |
| |
| #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) |
| static void salsa208_word_specification(uint32_t inout[16]) |
| { |
| int i; |
| uint32_t x[16]; |
| memcpy(x, inout, sizeof(x)); |
| for (i = 8; i > 0; i -= 2) { |
| x[4] ^= R(x[0] + x[12], 7); |
| x[8] ^= R(x[4] + x[0], 9); |
| x[12] ^= R(x[8] + x[4], 13); |
| x[0] ^= R(x[12] + x[8], 18); |
| x[9] ^= R(x[5] + x[1], 7); |
| x[13] ^= R(x[9] + x[5], 9); |
| x[1] ^= R(x[13] + x[9], 13); |
| x[5] ^= R(x[1] + x[13], 18); |
| x[14] ^= R(x[10] + x[6], 7); |
| x[2] ^= R(x[14] + x[10], 9); |
| x[6] ^= R(x[2] + x[14], 13); |
| x[10] ^= R(x[6] + x[2], 18); |
| x[3] ^= R(x[15] + x[11], 7); |
| x[7] ^= R(x[3] + x[15], 9); |
| x[11] ^= R(x[7] + x[3], 13); |
| x[15] ^= R(x[11] + x[7], 18); |
| x[1] ^= R(x[0] + x[3], 7); |
| x[2] ^= R(x[1] + x[0], 9); |
| x[3] ^= R(x[2] + x[1], 13); |
| x[0] ^= R(x[3] + x[2], 18); |
| x[6] ^= R(x[5] + x[4], 7); |
| x[7] ^= R(x[6] + x[5], 9); |
| x[4] ^= R(x[7] + x[6], 13); |
| x[5] ^= R(x[4] + x[7], 18); |
| x[11] ^= R(x[10] + x[9], 7); |
| x[8] ^= R(x[11] + x[10], 9); |
| x[9] ^= R(x[8] + x[11], 13); |
| x[10] ^= R(x[9] + x[8], 18); |
| x[12] ^= R(x[15] + x[14], 7); |
| x[13] ^= R(x[12] + x[15], 9); |
| x[14] ^= R(x[13] + x[12], 13); |
| x[15] ^= R(x[14] + x[13], 18); |
| } |
| for (i = 0; i < 16; ++i) |
| inout[i] += x[i]; |
| OPENSSL_cleanse(x, sizeof(x)); |
| } |
| |
| static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r) |
| { |
| uint64_t i, j; |
| uint32_t X[16], *pB; |
| |
| memcpy(X, B + (r * 2 - 1) * 16, sizeof(X)); |
| pB = B; |
| for (i = 0; i < r * 2; i++) { |
| for (j = 0; j < 16; j++) |
| X[j] ^= *pB++; |
| salsa208_word_specification(X); |
| memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X)); |
| } |
| OPENSSL_cleanse(X, sizeof(X)); |
| } |
| |
| static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N, |
| uint32_t *X, uint32_t *T, uint32_t *V) |
| { |
| unsigned char *pB; |
| uint32_t *pV; |
| uint64_t i, k; |
| |
| /* Convert from little endian input */ |
| for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) { |
| *pV = *pB++; |
| *pV |= *pB++ << 8; |
| *pV |= *pB++ << 16; |
| *pV |= *pB++ << 24; |
| } |
| |
| for (i = 1; i < N; i++, pV += 32 * r) |
| scryptBlockMix(pV, pV - 32 * r, r); |
| |
| scryptBlockMix(X, V + (N - 1) * 32 * r, r); |
| |
| for (i = 0; i < N; i++) { |
| uint32_t j; |
| j = X[16 * (2 * r - 1)] % N; |
| pV = V + 32 * r * j; |
| for (k = 0; k < 32 * r; k++) |
| T[k] = X[k] ^ *pV++; |
| scryptBlockMix(X, T, r); |
| } |
| /* Convert output to little endian */ |
| for (i = 0, pB = B; i < 32 * r; i++) { |
| uint32_t xtmp = X[i]; |
| *pB++ = xtmp & 0xff; |
| *pB++ = (xtmp >> 8) & 0xff; |
| *pB++ = (xtmp >> 16) & 0xff; |
| *pB++ = (xtmp >> 24) & 0xff; |
| } |
| } |
| |
| #ifndef SIZE_MAX |
| # define SIZE_MAX ((size_t)-1) |
| #endif |
| |
| /* |
| * Maximum power of two that will fit in uint64_t: this should work on |
| * most (all?) platforms. |
| */ |
| |
| #define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1) |
| |
| /* |
| * Maximum value of p * r: |
| * p <= ((2^32-1) * hLen) / MFLen => |
| * p <= ((2^32-1) * 32) / (128 * r) => |
| * p * r <= (2^30-1) |
| * |
| */ |
| |
| #define SCRYPT_PR_MAX ((1 << 30) - 1) |
| |
| /* |
| * Maximum permitted memory allow this to be overridden with Configuration |
| * option: e.g. -DSCRYPT_MAX_MEM=0 for maximum possible. |
| */ |
| |
| #ifdef SCRYPT_MAX_MEM |
| # if SCRYPT_MAX_MEM == 0 |
| # undef SCRYPT_MAX_MEM |
| /* |
| * Although we could theoretically allocate SIZE_MAX memory that would leave |
| * no memory available for anything else so set limit as half that. |
| */ |
| # define SCRYPT_MAX_MEM (SIZE_MAX/2) |
| # endif |
| #else |
| /* Default memory limit: 32 MB */ |
| # define SCRYPT_MAX_MEM (1024 * 1024 * 32) |
| #endif |
| |
| int EVP_PBE_scrypt(const char *pass, size_t passlen, |
| const unsigned char *salt, size_t saltlen, |
| uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, |
| unsigned char *key, size_t keylen) |
| { |
| int rv = 0; |
| unsigned char *B; |
| uint32_t *X, *V, *T; |
| uint64_t i, Blen, Vlen; |
| |
| /* Sanity check parameters */ |
| /* initial check, r,p must be non zero, N >= 2 and a power of 2 */ |
| if (r == 0 || p == 0 || N < 2 || (N & (N - 1))) |
| return 0; |
| /* Check p * r < SCRYPT_PR_MAX avoiding overflow */ |
| if (p > SCRYPT_PR_MAX / r) |
| return 0; |
| |
| /* |
| * Need to check N: if 2^(128 * r / 8) overflows limit this is |
| * automatically satisfied since N <= UINT64_MAX. |
| */ |
| |
| if (16 * r <= LOG2_UINT64_MAX) { |
| if (N >= (1UL << (16 * r))) |
| return 0; |
| } |
| |
| /* Memory checks: check total allocated buffer size fits in uint64_t */ |
| |
| /* |
| * B size in section 5 step 1.S |
| * Note: we know p * 128 * r < UINT64_MAX because we already checked |
| * p * r < SCRYPT_PR_MAX |
| */ |
| Blen = p * 128 * r; |
| |
| /* |
| * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t. |
| * This is combined size V, X and T (section 4) |
| */ |
| i = UINT64_MAX / (32 * sizeof(uint32_t)); |
| if (N + 2 > i / r) |
| return 0; |
| Vlen = 32 * r * (N + 2) * sizeof(uint32_t); |
| |
| /* check total allocated size fits in uint64_t */ |
| if (Blen > UINT64_MAX - Vlen) |
| return 0; |
| |
| if (maxmem == 0) |
| maxmem = SCRYPT_MAX_MEM; |
| |
| if (Blen + Vlen > maxmem) { |
| EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| return 0; |
| } |
| |
| /* If no key return to indicate parameters are OK */ |
| if (key == NULL) |
| return 1; |
| |
| B = OPENSSL_malloc(Blen + Vlen); |
| if (B == 0) |
| return 0; |
| X = (uint32_t *)(B + Blen); |
| T = X + 32 * r; |
| V = T + 32 * r; |
| if (PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, 1, EVP_sha256(), |
| Blen, B) == 0) |
| goto err; |
| |
| for (i = 0; i < p; i++) |
| scryptROMix(B + 128 * r * i, r, N, X, T, V); |
| |
| if (PKCS5_PBKDF2_HMAC(pass, passlen, B, Blen, 1, EVP_sha256(), |
| keylen, key) == 0) |
| goto err; |
| rv = 1; |
| #ifdef SCRYPT_DEBUG |
| fprintf(stderr, "scrypt parameters:\n"); |
| fprintf(stderr, "N=%lu, p=%lu, r=%lu\n", N, p, r); |
| fprintf(stderr, "Salt:\n"); |
| BIO_dump_fp(stderr, (char *)salt, saltlen); |
| fprintf(stderr, "Password:\n"); |
| BIO_dump_fp(stderr, (char *)pass, passlen); |
| fprintf(stderr, "Key:\n"); |
| BIO_dump_fp(stderr, (char *)key, keylen); |
| #endif |
| err: |
| OPENSSL_clear_free(B, Blen + Vlen); |
| return rv; |
| } |
| #endif |